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Abstract

3D object detection from the LiDAR point cloud is fundamental to autonomous
driving. Large-scale outdoor scenes usually feature significant variance in instance
scales, thus requiring features rich in long-range and fine-grained information to
support accurate detection. Recent detectors leverage the power of window-based
transformers to model long-range dependencies but tend to blur out fine-grained
details. To mitigate this gap, we present a novel Mixed-scale Sparse Voxel Trans-
former, named MsSVT, which can well capture both types of information simul-
taneously by the divide-and-conquer philosophy. Specifically, MsSVT explicitly
divides attention heads into multiple groups, each in charge of attending to infor-
mation within a particular range. All groups’ output is merged to obtain the final
mixed-scale features. Moreover, we provide a novel chessboard sampling strategy
to reduce the computational complexity of applying a window-based transformer in
3D voxel space. To improve efficiency, we also implement the voxel sampling and
gathering operations sparsely with a hash map. Endowed by the powerful capability
and high efficiency of modeling mixed-scale information, our single-stage detector
built on top of MsSVT surprisingly outperforms state-of-the-art two-stage detectors
on Waymo. Our project page: https://github.com/dscdyc/MsSVT.

1 Introduction

3D object detection has received increasing attention due to its successful autonomous driving
applications. Unlike 2D images with a regular structure of pixels, LiDAR point clouds are naturally
irregular and unordered. Hence directly applying CNN-like operations [11, 12] to them can be
difficult. To solve this, many researchers have rasterized point clouds into regular voxel grids [24]
and employed 3D CNNs to extract high-dimensional voxel features. With the recent rise of vision
transformer (ViT) [42] on 2D images, some attempts have been made to generalize global or more
efficient window-based transformers to 3D voxels [23] or pillars [7]. These methods successfully seek
long-range context by utilizing transformers’ powerful abilities in modeling long-range information.
However, they ignore that blindly increasing receptive fields would easily blur fine-grained details,
especially in sparse 3D space, crucial to accurate object recognition and localization.

Standard window-based transformers update the features of queries in a local window by attending to
keys from the same window. Hence simultaneously aggregating long-range context and fine-grained
details require enlarging the window size to embrace local and distant voxels. Nevertheless, directly
gathering all the voxels within the window as keys suffers a cubical growth of the computational
load with the window size. Some attempts alleviate this by sampling only a certain number of key
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Figure 1: Top: In contrast to sampling key voxels from b) a single-scale 3D window in a) raw point
clouds, our MsSVT samples key voxels from c) multi-scale windows, thus keeps finer granularity on
the target object while covering large-scale neighborhood. Bottom: Different head groups accept
keys sampled from windows of different scales, and are respectively responsible for obtaining d)
fine-grained details and e) long-range context (reflected by higher attention weights), thus together
contribute to accurate object detection collaboratively.

voxels [23]. While a trivial sampling strategy quickly leads to the sparse sampling of local voxels
(Fig. 1 b), thus bias mainly on long-range context. To mitigate the above, we try to set up multiple
key windows of varying sizes centered on a query window and sample the same number of local and
distant key voxels separately from the smaller and larger windows. As a result, we can keep finer
granularity in the local region to retain fine-grained details while collecting distant voxels roughly to
enlarge the receptive field (Fig. 1 (c)).

With the sampled voxels ready, the next question is how to effectively attend to voxels from different
windows and simultaneously capture long-range context and fine-grained details. We argue that the
divide-and-conquer philosophy can satisfactorily resolve this issue. Specifically, inspired by the
recent findings [42, 59, 26] that transformers learn different levels of self-attention by different heads,
we propose a novel Mixed-scale Sparse Voxel Transformer (MsSVT), which explicitly divides the
transformer heads into multiple groups. Different head groups accept voxels sampled from windows
of different sizes, so they are each in charge of capturing information of a particular scale. Combining
the outputs from all the head groups, we can capture mixed-scale information, i.e., long-range context,
and fine-grained details. We also design a novel scale-aware relative position encoding strategy to
adaptively adjust the position encoding used in each head group according to the range of the keys.
We provide some resulting attention maps by two different head groups (Fig. 1 (d), (e)). It is also
worth mentioning that the mixed-scale attention enables information exchange across local windows,
making MsSVT more compact by saving additional shift window operation commonly required by
window-based transformers [21, 7].

Moreover, to improve the efficiency of applying transformers in 3D voxel space, we strive to reduce
computational costs in two ways. First, we propose a novel chessboard sampling (CBS) strategy
to reduce the number of query voxels that need to be sampled within the query window, to reduce
computational costs without losing information. Specifically, we partition the query window into
chess-like spaced, and termed as "×", "⃝", "△", "□" positions separately. During each attention
layer, only one specific position of voxels is sampled and updated by serving as queries, and the
updates of the other voxels can be obtained by interpolation. Four positions are selected in the circular.
Thus, we can update all the voxels without introducing deviation. Second, we take advantage of
non-empty voxels’ sparsity by performing mixed-scale window-based attention solely on non-empty
sites in 3D space. Furthermore, we parallelize the search and feature gathering for non-empty voxels
using hash mapping for further acceleration.
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We build a 3D detector by replacing the original sparse 3D CNN backbone in SECOND [50] with our
MsSVT and conduct extensive experiments on the large-scale Waymo open dataset [38]. Benefiting
from the powerful capability of abstracting mixed-scale voxel features, our single-stage detector
based on MsSVT surprisingly outperforms state-of-the-art two-stage detectors. We summarize our
contributions as follows:

• We present a novel Mixed-scale Sparse Voxel Transformer (MsSVT), which simultaneously
abstracts voxel features with long-range context and fine-grained details.

• We design an efficient chessboard sampling strategy to vastly reduce the computational cost
of applying a voxel-based transformer in 3D space and sparsely implement all operations to
improve efficiency.

• Our MsSVT-based single-stage detector outperforms state-of-the-art two-stage detectors on
Waymo.

2 Related work

3D detection on point clouds. The mainstream 3D object detectors are based on voxels [3, 51, 52,
37, 17, 14, 60, 50, 44, 43] or pillars [16, 32]. VoxelNet [60] utilizes PointNet [27, 32] to aggregate
features within each voxel and then apply sparse 3D convolution to generate detection results.
SECOND [50] investigates improved sparse convolution to further improve speed. Pointpillar [16]
converts the point cloud into pillars such that 2D CNNs can be applied to trade off between accuracy
and efficiency. Rapoport-Lavie et al. [28] introduce the Cylindrical Coordinates to leverage the
natural scanning pattern from LiDAR sensors. Chen et al. [2] further operate on both Bird Eye View
(BEV) and Range View (RV) in the unified Hybrid-Cylindrical-Spherical (HCS) voxel representation.
Reconfigurable Voxels [45] improves the local neighbors searching of each voxel using a random
walk scheme. Voxel-FPN [15] and Pillar-in-Pillar [41] adopt a multi-scale voxelization strategy
to rasterize the input point cloud into multi-sized voxels and incorporate FPN [20] to aggregate
multi-resolution feature maps. Two-stage detectors [19, 35, 36, 31] refine the bounding boxes output
by a single-stage detector by aggregating raw point clouds or voxel features, yielding state-of-the-art
performance.

Vision transformer. Transformer [42, 5] has recently achieved great success in computer vision [6,
1, 21, 18, 61, 53, 46]. Swin-transformer [21] restricts self-attention to non-overlapping local windows
while allowing cross-window connection to improve efficiency. SSA [29] divides attention heads
into multiple groups to aggregate image features with different granularities. Guo et al. [9] and
Zhao et al. [58] make the first step towards introducing the transformer for point cloud analysis.
Recently, many approaches [47, 57, 25, 10, 22, 49] apply local self-attention to learn richer 3D
feature representation. Our work extends the window-based attention on 3D voxels by introducing
scale-aware attention learning equipped with novel sampling strategies for the queries and the keys to
improve both accuracy and efficiency.

Voxel transformer for 3D detection. VoTr [23] introduces a voxel-based transformer backbone
that performs self-attention on sparse voxels with local and dilated attention mechanisms. Our work
improves VoTr by introducing window-based attention and optimizing sparse operation. The recent
SST [7] follows a single-stride design and the swin-transformer architecture, which performs well
on small objects. Nevertheless, SST is implemented based on pillars. The single window size is not
conducive to capturing multi-scale features, resulting in unsatisfactory performance on Vehicle when
simultaneously detecting multiple categories. In comparison, our MsSVT can capture mixed-scale
information to boost the detection of objects of various scales.

3 Method

This section first gives details of the MsSVT block, then its efficient sparse implementation, and
finally the 3D detector based on MsSVT.
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Figure 2: Top: overall architecture of our detection network. Bottom: details of the MsSVT block.
We gather the non-empty voxels within the query window and apply Chessboard Sampling (CBS) to
sample the queries. For the keys, we gather the non-empty voxels from the key windows of different
sizes separately, and get multiple sets of keys through Balanced Multi-window Sampling, with each
set representing information of a specific scale. Keys from windows of different sizes are assigned to
different head groups to perform scale-aware attention learning, thus simultaneously capturing both
long-range context and fine-grained details.

3.1 Mixed-scale Sparse Voxel Transformer

Fig. 2 illustrates the overall architecture of the MsSVT block. We first gather the query and the key
voxels via chessboard sampling and balanced multi-window sampling, respectively. The obtained
queries and keys are then fed into multiple head groups to capture mixed-scale information through
scale-aware attention learning. We further incorporate scale-aware relative position encoding to make
better use of position information in different head groups.

3.1.1 Balanced Multi-window Sampling

Let {sk|sk ∈ Z3}Mk=0 denote a series of window sizes, where s0 is the size of the query window
and s1,...,M are the sizes of M successively larger key windows. Let V = {vi|vi = (xi,fi)}|V|

i=1 be
the input voxel set, with xyz coordinates xi ∈ Z3 and feature vector fi ∈ RC for voxel i. We first
partition the voxel set into non-overlapping 3D windows each of size s0, and find the non-empty
ones as query windows with their centers denoted by {ci|ci ∈ Z3}Li=0, where L is the total number
of query windows. To get query voxels Vci,s0

for the query window centered on ci, one can simply
gather all the non-empty voxels within the window as the queries. While keeping efficiency in mind,
we present a novel chessboard sampling strategy, which will be detailed in Section 3.1.2.

As for the key voxels, instead of sampling within a single large window at once as previous meth-
ods [23], which inevitably biases on either local or distant voxels, we simultaneously search for the
neighbors for each center ci within multiple key windows of different sizes. For the key window of
size sk, we gather no more than NP non-empty voxels Vci,sk

= {vj | − sk < xj − ci < sk}NP
j=1,

where NP is a pre-set number. Furthermore, to reduce computational cost and keep balanced sam-
pling, we adopt the farthest point sampling (FPS) algorithm to uniformly sample NK voxels from
Vci,sk

to obtain the final key voxels Vfps
ci,sk

, k = 1, ...,M at different scales, where NK is a pre-set
maximum number of sampled voxels. Benefitting from the multi-window strategy equipped with
uniform sampling by FPS, we can achieve balanced sampling of key voxels at various scales, which
is crucial to capturing mixed-scale information.
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3.1.2 Chessboard Sampling

The prerequisite for us to sample the keys is that we do not have to preserve all the key voxels and
only need to select some representative ones to reduce computational redundancy. While things
are different for the queries. On the one hand, we should retain and update every query voxel after
an attention layer; otherwise, the information could be irreversibly lost. But on the other hand,
the computational cost and memory footprint grow dramatically with the window size, making
implementation impractical if the queries are not reduced.

Figure 3: Diagram of chessboard sampling.

Since the positions of non-empty voxels remain un-
changed after a series of attention blocks, an effec-
tive solution is to sample a subset of query voxels
each time for feature updating, and then use the
sampled voxels to update those unsampled. Moti-
vated by the above, we present Chessboard Sam-
pling (CBS) as illustrated in Fig. 3. Each voxel in
the query window is marked with "×", "⃝", "△",
or "□", in an evenly spaced pattern. In each MsSVT
block, we sample queries from the non-empty voxels
with one specific type of the marks, and update the
queries’ features through attention learning. Then
for each unsampled non-empty voxel, we update its
feature by finding the K-nearest query voxels (by
default K = 3) and by linearly interpolating their
updated features. The four masks are used in the
circular to sample query voxels in stacked blocks. This way, we retain the original structure and cover
all voxels as comprehensively as possible. Note that we can apply the interval sampling on any of the
x,y,z axes to achieve a sampling rate of 1/2, 1/4, or 1/8. Generally, we apply it in the horizontal x-y
plane (as illustrated in Fig. 3).

3.1.3 Scale-aware Head Attention

Given the query voxels Vci,s0 = (X0,F0) with voxel coordinates X0 ∈ ZNQ×3 and feature
vectors F0 ∈ RNQ×C , and the multi-scale key voxels Vfps

ci,sk
= (Xk,Fk), k = 1, ...,M with voxel

coordinates Xk ∈ ZNK×3 and feature vectors Fk ∈ RNK×C , we first get queries Q, keys {Kk}Mk=1

and values {Vk}Mk=1 as

Q, Kk, Vk = F0W
Q, FkW

K , FkW
V , k = 1, ...,M (1)

where WQ,WK ,W V ∈ RC×C are linear projections. To achieve scare-aware attention learning, we
divide multiple attention heads into M groups and assign the keys from windows of different sizes to
different head groups. Accordingly, we also split the feature channels of the queries Q into M groups.
The k-th channel group of Q, denoted by Qk = Q[:, (k − 1) × C/M : k × C/M ], k = 1, ...,M ,
is fed into the k-th head group. As a result, each head group is responsible for learning to attend
information at a specific scale. The attended feature for the k-th head group is

Ỹk = MHA(Qk,Kk,Vk,RPE(X0,Xk)), (2)

where MHA(·) denotes multi-head-group attention and RPE(·) represents the newly proposed
relative position encoding which will be detailed in Section 3.1.4. Each window size corresponds to
a head group with one or more attention heads. We concatenate the output from all heads groups
{Ỹk}Mk=1 to Ỹ ∈ RL×NQ×C , which is further fed into a feed-forward network (FFN) implemented
by multi-layer perceptron (MLP) to obtain the final mixed-scale feature Y :

Ỹ = CAT(Ỹ1, ..., ỸM ), (3)

Y = MLP(LN(Ỹ ))) + Ỹ , (4)

where LN(·) represents layer normalization.
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3.1.4 Scale-aware Relative Position Encoding

Relative position encoding is necessary for transformer-based networks because fine-grained position
information may be lost in high-level features with the deepening of the network. To make better use
of position information to facilitate multi-scale feature learning in our case, we adopt a scale-aware
adaptive relative position encoding strategy inspired by [30, 48, 55], which can generate the positional
bias dynamically with scales for different head groups.

Specifically, we establish a learnable embedding table Tk ∈ RD×R for the k-th head group according
to the size of the largest key window [21], where R is the number of possible relative position pairs
and D is the feature dimension. We get the relative positional bias for the queries as:

BQ
k = G(QkTk, Ik) ∈ RL×NQ×NK , (5)

where Ik ∈ ZL×NQ×NK represents the table indices corresponding to the actual relative position
between the queries and the keys, G(·) is the operation of gathering features according to the indices.
Similarly, we can ge the relative positional bias BK

k ∈ RL×NQ×NK for the keys. Finally, the biases
act directly on the attention weights, and Eq. (2) can be rewritten as:

Ỹk = σ(
QkK

T
k√

D
+BQ

k +BK
k )Vk, (6)

where σ(·) represents softmax. This way, position embeddings can be adjusted adaptively according
to different scales to guide the scale-ware head attention better.

3.2 Sparse Implementation

To leverage the natural sparsity of point clouds and further improve efficiency, we sparsely implement
all our window center searching, window gathering, and balanced window sampling into CUDA
operations. These operations are mainly based on a hash map that establishes the mapping from
coordinate space to voxel index [23]. Taking the window gathering operation as an example, we
query each possible position w.r.t. the given center within the window, and retrieve the corresponding
features if the position is a valid key in the pre-built hash map. More details are available in the
supplementary materials.

3.3 Detector Establishment

We build our 3D backbone by stacking multiple MsSVT blocks, as shown in Fig. 2. Noted that we
set both the query and the key window size in the last MsSVT block as (1, 1,∞) to compress the 3D
voxels into a 2D feature map, where the query is the average voxel features within the pillar window.
We replace the 3D backbone in SECOND [50] with MsSVT and keep the other network components
unchanged. We discard the down sampling process because MsSVT can already capture features at
different scales. The input point cloud is first converted into regular voxels and fed into our MsSVT
backbone to get mixed-scale voxel features. The features are then compressed vertically and sent to
the subsequent 2D RPN and detection head to get detection results.

4 Experiments

In this section, we first provide architectural details of MsSVT, then compare our model with recent
state-of-the-art detectors on Waymo Open [38] and KITTI [8] datasets. Thorough ablation studies
and in-depth analysis are further provided to validate our design choices.

4.1 Architectural Details

MsSVT comprises four regular MsSVT blocks with a query window size of (3, 3, 5) and key window
sizes of (3, 3, 5) and (7, 7, 7), followed by a specialized MsSVT block where the windows are set
as 1× 1 pillar as mentioned in 3.3. We divide 8 attention heads into 2 head groups. The sampling
rate of the chessboard sampling is 1/4 and the maximum number of sampled keys NK is 32. We
use the center head [56] to generate single-stage bounding boxes. In addition, we also provide a
two-stage version with CT3D [31]. More details can be found in OpenPCDet [40] since we conduct
all experiments with this toolbox.
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Table 1: Results on WOD validation set (train with 20% Waymo data). SS: Single-stage model, TS:
Two-stage model, SF: Single frame input. Note that some priors only report results of single-class
training, which is generally simpler than multi-class training.

Method Reference
Vel_L1 Vel_L2 Ped_L1 Ped_L2 Cyc_L1 Cyc_L2

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH
Single-Stage Methods

SECOND [50] Sensors 2018 70.96 70.34 62.58 62.02 65.23 54.24 57.22 47.49 57.13 55.62 54.97 53.53
PointPillar [16] CVPR 2019 70.43 69.83 62.18 61.64 66.21 46.32 58.18 40.64 55.26 51.75 53.18 49.80
CenterPoint [56] CVPR 2021 72.76 72.23 64.91 64.42 74.19 67.96 66.03 60.34 71.04 69.79 68.49 67.28
VOTR-SS [23] ICCV 2021 68.99 68.39 60.22 59.69 – – – – – – – –
RSN-SF [39] CVPR 2021 75.10 74.60 66.00 65.50 – – – – – – – –

MsSVT-SS (ours) – 77.18 76.67 68.75 68.28 80.25 73.05 72.88 66.14 73.75 72.53 70.96 69.79
Two-Stage Methods

Part-A2 [34] TPAMI 2020 74.66 74.12 65.82 65.32 71.71 62.24 62.46 54.06 66.53 65.18 64.05 62.75
PV-RCNN [35] CVPR 2020 75.95 75.43 68.02 67.54 75.94 69.40 67.66 61.62 70.18 68.98 67.73 66.57

Voxel-RCNN [4] AAAI 2021 76.13 75.66 68.18 67.74 78.20 71.98 69.29 63.59 70.75 69.68 68.25 67.21
PV-RCNN++ [36] ARXIV 2021 77.61 77.14 69.18 68.75 79.42 73.31 70.88 65.21 72.50 71.39 69.84 68.77

VOTR-TS [23] ICCV 2021 74.95 74.25 65.91 65.29 – – – – – – – –
CT3D [31] ICCV 2021 76.30 – 69.04 – – – – – – – – –

MsSVT-TS (ours) – 78.41 77.91 69.74 69.17 82.34 76.77 74.71 69.36 75.74 74.65 73.72 72.64

Table 2: Results on WOD validation set (train with 100% Waymo data).

Method Reference
Vel_L1 Vel_L2 Ped_L1 Ped_L2 Cyc_L1 Cyc_L2

mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH
Single-Stage Methods

SECOND [50] Sensors 2018 72.27 71.69 63.85 63.33 68.70 58.18 60.72 51.31 60.62 59.28 58.34 57.05
PointPillar [16] CVPR 2019 71.57 70.99 63.06 62.54 70.61 56.70 62.85 50.24 64.36 62.27 61.95 59.93
SST-SS-SF [7] CVPR 2022 73.57 – 64.80 – 80.01 – 71.66 – 70.72 – 68.01 –

MsSVT-SS (ours) – 77.83 77.32 69.53 69.06 80.39 73.61 73.00 66.65 75.17 73.99 72.37 71.24
Two-Stage Methods

Part-A2 [34] TPAMI 2020 77.05 76.51 68.47 67.97 75.24 66.87 66.18 58.62 68.60 67.36 66.13 64.93
PV-RCNN [35] CVPR 2020 78.00 77.50 69.43 68.98 79.21 73.03 70.42 64.72 71.46 70.27 68.95 67.79

PV-RCNN++ [36] ARXIV 2021 79.25 78.78 70.61 70.18 81.83 76.28 73.17 68.00 73.72 72.66 71.21 70.19
MsSVT-TS (ours) – 79.35 78.86 70.65 70.23 82.41 77.04 74.74 69.57 77.12 76.01 74.98 74.07

4.2 Results on Waymo

Setups. We first evaluate our model on large-scale Waymo Open Dataset [38]. The input is a
single-frame point cloud with 150m×150m detection range. We set the detection range in the
horizontal and the vertical direction as [−75.2m, 75.2m] and [−2.0m, 4.0m], respectively. The voxel
size is (0.4m, 0.4m, 0.6m). We follow the same training strategy as in [23]. Specifically, we train our
model for 80 epochs on 20% Waymo data using the Adam optimizer [13]. We apply the cyclic decay
scheme [50], by which the learning rate is increased from 1e-4 to 1e-3 during the first 40% epochs
and further decreased to 1e-5 in the remaining epochs. We also report the results of training for 30
epochs on 100% Waymo data using the same optimizer and learning rate scheme. The evaluation
metric is the 3D mean Average Precision (mAP) for difficulty levels of LEVEL 1 and LEVEL 2.

Main results. We compare our model with state-of-the-art priors in Table 1 and Table 2 . It is worth
noting that our model performs simultaneous detection of three object categories, which is more
challenging than detecting a single category. Using 20% training data, our single-stage MsSVT-SS
significantly surpasses other single-stage counterparts, even though some of them are trained specially
for one specific category. Noticeably, MsSVT-SS performs on par with the state-of-the-art two-stage
PV-RCNN++ [36] on Vehicle, and even better (0.8-1.5 mAP higher) on Pedestrian and Cyclist. In
addition, our two-stage MsSVT-TS performs the best on all categories, and significantly outperforms
previous best-performing PV-RCNN++ by 2.9 and 3.2 mAP on Pedestrian and Cyclist, respectively.

Similarly, when using 100% data, both our single-stage MsSVT-SS and two-stage MsSVT-TS achieve
the best results compared to their corresponding counterparts. Noticeably, our MsSVT-SS surpasses
the recent transformer-based detector SST [7] dedicated to small object detection by large margins of
4.3 and 4.5 mAP on Vehicle and Cyclist, respectively. This clearly evidences the superiority of our
MsSVT in capturing mixed-scale information over conventional transformer designs.
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Visualization. We provide some qualitative results in Fig. 4. Our MsSVT can still predict accurate
bounding boxes in scenes beyond the range of 50m where the points become extremely sparse (Fig. 4
(a)). This evidences that MsSVT successfully captures valuable contextual information in the absence
of fine-grained details for long-range object detection. In addition, our model also performs well in
complex scenes in the presence of dense objects with large-scale variations (Fig. 4 (b). It should be
owed to the flexibility and robustness of MsSVT.

Analysis. We further visualize some attention maps which indicate what has been focused on by
our MsSVT to understand its behavior better. As shown in Fig. 5, the head group with a smaller key
window focuses on the local foreground information, while the head group with a larger key window
attends more to the longer-range context. As a result, the two head groups complement each other,
well capturing mixed-scale information to support the detection of objects of various scales.

Table 3: Results on KITTI validation set.

Method Reference
3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5)

Easy Mod Hard Easy Mod. Hard Easy Mod. Hard
Single-Stage Methods

SECOND [50] Sensors 2018 86.46 77.28 74.65 61.63 56.27 52.60 80.10 62.69 59.71
PointPillar [16] CVPR 2019 88.61 78.62 77.22 56.55 52.98 47.73 80.59 67.16 63.11

3DSSD [54] CVPR 2020 88.55 78.45 77.30 58.18 54.32 49.56 86.25 70.49 65.32
VoTr-SS [23] ICCV 2021 87.86 78.27 76.93 – – – – – –

MsSVT-SS (ours) – 89.08 78.75 77.35 63.59 57.33 53.12 88.57 71.70 66.29
Two-Stage Methods

PointRCNN [33] CVPR 2019 89.03 78.78 77.86 62.50 55.18 50.15 87.49 72.55 66.01
Part-A2 [34] TPAMI 2020 88.48 78.96 78.36 70.73 64.13 57.45 88.18 73.35 70.75

PV-RCNN [35] CVPR 2020 89.35 83.69 78.70 63.12 54.84 51.78 86.06 69.48 64.50
VoTr-TS [23] ICCV 2021 89.04 84.04 78.68 – – – – – –

MsSVT-TS (ours) – 89.32 84.66 78.94 66.11 58.94 53.86 92.49 73.60 69.34

4.3 Results on KITTI

Setups. We also evaluate our model on KITTI [8]. Given an input point cloud, we reserve the
points within the range of [0m, 70.4m], [−40.0m, 40.0m] and [−3.0m, 1.0m] on the x,y,z axes,
respectively. The voxel size is set to (0.32m, 0.32m, 0.4m) and other settings remain the same as
in the experiments on Waymo. We train the model for 100 epochs with the Adam optimizer. The
learning rate is 0.003, decayed by the cyclic scheme [50]. The evaluation metric is 3D mAP for three
difficulty levels (easy, moderate, and hard).

Main results. Table 3 depicts that our model achieves competitive performance on all three
categories. Specifically, on Car, our single-stage MsSVT-SS surpasses the superior VoTr [23] by
0.5 mAP. Meanwhile, on Pedestrian and Cyclist, MsSVT-SS even outperforms some preeminent
two-stage detectors. Moreover, our two-stage MsSVT-TS further increases the lead. These results
demonstrate that our MsSVT can be well generalized to various datasets.

4.4 Ablation Study

All ablation models are trained for 12 epochs on 20% Waymo data. More implementation details and
ablations on hyperparameters are available in supplementary materials.

Balanced multi-window sampling. We first validate our balanced multi-window sampling strategy
in Table 4. The base model listed in the first row employs a 3D version of standard window-
based attention [21] with window size (3, 3, 5) and without shift window scheme, adopts dilated
key sampling [23], and gathers all non-empty voxels within the window as queries. We build a
model variant by simply replacing the dilated key sampling with our proposed balanced multi-
window sampling. Results in the second row demonstrate that sampling key voxels from multiple
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Figure 4: Qualitative results on Waymo. The red and green boxes denote ground-truths and predic-
tions, respectively. Our MsSVT performs impressively in scenes (a) beyond the range of 50m, and
(b) in the presence of dense objects with large scale variations.

Figure 5: Visualization of attention maps. Pink dot denotes the query position. Positions with high
and low attention weights are in red and blue, respectively.

windows of different sizes brings noticeable performance gains, i.e., 71.66→73.44 on Pedestrian
and 63.31→66.88 on Cyclist.

Table 4: Ablations on different components of MsSVT.
BMS: Balanced Multi-window Sampling, SHA: Scale-
aware Head Attention, SRPE: Relative Position Encoding.

BMS SHA SRPE Veh / Ped / Cyc

69.51/71.66/63.31
✓ 71.24/73.44/66.88
✓ ✓ 71.96/75.08/67.16
✓ ✓ ✓ 72.37/75.99/67.90

Scale-aware head attention. We also
validate the effectiveness of our proposed
scale-aware head attention in Table 4. By
comparing the results in the second and
the third rows, one can find that enabling
multiple head groups to capture informa-
tion at different scales clearly boots the
performance.

Scale-aware relative position encoding.
Table 4 shows that incorporating scale-
aware relative position encoding (listed
in the last row) further improves the per-
formance compared to the model variant that adopts scale-agnostic position encoding. It well supports
our design motivation that the position encoding should vary with different scales.

Table 5: Ablations on sampling strategy.

Strategy Veh / Ped / Cyc Mem (G) Lat (ms)

w/o 72.58/75.74/68.24 18.3 167
1/2 72.44/76.03/67.81 14.5 138
1/4 72.37/75.99/67.90 12.2 121
1/8 72.01/75.54/67.43 11.4 113

Chessboard sampling. Table 5 reports
the performance of the model variants that
apply chessboard sampling with differ-
ent sampling rates and of the model with-
out performing any sampling. We mea-
sure the latency on Tesla-V100 GPU and
Unbuntu-16.04, Python 3.7, Cuda-10.2,
and Pytorch-1.8. Our model is not sensi-
tive to varying sampling rates. Incorporat-
ing chessboard sampling with a sampling
rate of 1/4 results in only negligible performance degradation compared to the model variant without
sampling, yet largely improves the computational efficiency by a significant reduction in memory
footprint (up to 33% decrease) and in latency (up to 28% decrease).
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5 Conclusion

This paper presents MsSVT, a novel sparse voxel transformer that is capable of capturing mixed-scale
information to boost 3D object detection. We begin with sampling the queries and the keys at
different scales through the novel chessboard and the balanced multi-window sampling strategy,
respectively. Then, we explicitly divide attention heads into multiple scale-aware groups, each in
charge of capturing information at a specific scale. Extensive experiments have shown that our
MsSVT is superior in detecting objects of various scales and granularities thanks to the learned
mixed-scale information.

Limitations. MsSVT can capture mixed-scale information from multiple local windows and achieves
promising performance. Yet, the sizes of the windows need to be pre-set manually. We will explore
the adaptive-window version of MsSVT in future work.
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