
A Theoretical foundation for the BAXUS embedding

For convenience, we re-state Definition 1 and Definition 2 from Section 3.
Definition 1 (Sparse embedding matrix). A matrix S ∈ {0,±1}d×D is a sparse embedding matrix
if and only if each column in S has exactly one non-zero entry [74].
Definition 2 (Success of a sparse embedding). A success of a random sparse embedding is the
event Y ∗ = “All de active input dimensions are mapped to distinct target dimensions.”

We introduce the following two definitions.
Definition 3 (Optima-preserving sparse embedding). A sparse embedding matrix is optima-
preserving if each target dimension (i.e., each column in S) contains at most one active input di-
mension.
Definition 4 (Sparse function / function with an active subspace). Let X = [−1, 1]D. A function
f : X → R has an active subspace (or effective subspace [71]), if there exist a subspace (i.e., a
space Z ⊆ Rde , with de ≤ D where de ∈ N++ is the effective dimensionality and N++ = N \ {0})
and a projection matrix S⊺ ∈ RD×de , such that for any x ∈ X there exists a z ∈ Z so that
f(x) = f(S⊺z) and de is the smallest integer with this property. The function is called sparse if it
has an active subspace and S⊺ is a sparse embedding matrix and Z = [−1, 1]de .

A.1 Proof of Theorem 1

We prove the worst-case success probability for the BAXUS embedding.
Theorem 1 (Worst-case success probability of the BAXUS embedding). Let D be the input
dimensionality and d ≥ de the dimensionality of the embedding. Let βsmall =

⌊
D
d

⌋
and βlarge =

⌈
D
d

⌉
be the small and large bin sizes. Then the probability of Y ∗ (see Definition 2) for the BAXUS
embedding is

pB(Y
∗;D, d, de) =

∑de

i=0

(
d(1+βsmall)−D

i

)(
D−dβsmall

de−i

)
βi

smallβ
de−i
large(

D
de

) . (4)

Proof. The assignment of input dimensions to target dimensions and the signs of the input dimen-
sions fully define the BAXUS embedding. Note that the signs do not affect pB(Y ∗;D, d, de) be-
cause they only correspond to “flipping” the input dimension in the target space, and our construction
ensures that the value ranges are symmetric to the origin.

An assignment is optima-preserving if and only if it is possible to find a point in Y that maps to
an optimum in X for any f . The “only if” is true because f is assumed to be sparse with an
active subspace with de active dimensions. This means that the optima in X only change their
function values along the de active dimensions. Suppose it is possible to find a point in Y that
maps to an arbitrary optimum in X . In that case, the assignment is optima-preserving because it
can individually adjust all the de active dimensions in X . However, this generally requires each
active input dimension to be mapped to a distinct target dimension (note that we require being able
to represent the optimum for any f). Otherwise, there would be at least two active input dimensions
that cannot be changed independently. Therefore, the probability of Y ∗ equals the probability of an
optima-preserving assignment.

As all assignments are equally likely under the construction, the probability of an assignment being
optima-preserving is equal to the number of possible optima-preserving assignments divided by the
total number of assignments. There are

(
D
de

)
ways of distributing the de active dimensions across

the D positions, giving the denominator in Eq. (4).

Let us first assume that βsmall = βlarge := β, i.e., all target dimensions have the same number of
input dimensions and d divides D. We refer to this case as the balanced case. There are

(
d
de

)
ways

of distributing the de active dimensions across the d different target dimensions. Given one active
dimension, there are β ways in which this dimension can map to the target dimension. Therefore,
for the balanced case, the worst-case success probability is given by

pB(Y
∗;D, d, de) =

βde
(
d
de

)(
D
de

) . (5)

17

Next, we generalize Eq. (5) for cases where d does not divide D. We refer to this case as the near-
balanced case. In that case, there are two bin sizes: βsmall and βlarge with βlarge = βsmall + 1. There
are dβlarge−D small bins (i.e., bins with bin size βsmall) and D−dβsmall large bins: D−dβsmall gives
the number of input dimensions that would not be covered if all bins were small. Since βsmall and
βlarge differ by 1, this also gives the number of bins that have to be large. Conversely, if we only had
large bins, we would cover dβlarge −D too many input dimensions. Therefore, we need D− dβsmall
large and dβlarge −D small bins.

We consider all ways of distributing the de active dimensions across the the dβlarge − D small and
D − dβsmall large bins so that there is at most one active dimension in each bin. Recall that this
number gives the numerator in Eq. (4). For a conflict-free assignment, if i active dimensions are
mapped to small bins, then de − i active dimensions must be assigned to large bins. There are(
d(1+βsmall)−D

i

)(
D−dβsmall

de−i

)
such assignments. Here we use that 1 + βsmall = βlarge holds for the near-

balanced case. Recall that each small bin has βsmall locations and that each large bin has βlarge
locations that an active dimension can be assigned to. Because 0 ≤ i ≤ de by construction, the
number of assignments that result in an optima-preserving embedding is

de∑
i=0

(
d(1 + βsmall)−D

i

)(
D − dβsmall

de − i

)
βi

smallβ
de−i
large .

Note that we leverage the facts
(
0
0

)
= 1,

(
0
x

)
= 0 for all x ≥ 1,

(
y
x

)
= 0 if x > y ≥ 0, and

(
x
0

)
= 1

for all x, thus the sum is well defined. Recall that we already showed that the denominator is
(
D
de

)
.

Therefore, Eq. (4) gives the success probability in the near-balanced case.

It is easy to see that Eq. (4) is equivalent to the near-balanced formulation in Eq. (5) when d divides
D. When d divides D, βsmall = βlarge = β, d(1 + βsmall)−D = d, and D − dβsmall = 0. Therefore,
the worst-case success probability for the near-balanced case is given by

pB(Y
∗;D, d, de) =

∑de

i=0

(
d(1+βsmall)−D

i

)(
D−dβsmall

de−i

)
βi

smallβ
de−i
large(

D
de

)
βsmall=βlarge

=

∑de

i=0

(
d
i

)(
0

de−i

)
βiβde−i(

D
de

)
=

βde
∑de

i=0

(
d
i

)(
0

de−i

)(
D
de

) =
βde

(
d
de

)(
D
de

)
where the last equality is true because the sum is zero unless i = de.

A.2 Proof of Corollary 2

We prove the optimality of the BAXUS embedding in terms of worst-case success probability.

Corollary 2. With the same input, target, and effective dimensionalities (D, d, and de), no sparse
embedding has a higher worst-case success probability than the BAXUS embedding.

Proof. By Definition 1, an embedding matrix S ∈ {0,±1}D×d is sparse if each row in S has
exactly one non-zero entry. Such an embedding can always be interpreted as disjoint sets of signed
input dimensions assigned to different target dimensions: For the n-th input dimension, find the
column with the non-zero. The respective column gives the target dimension; the entry in the matrix
itself gives the sign. Conversely, each target dimension has a set of contributing input dimensions,
and we call the set of input dimensions mapping to a target dimension a “bin”. The sign of the
input dimensions does not influence the success probability as it does not influence the ability of an
embedding to contain the optimum.

We will prove that the BAXUS embedding is optimal, i.e., every other sparse embedding has a worst-
case success probability that is lower or equal. We start by giving the worst-case success probability
for arbitrary bin sizes.

18

Let βn be the bin size of the n-th bin. By Definition 2, a success is guaranteed if each bin contains
at most one active input dimension. Therefore, the worst-case success probability for arbitrary bin
sizes has to consider the number of cases where each bin contains at most one active input dimension
and the number of bins containing one active input dimension is equal to the number of active input
dimensions de. In a bin of size βi, the active input dimension can lie in βi different locations. Bins
not containing an active dimension do not contribute to the worst-case success probability.

We suppose w.l.o.g. that D ≥ d. Thus, every target dimension has at least one input dimension.
For each n from 1 to d, let the value in indicate whether the n-th bin (or target dimension) con-
tains an active dimension (in = 1) or not (in = 0). The indicator variable 1(

∑d
n=1 in)=de

ensures
that only cases where exactly de bins contain an active input dimension are counted. Note that∑1

i1=0

∑1
i2=0 . . .

∑1
id=0 1(

∑d
n=1 in)=de

=
(
d
de

)
. For each case where the de active dimensions are

assigned to de out of d disjoint bins, the term
∏d

n=1 β
in
n accounts for the locations in which the

active dimension can lie in the n-th bin. Other cases do not contribute to the worst-case success
probability. The exponent ensures that only bins containing an active dimension contribute to the
denominator.

Then the worst-case success probability for arbitrary bin sizes is given by

pgeneral(Y
∗;D, d, de) =

=(d
de
)︷ ︸︸ ︷

1∑
i1=0

1∑
i2=0

. . .

1∑
id=0

1(
∑d

n=1 in)=de

d∏
n=1

βin
n(

D
de

) , (6)

with βn > 0,
∑d

n=1 βn = D, and d ≥ de:

As in Theorem 1, the numerator of Eq. (6) gives all ways of assigning de active dimensions to D
input dimensions.

We now prove that any sparse embedding has a worst-case success probability that is less or equal
to the worst-case success probability of the BAXUS embedding.

Let βsmall, βlarge, and pB(Y
∗;D, d, de) as in Theorem 1. Then,

pgeneral(Y
∗;D, d, de) ≤ pB(Y

∗;D, d, de) =

=(d
de
)︷ ︸︸ ︷

de∑
i=0

(
d(1 + βsmall)−D

i

)(
D − dβsmall

de − i

)
βi

smallβ
de−i
large(

D
de

) .

We refer the reader to the proof of Theorem 1 for an explanation of the binomial coefficients. The
fact that

∑de

i=0

(
d(1+βsmall)−D

i

)(
D−dβsmall

de−i

)
=

(
d
de

)
can be seen by noting that (d(1 + βsmall) − D) +

(D − dβsmall) = d and applying Vandermonde’s convolution [25].

We will now prove that if d divides D, then the product in the numerator of Eq. (6) is maximized
if all the factors are the same, i.e., β = D

d . We will then show that if d does not divide D, the
integer-solution of maximal value is attained for βlarge − βsmall = 1.

First case (d divides D) We now show that the following holds for the term
∏d

n=1 β
in
n in the nu-

merator of Eq. (6):
∏d

n=1 β
in
n ≤ βde . The numerator in Eq. (6) can also be written as ede

(β1, . . . , βd)
where

ede
(β1, . . . , βd) =

∑
i1<i2<...<ide

βi1βi2 . . . βide

=

1∑
i1=0

1∑
i2=0

. . .

1∑
id=0

1(
∑d

n=1 in)=de

d∏
n=1

βin
n

19

is the de-th elementary symmetric function of β1, . . . , βd [3]. Maclaurin’s inequality [3] states that

e1(β1, . . . , βd)(
d
1

) ≥
√

e2(β1, . . . , βd)(
d
2

) ≥ . . . ≥ de

√
ede

(β1, . . . , βd)(
d
de

) ≥ . . . ≥ d

√
ed(β1, . . . , βd)(

d
d

) .(7)

In particular,

e1(β1, . . . , βd)(
d
1

) =

∑d
i=1 βi

d
=

D

d
= β (8)

holds. Taking Eq. (7) and Eq. (8) to the power de and multiplying by
(
d
de

)
, we obtain

βde

(
d

de

)
≥ ede

(β1, . . . , βd) =

1∑
i1=0

1∑
i2=0

. . .

1∑
id=0

1(
∑d

n=1 in)=de

d∏
n=1

βin
n , (9)

with equality if and only if βi = βj for i, j ∈ {1, . . . , n} [3]. Therefore, the product in the numerator
of Eq. (6) is maximized if all factors are equal.

Second case (d does not divide D) However, if d does not divide D, then β is no integer which is
not feasible in our setting. The de-th elementary symmetric function ede(β) (see Eq. (9)) is known
to be Schur-concave if βi ≥ 0 holds for all i [44]. This condition is met by β. We use the following
definition of [44]: A function f : Rd → R is called Schur-concave if γ ≺ β implies f(γ) ≥ f(β).
Here, γ ≺ β means that β majorizes γ, i.e.,

k∑
i=1

γ↓
i ≤

k∑
i=1

β↓
i for all k ∈ {1, . . . , d}, and

d∑
i=1

γi =

d∑
i=1

βi,

where γ↓ and β↓ are the vectors of all elements in γ and β in descending order [44].

We now show that there is no integer solution γ such that there is a near-balanced solution that
majorizes γ.

For some near-balanced assignment β of small and large bins to the d target dimensions, consider
the vector

β↓ =

=βlarge︷ ︸︸ ︷⌈
D

d

⌉
, . . . ,

⌈
D

d

⌉
︸ ︷︷ ︸

D−dβsmall many

,

=βsmall︷ ︸︸ ︷⌊
D

d

⌋
, . . . ,

⌊
D

d

⌋
︸ ︷︷ ︸
dβlarge−D many

of bin sizes in decreasing order. For any other BAXUS embedding given by some permutation β′

of β, it holds that β′↓ = β↓. Note that for any assignment γ = {γ1, . . . ,γd} of bin sizes over the d
target dimensions, it has to hold that

d∑
i=1

γi = D; γi ≥ 0, i ∈ {1, . . . , d}; γ ∈ Nd
+.

By assumption, since we are in the near-balanced case, βsmall = βlarge − 1.

Assume there exists an assignment of bin sizes γ that is not a permutation of β such that γ ≺ β,
i.e.,

k∑
i=1

γ↓
i ≤

k∑
i=1

β↓
i for all k ∈ {1, . . . , d},

and
d∑

i=1

γi =

d∑
i=1

βi,

20

and

∃j : γ↓
j < β↓

j .

Let κ denote the (non-empty) set of such indices. Because the elements of β and γ both sum up to
D, it has to hold for all κ ∈ κ that

d∑
i=1,i ̸=κ

γ↓
i >

d∑
i=1,i ̸=κ

β↓
i . (10)

Remember that β only contains elements of sizes βsmall and βlarge with βlarge = βsmall − 1. Then,
Eq. (10) can only hold if either 1) γ contains more elements of size βlarge than β or 2) if it contains
at least one element that is larger than βlarge, the largest element in β.

Both cases lead to a contradiction. In the first case,

D−dβsmall+1∑
i=1

γ↓
i >

D−dβsmall+1∑
i=1

β↓
i ⇒ γ ̸≺ β

since at least the first D−dβsmall+1 elements of γ↓ are
⌈
D
d

⌉
but only the first D−dβsmall elements

of β↓ are
⌈
D
d

⌉
and the D − dβsmall + 1-th element of β↓ is

⌈
D
d

⌉
− 1.

In the second case, γ ̸≺ β because γ↓
1 > β↓

1 . It follows that no such γ exists. Therefore, the
BAXUS embedding has a maximum worst-case success probability among sparse embeddings.

A.3 Proof of Corollary 1

Corollary 1. For D →∞, the worst-case success probability of the BAXUS embedding is

lim
D→∞

pB(Y
∗;D, d, de) =

d!

(d− de)!dde
,

and hence matches HESBO’s worst-case success probability pH(Y ∗; d, de).

Proof. By Corollary 1, the following holds for arbitrary 1 ≤ de ≤ d ≤ D where d, de, D ∈ N++:

d!

(d− de)!dde
≤ pB(Y

∗;D, d, de),

because d!
(d−de)!dde

is HESBO’s worst-case success probability and hence less or equal to the worst-
case success probability of BAXUS.

Furthermore, by the proof of Corollary 1,

pB(Y
∗;D, d, de) ≤

βde
(
d
de

)(
D
de

) ,

because
βde(d

de
)

(D
de
)

is larger or equal the worst-case success probability of any sparse embedding,

among which BAXUS is the embedding with maximum worst-case success probability and
βde(d

de
)

(D
de
)

= pB(Y
∗;D, d, de) if and only if βsmall = βlarge, i.e., d divides D.

In summary, we have
d!

(d− de)!dde
≤ pB(Y

∗;D, d, de) ≤
βde

(
d
de

)(
D
de

) .

We now show that, for fixed d and de, the sequences d!
(d−de)!dde

and
βde(d

de
)

(D
de
)

converge to the same

point as D → ∞. We consider limβ→∞, which is equivalent to limD→∞ as β = D
d and d is fixed.

21

Note, that we can consider β = D
d even though it is not a valid success probability when d does not

divide D, since we are only interested in bounding the true success probability. Then,

lim
β→∞

βde
(
d
de

)(
D
de

) = lim
β→∞

βded!(D − de)!

D!(d− de)!

= lim
β→∞

βded!(βd− de)!

(βd)!(d− de)!

= lim
β→∞

βde
d!

(d− de)!

(βd− de)!

(βd)!

Applying Stirling’s approximation [25] to the numerator and the denominator of the last factor, we
obtain

= lim
β→∞

βde
d!

(d− de)!

√
2π(βd− de)

(
βd−de

e

)βd−de

√
2πβd

(
βd
e

)βd

r(βd− de)

r(βd)

= lim
β→∞

βde
d!

(d− de)!

√
βd− de

βd
ede

(βd− de)
βd−de

(βd)βd
r(βd− de)

r(βd)

= lim
β→∞

βde
d!

(d− de)!

√
βd− de

βd
ede

(
βd− de

βd

)βd
1

(βd− de)de

r(βd− de)

r(βd)

= lim
β→∞

d!

(d− de)!

√
βd− de

βd
ede

(
βd− de

βd

)βd
βde

(βd− de)de

r(βd− de)

r(βd)

= lim
β→∞

d!

(d− de)!

√
βd− de

βd︸ ︷︷ ︸
→1

ede

(
βd− de

βd

)βd

︸ ︷︷ ︸
→e−de

(
1

d

)de

︸ ︷︷ ︸
=d−de

(
βd

βd− de

)de

︸ ︷︷ ︸
→1

r(βd− de)

r(βd)︸ ︷︷ ︸
→1

=
d!

(d− de)!dde

where the following holds for the error term r(x) of the Stirling approximation [56]:

exp

(
1

12x+ 1

)
≤ r(x) ≤ exp

(
1

12x

)
.

Then, r(βd−de)
r(βd) → 1 for β →∞ holds since

r(βd− de)

r(βd)
≤ exp

(
1

12(βd− de)
− 1

12βd+ 1

)
= exp

(
12de + 1

122β2d2 + 12βd− 122βdde − 12de

)
= exp

(
de +

1
12

βd(12βd+ 1− 12de)− de

)
,

and
r(βd− de)

r(βd)
≥ exp

(
1

12(βd− de) + 1
− 1

12βd

)
= exp

(
12de − 1

122β2d2 + 12βd− 122βdde − 12βde

)
= exp

(
de − 1

12

βd(12βd+ 1− 12de)− de

)
,

22

which both go to 1 as β →∞.

Hence, BAXUS’ worst-case success probability is bounded from below and above by sequences
that converge to the same point as D →∞. The squeeze theorem (e.g., [62]) implies

lim
D→∞

pB(Y
∗;D, d, de) =

d!

(d− de)!dde
.

B Consistency of BAXUS

We prove the global convergence of function values for BAXUS. The proof idea is similar to Eriks-
son and Poloczek [21] but relaxes the assumption of a unique global minimizer. By construction, f
is sparse (see Definition 4), i.e., there exists a set of dimensions of f that do not influence the func-
tion value. Thus, an optimal solution stays optimal regardless of how non-active dimensions are set.
This is why we must relax the assumption of a unique global minimizer in the input space. Instead,
we assume a unique global minimizer in the active subspace z∗ ∈ Z that can map to arbitrarily
many minimizers in the input space.

Theorem 2 (BAXUS consistency). With the following definitions:

D1. {xk}∞k=1 is a sequence of points of decreasing function value;

D2. x∗ ∈ argminx∈X f(x) is a minimizer in X ;

and under the following assumptions:

A1. D is finite;

A2. f is observed without noise;

A3. f is sparse and bounded in X , i.e., ∃C ∈ R++ s.t. |f(x)| < C ∀x ∈ X ;

A4. At least one of the minimizers x∗
i lies in a continuous region with positive measure;

A5. Once BAXUS reached the input dimensionality D, the initial points {xi}ninit
i=1 after each

TR restart for BAXUS are chosen such that ∀δ ∈ R++ and x ∈ X , ∃ ν(x, δ) > 0:
P (∃i : ||x− xi||2 ≤ δ) ≥ ν(x, δ), i.e., the probability that at least one point in {xi}ninit

i=1
ends up in a ball centered at x with radius δ is at least ν(x, δ);

f(xk) converges to f(x∗) with probability 1.

Proof. We first show that BAXUS must eventually arrive at an embedding equivalent to the input
space. By Assumption A1, the number of accepted “failures” (i.e., the number of times BAXUS
needs to fail in finding a better solution until the TR base length is shrunk) is always finite since it
is always bounded by the target dimension (∀i τ ifail ≤ di) which is at most equal to D (∀i di ≤ D).
By the facts that BAXUS considers any sampled point an improvement only if it improves over the
current best solution by at least some constant γ ∈ R++ and that f is bounded (Assumption A3),
BAXUS can only perform a finite number of function evaluations without increasing the target
dimensionality of its embedding.

Once BAXUS reaches D, it behaves like TURBO [22] for which Eriksson and Poloczek [21] proved
global convergence assuming a unique global minimizer. For the case de < D, we notice that
multiple minima in the input space occur due to non-active dimensions that do not influence the
function value.

The remainder of our proof is based on the convergence theorem for global search by Solis and Wets
[63], which proves convergence of function values for random search with possibly multiple minima.
By considering the sequence {

x′
i ∈ argmin

x̂∈{xk}i
k=1

f(x̂)

}∞

i=1

23

of points of decreasing function values where {xk}ik=1 are the observations up to the i-th function
evaluation, Definition D1 is satisfied. Additionally, by the fact that, at each TR restart, BAXUS
performs random restarts with uniform probability on X , BAXUS satisfies the assumptions of the
theorem.

The Solis and Wets [63] theorem states that for a sequence {xk}∞k=1 of sampling points with ε ∈
R++,

lim
k→∞

P [xk ∈ Rε] = 1

Rε = {x ∈ X : f(x) < α+ ε}
α = inf{t : v(x ∈ X : f(x) < t) > 0}

where Rε is the set of ε-optimal function values, α is the essential infimum, and v is the Lebesgue
measure. Note that the essential infimum α is equal to the minimum if the minimizer lies in a
continuous region of positive measure, i.e., α = f(x∗

i). By Assumption A4 and by letting ε → 0,
f(xk) converges to f(x∗

i).

C Additional empirical evaluations

C.1 Ablation study for the BAXUS embedding

We conduct an ablation study to investigate the difference between the BAXUS and HESBO em-
beddings. We run TURBO of Eriksson et al. [22] in an embedded subspace with the two different
embeddings. We use a version of ACKLEY10 (ten active dimensions, i.e., de = 10), where we shift
the optimum away from the origin with a uniformly random vector δ ∈ [−32.768, 32.768]de with
δi ∼ U(−32.768, 32.768). The function we optimize is then

fShiftedAckley10(x) = fAckley10(x+ δ).

We adjust the boundaries of the search space such that fShiftedAckley10 is evaluated on the domain
X = [−32.768, 32.768]de . The reason for shifting the optimum is that the original ACKLEY function
has its optimum at the origin. In that case, any sparse embedding contains this optimum, even if all
the active input dimensions are mapped to the same target dimension.

We add 10 dummy dimensions, such that D = 30 and set d = 20. With this problem-setting, the
BAXUS and HESBO embeddings have a probability of approximately 0.27 and 0.07 of containing
the optimum, respectively.

Figure 5: Left: the BAXUS embedding gives better optimization performance on the shifted ACK-
LEY10 function: TURBO in embedded subspaces of the BAXUS and HESBO embeddings. The
BAXUS embedding has a higher probability to contain the optimum. Right: the distribution of the
final incumbents (lower the better). The horizontal bars show the median.

The left side of Figure 5 shows the incumbent mean for TURBO in the two different embedded
subspaces. The shaded regions show one standard error. TURBO in an BAXUS embedding has sig-
nificantly better optimization performance than in a HESBO embedding. The right side of Figure 5

24

shows the distributions of the final incumbents and their median. The BAXUS embedding leads to a
significantly lower median and only rarely a similarly bad embedding as the HESBO method when
combined with TURBO.

We perform a two-sided Wilcoxon rank-sum statistical test to check the difference between the best
observed function values for the two embeddings. The difference is significant with p ≈ 0.00001.

The performance difference between the two embeddings depends on the characteristics of the func-
tion and the different dimensionalities, the input dimensionality D, the target dimensionality d, and
the effective dimensionality de. For problems with a few active dimensions and many input di-
mensions, the BAXUS and HESBO embeddings become more similar (see Figure 2). However,
by Corollary 2, the BAXUS embedding is, in expectation and terms of success probability, always
better than the HESBO embedding for arbitrary sparse functions.

For functions with an optimum at the origin, both embeddings contain that optimum regardless of
d: Even if all active input dimensions are mapped to the same target dimension, the optimum in the
input space can be reached by “setting” this particular target dimension to zero.

TURBO with BAXUS embedding vs. BAXUS. We compare the simple idea of running TURBO
in a BAXUS embedding with the BAXUS algorithm described in Section 3. We run this simple
approach for 11 different target dimensionalities d (2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) on the
LASSO-HARD benchmark and show the results with a sequential color map in Figure 6. Only the
first d = 2-dimensional embedding achieves the same initial speedup as BAXUS, which is expected
as BAXUS starts in a similarly low-dimensional initial embedding. However, the fixed embedding
cannot explore the input space sufficiently and has the worst final solution. High-dimensional fixed
embeddings have more freedom in exploring the input space; however, they suffer from slower initial
optimization performance.

BAXUS has the same initial speedup as the two-dimensional fixed embedding but can explore the
space further by increasing the dimensionality of its embedding.

Figure 6: An evaluation of BAXUS and TURBO with BAXUS embeddings of different target
dimensionalities on LASSO-HARD: We run TURBO with the BAXUS embedding for target dimen-
sionalities d = 2, 10, 20, 30, . . . , 100 and compare to BAXUS.

Summing up, we observe that BAXUS achieves a better performance than TURBO with a fixed
embedding dimensionality.

C.2 Evaluation on an additional Lasso benchmark

In addition to the synthetic LASSO-HIGH and LASSO-HARD benchmarks studied in Section 4, we
evaluate BAXUS on the LASSO-DNA benchmark from LASSOBENCH [59]. The LASSO-DNA
benchmark is a biomedical classification task, taking binarized DNA sequences as input [59].

25

Figure 7: BAXUS and baselines on LASSO-DNA. As before, BAXUS makes considerable progress
in the beginning and converges faster than TURBO and CMA-ES.

Figure 7 shows the mean performance of BAXUS on the LASSO-DNA. Each line shows the incum-
bent mean; the shaded regions around the lines show one standard error. We see the same qualitative
behavior as discussed in Section 4: BAXUS reaches a good initial solution faster than any other
method and converges quickly.

After a worse start, TURBO finds slightly better solutions than BAXUS.

C.3 Evaluation on additional MuJoCo benchmarks

We evaluate BAXUS with the same baselines as in Section 4. We use the implementation of [70]2,
in particular we use the Gym environments Ant, Swimmer, Half-Cheetah, Hopper, Walker 2D,
and Humanoid 2D, all in version 2. For the 6392-dimensional Humanoid benchmark, we limit the
target dimensionality of BAXUS to 1000 dimensions to keep the split budgets sufficiently large. For
the other benchmarks, we do not limit the target dimensionality. Due to the high variance between
runs, we ran all methods for 50 different runs.

We summarize the results in Fig. 8. We observe that BAXUS obtains equal or better solutions
than the competitors on four out of six benchmarks. On the 120-dimensional Walker benchmark,
BAXUS is the clear winner, followed by TURBO and CMA-ES. On the 888-dimensional Ant
benchmark, HESBO finds the best solutions, followed by BAXUS that outperforms TURBO and
CMA-ES. For the 102-dimensional Half-Cheetah, TURBO produces the best solutions, followed
by CMA-ES and BAXUS; here, the subspace-based approaches (ALEBO and HESBO) give sig-
nificantly worse solutions. For the 6392-dimensional Humanoid 2D, CMA-ES obtains the best
solutions, followed by BAXUS, ALEBO, and HESBO.

D The nested family of random embeddings

We describe the method for increasing the target dimensionality under the retention of the observa-
tions. Suppose that we have collected n observations and are in target dimension d when Algorithm 2
is invoked. Algorithm 2 loops over the target dimensions 1, . . . , d. For each target dimension, the
contributing input dimensions are randomly re-assigned to new bins of given sizes. This can, for
example, be realized by, first, randomly permuting the list of contributing input dimensions, and,
secondly, dividing the list into b + 1 chunks (bins). If the number of contributing input dimensions
is less than b + 1 (remember that b is the number of new bins), then it is not possible to re-assign
the contributing input dimensions to b + 1 bins. Therefore, we re-assign the contributing input di-
mensions to b̂ = min(b, ls − 1) bins, where ls is the number of contributing input dimensions to the
s-th target dimension. This also ensures that the target dimension never grows larger than D in the
BAXUS embedding. We evenly distribute the ls contributing input dimensions across the b̂ bins by

2https://github.com/facebookresearch/LA-MCTS/blob/main/example/mujuco/functions.
py, last accessed: 06/10/2022

26

https://github.com/facebookresearch/LA-MCTS/blob/main/example/mujuco/functions.py
https://github.com/facebookresearch/LA-MCTS/blob/main/example/mujuco/functions.py

Figure 8: An evaluation of BAXUS and other methods on high-dimensional test problems of Mu-
JoCo.

again using the BAXUS embedding. This gives a smaller (in terms of number of rows) projection
matrix S̃⊺ which we finally use to update S⊺:

Algorithm 2 Observation-preserving embedding increase

Input: transposed embedding matrix S⊺, number of new bins per latent dimension b, observed
points Y ∈ [−1, 1]n×d.

Output: updated transposed embedding matrix S⊺ and updated observation matrix Y
for s ∈ {1, . . . , d} do

Ds ← contributing input dimensions of s-th latent dimension of the current embedding
ls ← |Ds|
b̂← min(b, ls − 1) ▷ If ls − 1 < b, we can at most create ls − 1 new bins.
Copy and append s-th column of Y b̂ times at the end of Y .
Add b̂ zero columns at the end of S⊺.
σ ← signs of dimensions ∈Ds.
S̃⊺ ← Baxus-Embedding(ls, b̂+ 1) ▷ Re-assign input dims. equally3, S̃⊺ ∈ {0,±1}ls×b̂+1

for i ∈ {1, . . . , ls}, j ∈ {1, . . . , b̂+ 1} do
if S̃⊺

ij ̸= 0 then
if j > 1 then ▷ Move values that fall into new bins to end of S⊺.

S⊺
Ds

i ,d̂−b̂−1+j
← σi ▷ d̂: columns of S⊺

S⊺
Ds

i ,s
← 0 ▷ Set value in “old” column to zero.

Return S⊺ and Y .

3Equally means that all b̂ + 1 bins have roughly the same number of contributing input dimensions. The
number of contributing input dimensions to the different bins differ by at most 1.

27

E Additional details on the implementation and the empirical evaluation

We benchmark against SAASBO, TURBO, HESBO, ALEBO, and CMA-ES:

• For SAASBO, we use the implementation from [20] (https://github.com/
martinjankowiak/saasbo, license: none, last accessed: 05/09/2022).

• For TURBO, we use the implementation from [22] (https://github.com/uber-research/
TuRBO, license: Uber, last accessed: 05/09/2022).

• For HESBO and ALEBO, we use the implementation from [40] (https://github.com/
facebookresearch/alebo, license: CC BY-NC 4.0, last accessed: 05/09/2022).

• For the LASSO benchmarks, we use the implementation from [59] (https://github.com/
ksehic/LassoBench, license: MIT and BSD-3-Clause, last accessed: 05/09/2022).

We use GPyTorch (version 1.8.1) to train the GP with the following setup: We place a top-hat
prior on the Gaussian likelihood noise, the signal variance, and the length scales of the Matérn 5/2
ARD kernel. The interval for the noise is [0.005, 0.2], for the signal variance [0.05, 20], and for the
lengthscales [0.005, 10].

We evaluate on the synthetic BRANIN24 and HARTMANN65 functions. Since we augment the
function with dummy dimensions, we use the same domain for x1 and x2, namely [−5, 15]D for
BRANIN2 and [0, 1]D for HARTMANN6.

Similar to TURBO, we sample a min(100dn, 5000)-element Sobol sequence on which we minimize
the posterior sample. To maximize the marginal log-likelihood of the GP, we sample 100 initial hy-
perparameter configurations. The ten best samples are further optimized using the ADAM optimizer
for 50 steps.

We ran the experiments for approximately 15,000 core hours on Intel Xeon Gold 6130 CPUs pro-
vided by a compute cluster.

4See https://www.sfu.ca/~ssurjano/branin.html, last accessed: 05/09/2022
5See https://www.sfu.ca/~ssurjano/hart6.html, last accessed: 05/09/2022

28

https://github.com/martinjankowiak/saasbo
https://github.com/martinjankowiak/saasbo
https://github.com/uber-research/TuRBO
https://github.com/uber-research/TuRBO
https://github.com/facebookresearch/alebo
https://github.com/facebookresearch/alebo
https://github.com/ksehic/LassoBench
https://github.com/ksehic/LassoBench
https://www.sfu.ca/~ssurjano/branin.html
https://www.sfu.ca/~ssurjano/hart6.html

