Supplementary Material for ACIL: Analytic Class-Incremental Learning with Absolute Memorization and Privacy Protection

Huiping Zhuang¹, Zhenyu Weng^{2*}, Hongxin Wei³, Renchunzi Xie³, Kar-Ann Toh⁴, Zhiping Lin² ¹Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, China ²School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

³School of Computer Science and Engineering, Nanyang Technological University, Singapore

⁴Department of Electrical and Electronic Engineering, Yonsei University, Korea

Proof of Theorem 1

Proof. We first solves the recursive formulation for the RFAuM R_k . According to the Woodbury matrix identity, for any invertible square matrices A and C, we have

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)VA^{-1}.$$

Let $A = R_{k-1}^{-1}$, $U = X_k^{\text{(fe)T}}$, $V = X_k^{\text{(fe)}}$, and C = I. Hence, from $R_k = (R_{k-1}^{-1} + X_k^{\text{(fe)T}} X_k^{\text{(fe)}})^{-1}$ and the Woodbury matrix identity, we have

$$\boldsymbol{R}_{k} = \boldsymbol{R}_{k-1} - \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} (\boldsymbol{I} + \boldsymbol{X}_{k}^{(\text{fe})} \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}}) \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \boldsymbol{R}_{k-1}$$
(a)

which completes the proof for the recursive formulation of RFAuM. Let Q_{k-1} = $[X_0^{(\text{fe})T}Y_0 \dots X_{k-1}^{(\text{fe})T}Y_{k-1}]$. According to (7), (8) and (a), we have

$$\hat{\boldsymbol{W}}_{\text{FCN}}^{(k)} = \boldsymbol{R}_{k} \begin{bmatrix} \boldsymbol{Q}_{k-1} & \boldsymbol{X}_{k}^{\text{(fe)T}} \boldsymbol{Y}_{k}^{\text{train}} \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{R}_{k} \boldsymbol{Q}_{k-1} & \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{\text{(fe)T}} \boldsymbol{Y}_{k}^{\text{train}} \end{bmatrix}$$
(b)

where

$$\begin{aligned} \boldsymbol{R}_{k} \boldsymbol{Q}_{k-1} &= \boldsymbol{R}_{k-1} \boldsymbol{Q}_{k-1} - \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} (\boldsymbol{I} + \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}})^{-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \boldsymbol{R}_{k-1} \boldsymbol{Q}_{k-1} \\ &= \boldsymbol{\hat{W}}_{\text{FCN}}^{(k-1)} - \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} (\boldsymbol{I} + \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}})^{-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \boldsymbol{\hat{W}}_{\text{FCN}}^{(k-1)}. \end{aligned}$$
(c)

Let $K_k = (I + X_k^{\text{(fe)}} R_{k-1} X_k^{\text{(fe)T}})^{-1}$. Since,

$$\boldsymbol{I} = \boldsymbol{K}_k \boldsymbol{K}_k^{-1} = \boldsymbol{K}_k (\boldsymbol{I} + \boldsymbol{X}_k^{\text{(fe)}} \boldsymbol{R}_{k-1} \boldsymbol{X}_k^{\text{(fe)}}),$$

we have $K_k = I - K_k X_k^{\text{(fe)}} R_{k-1} X_k^{\text{(fe)T}}$. Therefore,

$$\begin{split} & \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} (\boldsymbol{I} + \boldsymbol{X}_{k}^{(\text{fe})} \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}})^{-1} = \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \boldsymbol{K}_{k} \\ & = \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} (\boldsymbol{I} - \boldsymbol{K}_{k} \boldsymbol{X}_{k}^{(\text{fe})} \boldsymbol{R}_{k-1} \boldsymbol{X}_{k}^{(\text{fe})\text{T}}) \\ & = (\boldsymbol{R}_{k-1} - \boldsymbol{R}_{k-1} \boldsymbol{K}_{k} \boldsymbol{X}_{k}^{(\text{fe})} \boldsymbol{R}_{k-1}) \boldsymbol{X}_{k}^{(\text{fe})\text{T}} = \boldsymbol{R}_{k} \boldsymbol{X}_{k}^{(\text{fe})\text{T}} \end{split}$$

which allows (c) to be reduced to

$$\boldsymbol{R}_{k}\boldsymbol{Q}_{k-1} = \boldsymbol{\hat{W}}_{\text{FCN}}^{(k-1)} - \boldsymbol{R}_{k}\boldsymbol{X}_{k}^{\text{(fe)T}}\boldsymbol{X}_{k}^{\text{(fe)}}\boldsymbol{\hat{W}}_{\text{FCN}}^{(k-1)}.$$
(d)
), we complete the proof.

By substituting (d) into (b), we complete the proof.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

¹hpzhuang@scut.edu.cn,²{zhenyu.weng, ezplin}@ntu.edu.sg ³{hongxin001, XIER0002}@e.ntu.edu.sg,⁴katoh@yonsei.ac.kr

^{*}Corresponding author.

2 Strict-Memory Setting

Here we also give the average incremental accuracy (see Table A) for the compared methods for strict-memory setting (i.e., only a fixed memory is allowed for the CIL). We adopt the memory budget used in the RMM paper [12]. In details, for each benchmark data, the memory budget is determined according to the phase number K. For instance [12], on CIFAR-10, the budget is 7k samples for K = 5 (7k samples = 10 classes per phase \times 500 samples per class + 2k samples). The numbers reported in Table A are duplicated from [12] where the compared methods are implemented in the same setting.

The ACIL gives identical results either in growing-exemplar or fixed memory settings. This is because the ACIL does not belong to the branch of replay-based CIL.

Table A: Comparison of average incremental accuracy among compared methods for strict-memory setting.

Metric	Method	Privacy	CIFAR-100				ImageNet-Subset				ImageNet-Full			
			K=5	10	25	50	K=5	10	25	50	K=5	10	25	50
Ā(%)	LwF (TPAMI 2018)	~	56.79	53.05	50.44	-	58.83	53.60	50.16	-	52.00	47.87	47.49	-
	iCaRL (CVPR 2017)	×	60.48	56.04	52.07	-	67.33	62.42	57.04	-	50.57	48.27	49.44	-
	LUCIR (CVPR 2019)	×	63.34	62.47	59.69	-	71.21	68.21	64.15	-	65.16	62.34	57.37	-
	PODNet (ECCV 2020)	×	64.60	63.13	61.96	-	76.45	74.66	70.15	-	66.80	64.89	60.28	-
	LUCIR+Mnemonics (CVPR 2020)	×	64.59	62.59	61.02	-	72.60	71.66	70.52	-	65.40	64.02	62.05	-
	POD+AANets (CVPR 2021)	×	66.61	64.61	62.63	-	77.36	75.83	72.18	-	67.97	65.03	62.03	-
	POD+AANets+RMM (NeuriPS 2021)	×	68.86	67.61	66.21	-	79.52	78.47	76.54	-	69.21	67.45	63.93	-
	ACIL	~	66.30	66.07	65.95	66.01	74.81	74.76	74.59	74.13	65.34	64.84	64.63	64.35