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Abstract

Online distillation attracts attention from the community as it simplifies the tradi-
tional two-stage knowledge distillation process into a single stage. Online distilla-
tion collaboratively trains a group of peer models, which are treated as students,
and all students gain extra knowledge from each other. However, memory con-
sumption and diversity among students are two key challenges to the scalability
and quality of online distillation. To address the two challenges, this paper presents
a framework called Weighted Mutual Learning with Diversity-Driven Model Com-
pression (WML) for online distillation. First, at the base of a hierarchical structure
where students share different parts, we leverage the structured network pruning to
generate diversified students with different models sizes, thus also helping reduce
the memory requirements. Second, rather than taking the average of students, this
paper, for the first time, leverages a bi-level formulation to estimate the relative
importance of students with a close-form, to further boost the effectiveness of the
distillation from each other. Extensive experiments show the generalization of the
proposed framework, which outperforms existing online distillation methods on a
variety of deep neural networks. More interesting, as a byproduct, WML produces
a series of students with different model sizes in a single run, which also achieves
competitive results compared with existing channel pruning methods.

1 Introduction

Deep neural networks (DNNs) have achieved impressive success for a variety of application fields,
including computer vision [27, 46], natural language processing [2], time-series analytics [53], and
so on [6, 48, 54]. However, the performance of DNNs is heavily dependent on model parameters and
computations, which hinders its application on intelligent edge systems [20]. To relieve this issue,
various techniques have been proposed to design lightweight models, including network pruning [18],
network quantization [7], and neural architecture search [43]. Knowledge distillation [25, 33, 51],
as a complementary method to further improve the performance of the lightweight models, can
transfer the discriminative ability from a high-capacity yet cumbersome teacher model to a small
and compact student model by encouraging the student to mimic the behavior of the teacher. The
vanilla knowledge distillation [25], as shown in Figure 1 (a), includes two stages: it first trains the
cumbersome teacher model, whose soft logits that contain informative dark knowledge [25] are then
transferred to a compact student model. As the teacher is fixed during the knowledge transferring, the
student can only learn from the teacher once it is trained, and the vanilla knowledge distillation is also
called offline distillation [15]. To further simplify the distillation process and relieve the restriction
when the larger-capacity teacher model is not available, the online distillation framework has been
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Figure 1: Knowledge distillation, online distillation, and the proposed WML. (a) [25] is the
first knowledge distillation, where the student ResNet32 can only learn from the trained teacher
ResNet152. (b) [70] is also called deep mutual learning, where the students can learn from each other
during the training. (c) is the proposed WML framework with a hierarchy structure, where different
colored Resblocks are pruned under different ratios to enable diversified peer models and also reduce
the memory consumption. Rather than averaging the knowledge from peers, WML leverages bi-level
optimization to estimate the relative importance of each peer (e.g., weight ωj for peer j) in forming a
more informative knowledge source.

proposed [4, 70, 71], which simultaneously trains a group of student models (a.k.a. peers) with similar
structures. As each student can gain extra knowledge from each other, it is also called deep mutual
learning [70], as shown in Figure 1 (b). Although online distillation conducts the distillation with
a one-phase training scheme without pretraining a teacher, it has high memory consumption when
jointly training several independent models. In addition, it is supposed to yield more informative
knowledge when diversity presents among students, while the similar structures in online distillation
may hinder the students from learning more informative knowledge from peers [9, 16].

In order to simultaneously overcome the two aforementioned difficulties, memory consumption and
diversity among peers, this paper proposes a novel framework, called Weighted Mutual Learning with
Diversity-Driven Model Compression (WML) for online distillation, as present in Figure 1 (c). Our
WML considers a hierarchical structure where each peer share different parts, so as reduce the memory
consumption compared with online distillation. In addition, we leverage the structured network
pruning to generate diversified peer models under different pruning ratios, which also further reduces
the memory consumption. On the other hand, simply treating the peers with different capacities to be
equally important might neglect the diversity of all peer models, and limit the effectiveness of online
distillation when learning from a group of peers with different capacities [9, 16]. In this paper, we
formulate the weighted mutual learning based online distillation as a bilevel optimization problem,
where the inner loop is to learn compact peers with the online distillation and the outer loop is to
find suitable weights to determine a better optimization direction for knowledge distillation from
a group of peers. The weights are optimized by the mirror descent [3, 5], and the hypergradient is
analyzed in a theoretical way with a close-form. Our formulation can be seen as a dynamic weighting
strategy for online distillation, which adaptively distills knowledge from the peer models to a student.
A summary of our main contributions follows.

• First, this paper proposes a Weighted Mutual Learning with Diversity-Driven Model Com-
pression (WML) for online distillation, where the peer models share different parts in a
hierarchical structure and the structured network pruning is leveraged to further generate
diversified peers and reduce the memory consumption.

• Second, we formulate the weighted mutual learning based online distillation as a bilevel
optimization problem, and the hypergradient of optimizing the weights is derived with a
close-form. The dynamic weighting strategy enables the online distillation to adaptively
determine the importance of each peer in distilling knowledge from a group of peers.
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• Third, extensive experiments on several neural networks and three datasets verify the
effectiveness of the proposed framework, which significantly outperforms existing online
distillation and self-distillation methods. More interesting, as a byproduct, WML can get
a series of pruned student models with different model sizes in a single run, which also
achieves competitive results when compared with existing channel pruning methods.

2 Related work

2.1 Knowledge Distillation

Knowledge Distillation (KD) is the concept [25] that distills knowledge from a larger teacher model
to help the training of a smaller student model, by steering the student’s logits towards teacher’s logits,
as shown in Figure 1 (a). FitNet [44] further extends the feature maps as the learning target instead of
logits. Rather than only learning from a single teacher, many recent studies [9, 16] investigate learning
from a group of teachers, where the outputs of teachers are usually averaged to guide the student
training, while how to effectively integrate different types of knowledge from multiple teachers is less
investigated [9, 16]. The traditional knowledge distillation is also called offline distillation since the
teacher models are first trained before distillation. Differently, online distillation simultaneously trains
a group of student models that can gain extra knowledge from each other without a pretrained teacher
model, so it is also called the teacher-absent knowledge distillation. Deep mutual learning (DML)
[70]is the first proposed online setting for knowledge distillation, which trains multiple peer models
in a collaborative way that each model can be seen as a teacher during others’ training process. KDCL
[16] further ensembles the output of all students as the teacher knowledge in the online distillation
setting since the ensemble is supposed to yield better generalization ability than a single model [1].
To further reduce the training requirements, several recent works [71] enforce all students to share the
same early blocks while equipped with individual auxiliary head branches. Although this paradigm
can relieve the heavy memory consumption in online distillation, it suffers from the drawback of
diversity as all peers share the same backbone and with a similar structure. Differently, Song and
Chai [47] proposed a hierarchical structure so that the peers can share different parts in the early
blocks. Self-distillation is another recently-proposed distillation paradigm, which can be regarded as
a special case of online distillation [15, 56, 61]. Specifically, [61] leverages the knowledge from the
deeper layers to guide the training for the shallow sections in the backbone. In this paper, we consider
a hierarchical structure [47] that each peer shares different parts and gains weighted knowledge from
other peers instead of the average ensemble. Different from self-distillation that reduces the “depth”
to get peers, this paper leverage the channel pruning to “slim” models to get diversified peers.

2.2 Network Pruning

Network pruning is an effective way to compress overparameterized neural networks by removing
parameters with minimal performance degradation [57]. Based on the granularity, network pruning
can be divided into two types: unstructured and structured pruning, where the former individually
removes parameters in a network while the latter removes entire filters, channels, or even layers [40].
Although the unstructured pruning can mask most parameters in a network without performance
drop [12], it requires specific hardware or software to accelerate the sparse network’s inference
time [10, 19]. Differently, structured pruning preserves the structural regularity and can accelerate
network on commodity hardware platforms [22, 32]. In this paper, we consider structured pruning for
generic applications. Next, the network pruning can happen after training vs. before training (a.k.a.
at initialization) [49]. Most conventional pruning methods identify the redundant weights that are
removed with least degrading the performance of the trained model. In contrast, recent works show
that the randomly initialized neural network can be pruned without incurring any training [30], where
SNIP [29], GraSP [50], and SynFlow [49] are three well-known metrics for the unstructured pruning
at initialization. [40] further extends these metrics for structured pruning through summing scores of
all parameters θ in a filter to determine its importance. In this paper, we extend SNIP to determine
the pruning ratio for each layer at initialization as [40] demonstrates it is the most effective among
the three to determine the filter importance for channel pruning at initialization.
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3 Methodology

This section describes our Weighted Mutual Learning with Diversity-Driven Model Compression
(WML) framework for online distillation, which consists of three main parts: the overall structure
and the optimization for learning a group of peer models, the pruning approach to get a series of
peers with different model sizes, and a bi-level formulation based weighted mutual learning.

3.1 Overview Structure and Loss Function

Figure 1 (c) depicts the overall structure of the proposed WML framework, where we take ResNet-32,
which is divided into three sections in terms of depth, as an example for easy understanding. Different
from the most commonly-used auxiliary heads [71] that all peer models share the same part, we
consider a hierarchical structure [47] where each peer model shares different parts. The framework is
similar to the binary tree, where the branches at the same levels are copies of each other, and each
path is considered as a peer model. In addition, we further prune each block in WML with different
ratios to further enhance the diversity among peer models and also reduce the memory consumption.
Different from the vanilla knowledge distillation, which requires a much larger pretrained model as
the teacher, the online distillation directly learns from each other or the ensembles of students [1]. In
this paper, we consider the linear combination of knowledge from all peer models, and the weight of
each peer model is determined by a bi-level formulation which will be discussed in Sec. 3.3

This paper focuses on the multi-class classification problems, and X = {xn}Nn=1 is the training
images with N samples, Y = {yn}Nn=1 is the corresponding labels. The output logit for i-th peer
model is represented as zi, and its corresponding cross entropy loss is LCE which is computed with
the zi and labels Y . The overall loss to train the whole framework containing M peers is defined as:

loss = (1− α)

M∑
i=1

ωiLCE(zi, Y ) + α

M∑
i=1

M∑
j=1

ωjKL(zi, zj), (1)

where ωi indicates the importance of the i-th peer model and α is the hyperparameter to balance the
supervision from labels and teachers.

∑M
j=1 ωjKL(zi, zj) is the weighted knowledge from peers,

which is one of the main differences between our WML and DML [70] in loss function, where DML
considers each peer equally important in distillation. Another alternative distillation strategy is to
calculate the KL divergence between each student with the ensemble of all students [16], while [70]
found it is not as competitive as directly learning from multiple teachers.

3.2 Diversifying Peer Models with Channel Pruning

Although the hierarchical structure can proportionally reduce the memory consumption as peers
share different blocks to reduce complexity, it still has higher computational cost than traditional
knowledge distillation. To further reduce the memory requirements, we introduce the channel
pruning, the most commonly-used paradigm in structured pruning, to our framework, which also
encourage the diversity among homogenized peers. The training-free network pruning has shown
its superiority in finding competitive subnetwork with extreme efficiency [29, 49, 50], and [40]
has demonstrates SNIP [29] is informative to determine the filter importance for channel pruning.
To be more specific, the relative importance of each filter f based on SNIP can be calculated as:
If =

∑
θi∈f g(θi) =

∑
θi∈f

∣∣∣∂L(θi)
∂θi

⊙ θi

∣∣∣, where
∣∣∣∂L(θi)

∂θi
⊙ θi

∣∣∣ is the SNIP score of parameter θi.
This value gives an expectation of the impact on loss when the filter is pruned, and filters with smaller
SNIP scores tend to produce weak impact to the loss as compared to the other filters in that layer
[40]. In this paper, we further propose a relative importance Il to determine the importance of each
layer at initialization, which is defined as:

Il =
1

Nl

∑
f∈l

If , (2)

where Nl is the number of parameters in layer l. Given a pruning ratio P of a model, the number of
pruned parameters of each layer is then obtained by pl = P ×N × Ĩl, where Ĩl is a normalization
of 1

Il
and N is the total number of parameters in the model, and the number of preserved filter is
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calculated accordingly which aims to preserve more filters in a more important layer. In the practical
implementation, we set a upper bound of the pruned ratio for each layer to avoid layer collapse [50].
In this way, given different P to peers, we can get a series of peer models with different structures.

3.3 Weighted Distillation with Bi-level Formulation

The proposed framework contains M peer models whose outputs can be also combined to generate
a powerful ensemble. However, the generalization capacity of the peer model is different from the
model size. Intuitively, we would expect to raise the importance of model i with the highest capacity
in distillation, i.e., enlarging ωi when peer model i contains most parameters [4, 9]. In this paper, we
consider a dynamic weighting method to determine the importance of each peer, and the weighted
mutual learning for online distillation can be formulated as a bilevel optimization problem:

min
ω

LCE(

M∑
i=1

ωiz
∗
i , Y ) s.t. θ∗ = argminθ (1− α)

M∑
i=1

ωiLCE(zi, Y ) + α

M∑
i=1

M∑
j=1

ωjKL(zi, zj), (3)

where z∗i is obtained by training the whole framework θ with loss function in Eq.(1). The inner loop
is to optimize the whole network θ with the loss defined in Eq.(1), and the outer loop is to adjust the
importance ω to make the weighted ensemble match the ground truth so that it reflects the importance
of each peer more precisely. We define the loss function of inner loop optimization as L1 and outer
loop as L2 for simplicity. Since z∗i is the local optimizer in the inner loop, Eq.(3) is a complicated
nested optimization problem [37, 42, 54, 64, 68, 69]. In this paper, we consider a common one-step
unroll learning paradigm [37, 42] that θ∗ = θ − γ∇θL1 with learning rate γ, and the gradient for the
outer loop (which is also called as hypergradient) can be formulated as:

∇ωL2 =
∂L2

∂ω
+

∂L2

∂θ∗
∂θ∗(ω)

∂ω
=

∂L2

∂ω
− γ

∂L2

∂θ

∂2L1

∂ω∂θ
. (4)

However, it is still impractical to calculate the second-order information for a large neural network,
e.g., ∂2L1

∂ω∂θ . The finite-difference approximation is usually leveraged to roughly approximate this term
[37], while it only considers the first two terms with the Taylor expansion. In the following theorem,
we show that we can exactly calculate ∂2L1

∂ω∂θ without approximation in our framework.

Theorem 1 With one-step unroll learning paradigm, the gradeint for ωi in Eq.(3) is formulated as:

gωi
= ∇ωi

L2 =
∂L2

∂ωi
− γ

∂L2

∂θ

∂2L1

∂ωi∂θ
=

∂L2

∂ωi
− γ

∂L2

∂θ

∂La

∂θ

T

, (5)

where La = (1− α)LCE(zi, Y ) + α
∑M

j=1 KL(zj , zi).

Proof: Based on the definition of L1 in Eq.(1), we have

∂L1

∂ωi
=

∂((1− α)
∑M

i=1 ωiLCE(zi, Y ) + α
∑M

j=1

∑M
i=1 wi ·KL(zj , zi))

∂ωi

= (1− α)LCE(zi, Y ) + α
∂
∑M

j=1

∑M
i=1 wi ·KL(zj , zi)

∂ωi

= (1− α)LCE(zi, Y ) + α

M∑
j=1

KL(zj , zi).

(6)

Accordingly, ∂2L1

∂ω∂θ can be calculate with autograd of La on θ, and Theorem 1 is then proved. □

Theorem 1 shows that the second-order term ∂2L1

∂ω∂θ can be analyzed in a closed-form without Taylor
expansion approximation when L1 is with a specific structure. Now that we can simply get the
gradient to update model parameters θ and the weights for peers ω with autograd. Since ω is a
probability simplex that

∑M
i=1 ωi = 1, we use the mirror descent to update ω [3, 5]. Algorithm 1

outlines our weighted mutual learning for online distillation. To be more specific, we first run several
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Algorithm 1 Weighted Mutual Learning (WML) for Online Distillation

1: Input: Dataset {(xn, yn)}Nn=1; Given pruning ratios for each peer model {p1, ..., pM}.
2: Initialized hierarchical model θ0 and peer weights ω0;
3: Calculate the filter importance with SNIP at initialization, and prune peer models i based on the

given pruning ratios;
4: for k = 1, ...,K do
5: With the peer importance ωk, run T steps of SGD to update the model parameters θ with the

weighted loss function in Eq.(1);
6: Calculate the gradient for ωk based on Eq.(5);
7: Run one step of mirror descent and update ωk to get ωk+1 based on Eq.(7);
8: end for
9: output: M models with outputs {z1, ..., zM} the weights for peers ω.

Table 1: Top-1 accuracy (%) comparison results with self-distillation on CIFAR100.
Networks Methods Baseline Model1 Model2 Model3 Model4 Ensemble

ResNet18

DSN [28] 77.09 67.23 73.80 77.75 78.38 79.67
SD [61] 77.09 67.85 74.57 78.23 78.64 79.67

SCAN [62] 77.09 71.84 77.74 78.62 79.13 80.46
WML 77.09 71.15 75.65 78.88 79.38 80.56

ResNet50

DSN [28] 77.68 67.87 73.80 74.54 80.27 80.67
SD [61] 77.68 68.23 74.21 75.23 80.56 81.04

SCAN [62] 77.68 73.69 78.34 80.39 80.45 81.78
WML 77.68 78.58 79.69 80.81 81.24 82.57

ResNet101

DSN [28] 77.98 68.17 75.43 80.98 81.01 81.72
SD [61] 77.98 69.45 77.29 81.17 81.23 82.03

SCAN [62] 77.98 72.26 79.26 80.95 81.12 82.06
WML 77.98 79.60 81.16 81.14 81.46 83.03

steps of SGD based on the loss function in Eq.(1) to update model parameters θ with a fixed ω. Then
we calculate the gradient of ωi based on Eq.5, and run one step of mirror descent to update ωi that:

ωk+1
i =

ωk
i exp

{
−η∇ωk+1

i
L2

}
∑M

i=1 ω
k
i exp

{
−η∇ωk+1

i
L2

} , (7)

where η is the step size, and ωk
i is the model importance for i-th peer in k-th step. We repeat this loop

until the stopping criterion meets.

4 Experiments

We perform a series of experiments to evaluate the effectiveness of our framework on seven convo-
lutional neural networks with three image classification datasets. We first compare our framework
with two self-distillation baselines, SD [61]and SCAN [62], and the deeply supervised net (DSN)
[28], since they share similar structures as our WML. Specifically, SD and SCAN add early-exit
blocks to the shallow blocks to get peer models, where SCAN contains additional attention modules.
DSN shares a similar structure as SD while without knowledge distillation. After that, we compared
WML with existing knowledge distillation and online distillation baselines. More interesting, as a
byproduct, we also compared the pruned models produced by our framework with channel pruning
baselines. A series of ablation studies on dynamic weighting strategy and pruning are also discussed.

4.1 Comparison with Self-Distillation

For fair comparisons in this experiment, we consider 4 peer models in our WML, and also prune peer
models into similar model size as classifiers in self-distillation (SD) [61], where Model1-3 are under
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Table 2: Top-1 accuracy (%) comparison results with self-distillation on ImageNet.
Networks Methods Baseline Model1 Model2 Model3 Model4 Ensemble

MobileNetV2 SD [61] 71.52 52.23 61.33 68.64 72.37 72.73
WML 71.52 65.20 69.32 71.44 72.76 73.10

different pruning ratios to match Classifier1-3 in self-distillation [61], and Model4 and Classifier4
are the same as the baseline network. More experiments with other pruning ratios for WML can be
found in Sec.4.4. We adapt our framework with several ResNets [21] and also the MobileNetV2 [45],
where results are present in Table 1 and Table 2, respectively.

There are two interesting pieces of evidence showing the advantage of the proposed WML on
CIFAR100. Firstly, we can observe that WML leads to significant accuracy boosts, where our peer
Model4 outperforms baseline networks with an increment of 2.29% to 3.56% on CIFAR100 for the
three networks. In addition, our peer models beat the most classifiers in the three self-distillation
baselines under similar model sizes, verifying the superiority of the proposed framework over self-
distillation. Although SCAN achieves better results in Model1 and Model2 for ResNet18, we should
notice that SCAN adds additional attention modules over SD, which has more parameters than
SD and our WML. When the peer model is small, the additional attention module that contains
relatively numerous parameters plays a more important role to improve the performance, while whose
advantage decreases with the peer models become larger. Secondly, compared with self-distillation
baselines, which usually encounter significant performance drops in the shallower classifiers, our
peer models can maintain similar performance with moderate network pruning, especially on the
large networks. Taking the Model2 on ResNet50 as an example, whose model size is only 50% as
the baseline, our WML obtains 79.69% accuracy, while SD only achieved 74.21% accuracy. SCAN
added additional attention modules to further improve self-distillation performance, achieving 78.34%
accuracy while still worse than our WML. The above results demonstrate that reducing the width
is a better way to get more competitive peers than the self-distillation paradigm using the shallow
models. The comparison results on ImageNet in Table 2 again verify the advantage of the proposed
framework, where our WML also outperforms the self-distillation baseline under different model
sizes on the ImageNet dataset. As shown in the last column of Table 1, which is the ensemble of the
four peer models, our WML outperforms the three baselines by large margins. This superiority comes
from two aspects. One is that our weighted mutual learning can boost all peers’ performance, thus
enhancing the ensemble. The other is that our optimized weights can capture the peers’ importance
more precisely.

4.2 Comparison with Online Distillation

Table 3 compares the proposed WML with several online distillation methods, including RKD[41],
CTSL-MKT[41], DML [70], ONE [71], and self-distillation (SD) [61] on CIFAR10, CIFAR100,
and ImageNet. In these online distillation methods, we consider four peer models as our WML for
fair comparisons, and all reported results for baselines can also be found in [63]. We can see that
knowledge distillation and online distillation both outperform the directly trained baseline model
with a large margin, showing the effectiveness of knowledge distillation. More interesting, different
from traditional knowledge distillation which requires a powerful and large teacher model, online
distillation methods can learn more meaningful information from peer models and gain performance
improvements without a teacher. These comparison results again verified the effectiveness of the
proposed framework, which outperforms most online distillation methods on different datasets and
neural networks.

4.3 Comparison with Channel Pruning

In our WML, we leverage channel pruning to generate peer models with different pruning ratios
at initialization. As a byproduct, we can get a series of pruned models with different FLOPs as
peer models. In this subsection, we compared the performance of the pruned models generated by
our WML with existing channel pruning methods. For fair comparisons, we conduct experiments
with ResNet32 and ResNet56 on CIFAR10, and MobileNetV2 on ImageNet, which are the common
setting to compare with existing works [63]. One clear advantage of WML over existing channel
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Table 3: Top-1 accuracy (%) comparison results with online-distillation.
Datasets Models Baseline KD[25] RKD[41] MKT[41] DML[70] ONE[71] SD[61] WML

CIFAR10 ResNet18 94.25 94.67 94.98 95.33 95.19 95.56 95.87 95.97
ResNet50 94.69 94.56 95.23 95.76 95.73 95.85 96.01 96.17

CIFAR100 ResNet18 77.09 77.79 76.43 77.46 77.54 77.87 78.64 79.38
ResNet50 77.42 79.33 78.02 78.52 78.31 78.52 80.56 81.24

ImageNet MobileNetV2 71.52 72.23 - 72.46 72.29 72.20 72.37 72.76

Table 4: Comparison with channel pruning methods for ResNet-32 and ResNet-56 on CIFAR10

Models Method Baseline Acc Pruned Acc Acc Drop↓ FLOPs Drop↓

ResNet32

LCCL [8] 92.33% 90.74% 1.59% 31.2%
SFP [22] 92.63% 92.08% 0.55% 41.5%

GFP40 [38] 93.51% 92.86% 0.65% 40.1%
GFP50 [38] 93.51% 92.64% 0.87% 50.1%

PScratch [52] 93.18% 92.18% 1.00% 50.0%
FPGM [24] 92.63% 92.31% 0.32% 41.5%

WML30 92.63% 92.99% -0.36% 24.4%
WML40 92.63% 92.23% 0.40% 45.4%
WML50 92.63% 92.10% 0.53% 50.0%

ResNet56

PFEC [31] 93.04% 93.06% -0.02% 27.6%
LCCL [8] 94.35% 92.81% 1.54% 37.9%

HRank [35] 93.26% 93.52% -0.26% 29.3%
NISP [58] 93.26% 93.01% 0.25% 35.5%
AMC [23] 92.80% 91.90% 0.90% 50.0%

GFP40 [38] 93.68% 93.54% 0.14% 40.2%
GAL [36] 93.26% 93.38 % -0.12% 37.6%
WML30 93.26% 93.93% -0.67% 24.7%
WML40 93.26% 93.46% -0.20% 41.7%
WML50 93.26% 92.68% 0.58% 49.0%

pruning methods is that we can get a series of pruned models with different FLOPs in a single run.
Table 4 and 5 compared our pruned peer models with existing baselines on CIFAR10 and ImageNet.
We make the peer models toward {30%, 40%, 50%} pruning ratios on FLOPs for ResNet32 and
ResNet56 on CIFAR10, and {30%, 50%, 70%} for MobileNetV2 on ImageNet.

As shown in Table 4, there are two interesting findings. First, WML obtains higher accuracy than
all channel pruning competitors on CIFAR10 after pruning similar FLOPs. For example, the model
with 40% pruned FLOPs by WML only has a 0.40% accuracy drop for ResNet32 and even 0.20%
performance increase for ResNet56, which both outperform the competitors on CIFAR10. Second,
our pruned models with moderate pruning achieve better performance than the baseline model while
with much fewer FLOPs. This benefit comes from the online distillation as we find the SNIP baseline
in [40], which adopts the same pruning method as us while without knowledge distillation, obtains
worse results than those elaborately designed pruning methods. However, combined with online
distillation, our pruned model can achieve better performance than elaborately pruned models. A
straightforward direction for future work is to apply those competitive pruning methods into our
framework for further performance improvements.

Table 5 presents the comparison results of our pruned peer models on ImageNet, which also achieves
competitive results compared with other SOTA channel pruning methods under different FLOPs
constraints. For example, when the FLOPs are reduced by about 30%, WML30 only has 0.08% Top1
accuracy drop, which is better than MetaPruning’s 0.60%, AMC’s 1.00%, and DMCP’s 0.10% at the
similar pruning ratio. A similar advantage can also be found when pruning 50% and 70% FLOPs.
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Table 5: Comparison with channel pruning methods for MobileNetV2 on ImageNet

Models Method Baseline Acc Pruned Acc Top1 Drop↓ FLOPs Drop↓

MobileNetV2

MetaPruning30 [39] 71.80% 71.20% 0.60% 27.7%
MetaPruning50 [39] 71.80% 68.20% 3.60% 53.3%
MetaPruning70 [39] 71.80% 63.80% 8.20% 71.0%

AMC [23] 71.80% 70.80% 1.00% 29.7%
DMCP [17] 72.30% 72.20% 0.10% 29.7%
Group [38] 75.74% 69.16% 6.58% 50.0%

WML30 71.52% 71.44% 0.08% 29.8%
WML50 71.52% 69.32% 2.20% 52.9%
WML70 71.52% 65.20% 6.32% 63.1%
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Figure 2: Ablation studies on pruning ratio, step size η and peer importance.

4.4 Ablation Studies

In this section, we first conduct ablation studies to investigate whether the dynamic weighting strategy
and peer pruning help improve the performance of online distillation. Then, we show increasing the
number of peers gradually enhance the performance of the proposed framework.

Figure 2 (a) presents how the performance of Model4 and ensemble change with different pruning
levels. As shown, when slightly pruning peers (only prune less than 10% parameters for Model1-3),
WML can get better results than the unpruned framework in terms of both Model4 and ensemble
performance. An underline reason is that slightly pruning rarely decreases the performance of
peer models, while the diversity it brings can further enhance the distillation. However, when the
pruning ratio is too high (the last data point in the Figure 2 (a) prunes more than 70% parameters
for Model1-3),we can see a clear performance drop since the pruning damages the performance of
Model1-3 seriously, which also further affects the distillation for Model4. Figure 2 (b) presents how
the dynamic weighting strategy works in our WML, where the pruning ratio is set as Sec.4.1. As
shown, the first data point in Figure 2 (b) indicates that we follow deep mutual learning [70] that
remove the ω in Eq.(1), and the remaining points are with different η to update ω. We can see a
clear performance boost from unweighted distillation to weighted distillation, which verifies the
effectiveness of our dynamic weighting strategy, which is also robust to the step size η. In Figure 2
(c), we prune Model 1-3 with 75%, 55%, and 20% parameters to match with Classifier 1-3 in [61],
and the four lines in Figure 2 (c) track the change of weights ω for each peer model. As shown, the
weight of Model4 and Model4 consistently increase since they contains much more parameters and
with better generalization ability. In contrast, the weights for the other two models both decrease, and
Model1 with the least parameters descents the fastest. This phenomenon also verifies our weighting
strategy can adaptively adjust the importance of peers in distillation.

The main experiments show good results of the proposed framework with four peers. We also verify
the superiority of WML with different number of peers in Figure 3. For M = 2, we leave one peer
unpruned and the other is pruned with 50%, and for M = 4, 8, we leave one peer unpruned and the
remained peer models are pruned gradually from 30% to 70%. As show in Figure 3, WML scale well
with more peers although gain decrease with the number of peers increase. The phenomenon verifies
that more knowledge from peers can further enhance the performance of the students.
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Figure 3: Performance with the number of peers under three different networks.

5 Conclusion and Future Work

This paper proposes a new framework for online distillation, called Weighted Mutual Learning with
Diversity-Driven Model Compression (WML), which introduces the structured network pruning
to obtain diversified peer models, and a bi-level formulation is further leveraged to estimate the
relative importance of peers in forming a powerful teacher during the online distillation. The WML
innovatively combines network pruning and online distillation to enhance performance and compress
models simultaneously. Extensive experimental results have verified the proposed framework, which
leads to consistent accuracy improvements on various neural networks and datasets under different
model sizes. This paper considers a simple and efficient training-free channel pruning method to get
the peer models while which is not as competitive as recent training-based channel pruning methods.
Combining more advanced channel pruning methods with online distillation for further performance
and efficiency boost and extending WML to feature distillation or other applications, e.g., object
detection, natural language processing, and architecture search, are among directions for future work.
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