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Abstract

Creating fast and accurate force fields is a long-standing challenge in computational
chemistry and materials science. Recently, several equivariant message passing
neural networks (MPNNs) have been shown to outperform models built using
other approaches in terms of accuracy. However, most MPNNs suffer from high
computational cost and poor scalability. We propose that these limitations arise
because MPNNs only pass two-body messages leading to a direct relationship
between the number of layers and the expressivity of the network. In this work,
we introduce MACE, a new equivariant MPNN model that uses higher body order
messages. In particular, we show that using four-body messages reduces the
required number of message passing iterations to just two, resulting in a fast and
highly parallelizable model, reaching or exceeding state-of-the-art accuracy on the
rMD17, 3BPA, and AcAc benchmark tasks. We also demonstrate that using higher
order messages leads to an improved steepness of the learning curves.

1 Introduction

The earliest approaches for creating force fields (interatomic potentials) using machine learning tech-
niques were using local atom-centered symmetric descriptors and feed-forward neural networks [6],
Gaussian Process regression[2] or linear regression [44, 47]. The first attempts to use graph neural net-
works to model the potential energy of atomistic systems had only limited success. The DTNN [42],
SchNet [41], HIP-NN [35], PhysNet [48], or DimeNet [20, 29] approaches could only come close
to but not improve upon the atomic descriptor-based methods in terms of computational efficiency
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and accuracy on public benchmarks. Furthermore, most MPNN interatomic potentials use 2-body
invariant messages, making them non-universal approximators [38].

The MACE architecture presented here allows for the efficient computation of equivariant messages
with high body order. As a result of the increased body order of the messages, only two message
passing iterations are necessary to achieve high accuracy - unlike the typical five or six iterations
of MPNNs, making it scalable and parallelizable. Finally, our implementation has remarkable
computational efficiency, reaching state-of-the-art results on the 3BPA benchmark after 30 mins of
training on NVIDIA A100 GPUs.

We summarise our main contributions as follows:

• We introduce MACE, a novel architecture combining equivariant message passing with
efficient many-body messages. The MACE models achieve state-of-the-art performance
on challenging benchmark tests. They also display greater generalization capabilities over
other approaches on extrapolation benchmarks.

• We demonstrate that many-body messages change the power of the empirical power-law of
the learning curves. Furthermore, we show experimentally that the addition of equivariant
messages only shifts the learning curves but does not change the power law when higher
order messages are used.

• We show that MACE does not only outperform previous approaches in terms of accuracy
but also does so while being significantly faster to train and evaluate than the previous most
accurate models.

2 Background

2.1 MPNN Interatomic Potentials

MPNNs [22, 9] are a type of graph neural network (GNN, [40, 4, 27, 51]) that parametrises a
mapping from a labeled graph to a target space, either a graph or a vector space. When applied to
parameterise properties of atomistic structures (materials or molecules), the graph is embedded in
3-dimensional (3D) Euclidean space, where each node represents an atom, and edges connect nodes
if the corresponding atoms are within a given distance of each other. We represent the state of each
node i in layer t of the MPNN by a tuple

σ
(t)
i = (ri, zi,h

(t)
i ), (1)

where ri ∈ R3 is the position of atom i, zi the chemical element, and h
(t)
i are its learnable features.

A forward pass of the network consists of multiple message construction, update, and readout steps.
During message construction, a message m

(t)
i is created for each node by pooling over its neighbors:

m
(t)
i =

⊕
j∈N (i)

Mt(σ
(t)
i , σ

(t)
j ), (2)

where Mt is a learnable message function and
⊕

j∈N (i) is a learnable, permutation invariant pooling

operation over the neighbors of atom i (e.g., a sum). In the update step, the message m
(t)
i is

transformed into new features
h
(t+1)
i = Ut(σ

(t)
i ,m

(t)
i ), (3)

where Ut is a learnable update function. After T message construction and update steps, the learnable
readout functionsRt map the node states σ(t)

i to the target, in this case the site energy of atom i,

Ei =

T∑
t=1

Rt(σ
(t)
i ). (4)

2.2 Equivariant Graph Neural Networks

In equivariant GNNs, internal features h(t)
i transform in a specified way under some group action [1,

12, 32, 46, 49]. When modelling the potential energy of an atomic structure, the group of interest is
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O(3), specifying rotations and reflections of the particles.1 We call a GNN O(3) equivariant if it has
internal features that transform under the rotation Q ∈ O(3) as

h
(t)
i (Q · (r1, ..., rN )) = D(Q)h

(t)
i (r1, ..., rN ), (5)

where Q · (r1, ..., rN ) denotes the action of the rotation on the set of atomic positions and D(Q) is a
matrix representing the rotation Q, acting on message h(t)

i . In general, elements of the feature vector
can be labeled according to the irreducible representation they transform with. We will write h

(t)
i,kLM

to indicate a collection of features on atom i, indexed by k, that transform according to

h
(t)
i,kLM (Q · (r1, . . . , rN )) =

∑
M ′

DL
M ′M (Q)h

(t)
i,kLM ′(r1, . . . , rN ), (6)

where DL(Q) ∈ R(2L+1)×(2L+1) is a Wigner D-matrix of order L. A feature labelled with L = 0
describes an invariant scalar. Features labeled with L > 0, describe equivariant features, formally
corresponding to equivariant vectors, matrices or higher order tensors. The features of invariant
models, such as SchNet[41] and DimeNet[29], transform according to D(Q) = 1, the identity matrix.
Models such as NequIP [5], equivariant transformer [45], PaiNN [43], or SEGNNs [8], in addition to
invariant scalars, employ equivariant internal features that transform like vectors or tensors.

3 Related Work

ACE - Higher Order Local Descriptors In the last few years, there have been two significant
breakthroughs in machine learning force fields. First, the Atomic Cluster Expansion (ACE) [16]
provided a systematic framework for constructing high body order complete polynomial basis
functions (features) at a constant cost per basis function, independent of body order [17]. It has also
been shown that ACE includes many previously developed atomic environment representations as
special cases, including Atom Centred Symmetry Functions [6], the Smooth Overlap of Atomic
Positions (SOAP) descriptor [2], Moment Tensor Potential basis functions [44], and the hyperspherical
bispectrum descriptor [2] used by the SNAP model [47]. These local models are limited by their
cutoff distance and their relatively rigid architecture compared to the overparametrised MPNNs,
leading to somewhat lower accuracy, in particular, for molecular force fields.

Equivariant MPNNs The second breakthrough was using equivariant internal features in MPNNs.
These equivariant MPNNs, such as Cormorant [1], Tensor Field Networks [46], EGNN [39],
PaiNN [43], Equivariant Transformers [45], SEGNN [8], NewtonNet [23], and NequIP [5] were able
to achieve higher performance than previous local descriptor-based models. However, they suffer
from two significant limitations: first, the most accurate models used L = 3 spherical tensors as
messages and 4 to 6 message passing iterations [5], which resulted in a relatively high computational
cost. Second, using this many iterations significantly increased the receptive field of the network,
making them difficult to parallelise across multiple GPUs [36].

Higher Order Message Passing Most MPNNs use a message passing scheme based on two-body
messages, meaning they simultaneously depend on the states of two atoms. It has been recognised
that it can be beneficial to include angles into the features, effectively creating 3-body invariant
messages [29]. This idea has also been exploited in other invariant MPNNs, in particular, by
SphereNet [34] and GemNet [30]. Even though these models improved the accuracy compared to
the 2-body message passing, they were limited by the computational cost associated with explicitly
summing over all triplets or quadruplets to compute the higher order features.

Multi-ACE Framework Recently, multi-ACE has been proposed as a unifying framework of
E(3)-equivariant atom-centered interatomic potentials, extending the ACE framework to include
methods built on equivariant MPNNs [3]. A similar unifying theories were also put forward by
[37] and [7]. The idea is to parameterise the message m

(t)
i in terms of invariant or equivariant

ACE models. This framework sets out a design space in which each model can be characterised
in terms of: (1) the number of layers, (2) the body order of the messages, (3) the equivariance (or
invariance) of the messages, and (4) the number of features in each layer. The framework highlights
the relationship between the overall body order of the models and message passing, also previously

1Translation invariance is trivially incorporated through the use of relative distances.

3



discussed in Kondor [31]. Most previously published models achieved high accuracy by either using
4 to 6 layers [5, 43] or increasing the local body order with a single layer [33, 36]. With our model,
we fall in between these two extremes by combining high body order with message passing.

4 The MACE Architecture

Our MACE model follows the general framework of MPNNs outlined in Section 2. Our key
innovation is a new message construction mechanism. We expand the messages m(t)

i in a hierarchical
body order expansion,

m
(t)
i =

∑
j

u1

(
σ
(t)
i ;σ

(t)
j

)
+
∑
j1,j2

u2

(
σ
(t)
i ;σ

(t)
j1

, σ
(t)
j2

)
+ · · ·+

∑
j1,...,jν

uν

(
σ
(t)
i ;σ

(t)
j1

, . . . , σ
(t)
jν

)
,

(7)
where the u functions are learnable, the sums run over the neighbors of i, and ν is a hyper-parameter
corresponding to the maximum correlation order, the body order minus 1, of the message function
with respect to the states. Even though we refer to the message as (ν + 1)-body with respect to the
states, the overall body order with respect to the positions can be larger depending on the body order of
the states themselves. Crucially, by writing

∑
j1,...,jν

, which includes self-interaction (e.g., j1 = j2),
we will later obtain a tensor product structure with a computationally efficient parameterisation,
that allows us to circumvent the seemingly exponential scaling of the computational cost with the
correlation order ν. This contrasts with previous models, such as DimeNet [28, 29], that compute
3-body features via the more standard many-body expansion

∑
j1<···<jν

. Below, we describe the
MACE architecture in detail. To better understand the architecture, we report in A.4 a table of the
introduced tensors along with their shapes.

Message Construction At each iteration, we first embed the edges using a learnable radial basis
R

(t)
kl1l2l3

, a set of spherical harmonics Y m1

l1
, and a learnable embedding of the previous node features

h
(t)

j,k̃l2m2
using weights W (t)

kk̃l2
. The A

(t)
i -features are obtained by pooling over the neighbours N (i)

to obtain permutation invariant 2-body features whilst, crucially, retaining full directional information,
and thus, full information about the atomic environment:

A
(t)
i,kl3m3

=
∑

l1m1,l2m2

Cl3m3

l1m1,l2m2

∑
j∈N (i)

R
(t)
kl1l2l3

(rji)Y
m1

l1
(r̂ji)

∑
k̃

W
(t)

kk̃l2
h
(t)

j,k̃l2m2
, (8)

where Cl3m3

l1m1,l2m2
are the standard Clebsch-Gordan coefficients ensuring that A(t)

i,kl3m3
maintain the

correct equivariance, rji is the (scalar) interatomic distance, and r̂ji is the corresponding unit vector.
R

(t)
kl1l2l3

is obtained by feeding a set of radial features that embed the radial distance rji using Bessel
functions multiplied by a smooth polynomial cutoff (cf. Ref. [29]) to a multi-layer perceptron (MLP).
See Section A.5 for details. In the first layer, the node features h

(t)
j correspond to the (invariant)

chemical element zj . Therefore, (8) can be further simplified:

A
(1)
i,kl1m1

=
∑

j∈N (i)

R
(1)
kl1

(rji)Y
m1

l1
(r̂ji)W

(1)
kzj

. (9)

This simplified operation is much cheaper, making the computational cost of the first layer low.

The key operation of MACE is the efficient construction of higher order features from the A
(t)
i -

features. This is achieved by first forming tensor products of the features, and then symmetrising:

B
(t)
i,ηνkLM =

∑
lm

CLM
ην ,lm

ν∏
ξ=1

∑
k̃

w
(t)

kk̃lξ
A

(t)

i,k̃lξmξ
, lm = (l1m1, . . . , lνmν) (10)

where the coupling coefficients CLM
ην

corresponding to the generalised Clebsch-Gordan coefficients

(details in A.3) ensuring that B(t)
i,ηνkLM are L-equivariant, the weights w(t)

kk̃lξ
are mixing the channels

(k) of A(t)
i , and ν is a given correlation order. CLM

ην ,lm
is very sparse and can be pre-computed

such that (10) can be evaluated efficiently (see Appendix A.3.3). The additional index ην simply
enumerates all possible couplings of l1, . . . , lν features that yield the selected equivariance specified
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by the L index. The B
(t)
i -features are constructed up to some maximum ν . This variable in (10) is

the order of the tensor product, and hence, can be identified as the order of the many-body expansion
terms in (7). The computationally expensive multi-dimensional sums over all triplets, quadruplets,
etc., are thus circumvented and absorbed into (9) and (8).

The message m
(t)
i can now be written as a linear expansion

m
(t)
i,kLM =

∑
ν

∑
ην

W
(t)
zikL,ην

B
(t)
i,ηνkLM , (11)

where W (t)
zikL,ην

is a learnable weight matrix that depends on the chemical element zi of the receiving
atom and message symmetry L. Thus, we implicitly construct each term u in (7) by a linear
combination of B(t)

i,ηνkLM features of the corresponding body order.

Under mild conditions on the two-body bases A
(t)
i , the higher order features B

(t)
i,ηνkLM can be

interpreted as a complete basis of many-body interactions [17], which can be computed at a cost
comparable to pairwise interactions. Because of this, the expansion (11) is systematic. It can in
principle be converged to represent any smooth (ν + 1)-body equivariant mapping in the limit of
infinitely many features (proof in [17]).

Update In MACE, the update is a linear function of the message and the residual connection [25]:

h
(t+1)
i,kLM = UkL

t (σ
(t)
i ,m

(t)
i ) =

∑
k̃

W
(t)

kL,k̃
mi,k̃LM +

∑
k̃

W
(t)

zikL,k̃
h
(t)

i,k̃LM
. (12)

Readout In the readout phase, the invariant part of the node features is mapped to a hierarchical
decomposition of site energies via readout functions:

Ei = E
(0)
i + E

(1)
i + ...+ E

(T )
i , where

E
(t)
i = Rt

(
h
(t)
i

)
=


∑

k̃ W
(t)

readout,k̃
h
(t)

i,k̃00
if t < T

MLP
(t)
readout

({
h
(t)
i,k00

}
k

)
if t = T

(13)

The readout only depends on the invariant features h(t)
i,k00 to ensure that the site energy contributions

E
(t)
i are invariant as well. To maintain body ordering, we use linear readout functions for all layers

except the last, where we use a one-layer MLP.

5 Results

5.1 Effect of Higher Order Messages

Number of Layers In this section, we investigate the effect of using higher order messages.
Many MPNN architectures [41, 48] exclusively pass two-body invariant messages resulting in an
incomplete representation of the local environment [38]. Equivariant message-passing schemes [5,
43, 8] lift the degeneracy of most structures by containing directional information in the messages.
MPNNs that only employ two-body messages at each layer can increase the body order either by
stacking layers [31] which simultaneously increases the model’s receptive field or by using non-linear
activation functions, generate only a subset of all possible higher order features. By constructing
higher order messages using the MACE architecture, we disentangle the increase in body order from
the increase of the receptive field.

In Figure 1, we show the accuracy of MACE, NequIP, and BOTNet [3] on the 3BPA benchmark [33]
as a function of the number of message passing layers. Approaches employing 2-body message
passing require up to five iterations for their accuracy to converge. By constructing many body
messages, the number of required layers to converge in accuracy reduces to just two. In all subsequent
experiments, we use two-layer MACE models.

Furthermore, we compare BOTNet, which does not use any non-linearities in the update step to
NequIP, which does. Otherwise, the two models are very similar. We observe that the increase in body
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Figure 1: Energy and force errors of BOTNet, NequIP, and MACE (L = 2) on the 3BPA dataset at
different temperatures as a function of the number of layers.

order through non-linearities within the update provides only marginal improvement, highlighting
the difference between an increase in body order through non-linearities (NequIP) and higher order
symmetric messages (MACE). Consequently, higher order message passing allows one to reduce the
number of layers, thereby increasing speed and ease of parallelization over multiple GPUs. We note
that MACE does not improve after two layers as the diameter of the 3BPA molecule is about 9 Å and
radial cutoff in each layer is 5 Å.

Learning Curves We study how higher order message passing affects the learning curves. A
recent study of the NequIP model [5] showed that the inclusion of equivariant features results in
enhanced data efficiency, increasing the slope of the log-log plot of predictive error as a function of
the dataset size. They showed that adding equivariance not only shifts the learning curves, but also
changes the powers in the empirical power law of the learning curves, which is usually constant for a
given dataset [26].

On the left panel of Figure 2, we replicate the experiments of [5] by training a series of invariant
MACE models with increasing correlation order ν on the aspirin molecule from the rMD17 dataset.
We observe that adding higher order messages changes the steepness of the learning curves, even
without equivariant messages. The model with correlation order ν = 1 corresponds to a two-layer
2-body invariant model, similar to SchNet. This model is the least accurate due to the incomplete
nature of 2-body invariant representations of the local environment [38]. The invariant messages with
ν = 2 are akin to those in DimeNet, which explicitly puts angular information into the messages. We
see that including higher order information significantly improves the model’s accuracy. Finally, by
going beyond any current message passing potential by setting ν = 3, we achieve similar performance
to a highly-accurate 2-body, equivariant MPNN while only using higher order invariant messages.

On the middle panel of Figure 2, we keep the correlation order fixed at ν = 3 and gradually increase
the symmetry order L of the messages. While the slope remains nearly unchanged, the curves are
shifted. In the right panel of Figure 2, we keep the correlation order fixed at ν = 1 and gradually
increase the symmetry order L of the messages. We see only a marginal slope change when adding
equivariant features, which could be attributable to the relatively low expressiveness of a two-layer
MACE restricted to correlation order ν = 1. These results suggest two routes to improve invariant
2-body MPNN models: creating higher correlation order messages or incorporating equivariant
messages. By exploiting both of these options, the MACE model achieves state-of-the-art accuracy.

5.2 Scaling and Computational Cost

Chemical Elements A significant limitation of existing atomic environment representations is that
their size grows with the number of chemical elements S and correlation order ν as Sν . Data-driven
compression schemes have been proposed [50] to solve this issue, and MPNNs incorporate similar
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Figure 2: Learning curve of force errors (MAE in eV / Å) for aspirin from the rMD17 dataset
for different models. Left: Two layers of invariant (L = 0) MACE with increasing body order
ν ∈ {1, 2, 3}. Center: Two layers of MACE with ν = 3 and increasing equivariance L ∈ {0, 1, 2}.
Right: Two layers of MACE with ν = 1 and increasing equivariance L ∈ {0, 1, 2}. In each case the
slope (s) is indicated.

embeddings of the chemical elements into a fixed-size vector space. MACE uses a continuous species
embedding and when constructing the higher order features in (10), it does not include the species
dimension k in the tensor product resulting inO(1) scaling of the model with the number of chemical
elements S.

Receptive Field A severe limitation of many previously published MPNNs was their large
receptive field, making it difficult to parallelize the evaluation across multiple GPUs. In traditional
MPNNs, the total receptive field of each node, which grows with each message passing iteration,
can be up to 30 Å. This scaling results in the number of neighbours being in the thousands in a
condensed phase simulation, preventing any efficient parallelization [36]. By decoupling the increase
in correlation order of the messages from the number of message passing iterations, MACE only
requires two layers resulting in a much smaller receptive field. With a local radial cutoff of 4 to 5 Å,
the overall receptive field remains small, making the model more parallelisable.

Computational Cost The computational bottleneck of equivariant MPNNs is the equivariant
tensor product (8). This tensor product is evaluated on edges. In MACE, we only evaluate this
expensive tensor product once, within the second layer, and build up correlations through the tensor
product of (10). Importantly, this operation is carried out on nodes. Typically the number of nodes is
orders of magnitudes smaller than the number of edges resulting in a computational advantage. In
addition, we developed a loop tensor contraction algorithm for the efficient implementation of (10)
and (11) detailed in Section A.3.

We report evaluation times for BOTNet, NequIP, and multiple versions of MACE in Table 2. We
observe that the invariant MACE (L = 0) is close to 10 times faster than BOTNet and NequIP
while achieving similar accuracy at high temperatures. MACE with L = 1 and L = 2 is 5 and 4
times faster than BOTNet and NequIP, respectively, while outperforming them at every temperature.
We acknowledge that accurate speed comparisons between codes are hard to obtain, and further
investigations need to be carried out. It is also essential to consider training times. In order to do a fair
comparison, all the timings were realised using the mace code that implements all the above models.
Models that are significantly faster to train are better suited for applications of active learning, which
is typically how databases for materials science applications are built [13–15]. The MACE model
reported in Table 2 takes approximately 30 mins to reach the accuracy of a converged BOTNet model,
taking more than a day to be trained on the 3BPA dataset using NVIDIA A100 GPUs.

5.3 Benchmark Results 2

5.3.1 rMD17: Molecular Dynamics Trajectory

The revised MD17 (rMD17) dataset contains train test splits randomly selected from a long molecular
dynamics trajectory of ten small organic molecules [11]. For each molecule, the splits consist of 1000
training and test configurations. Table 1 shows that MACE achieves excellent accuracy, improving

2Training details and hyper-parameters for all experiments can be found in Appendix A.5
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Table 1: Mean absolute errors on the rMD17 dataset [11]. Energy (E, meV) and force (F, meV/Å)
errors of different models trained on 950 configurations and validated on 50. The models on the right
of the first vertical line, DimeNet and NewtonNet, were trained on the original MD17 dataset [10].
The models on the right of the second (double) vertical line were trained on just 50 configurations.

MACE Allegro [36] BOTNet [3] NequIP [5] GemNet (T/Q) [30] ACE [33] FCHL [18] GAP [2] ANI [19] PaiNN [43] DimeNet [29] NewtonNet [24] ACE [33] NequIP [5] MACE

Ntrain = 1000 Ntrain = 50

Aspirin E 2.2 2.3 2.3 2.3 - 6.1 6.2 17.7 16.6 6.9 8.8 7.3 26.2 19.5 17.0
F 6.6 7.3 8.5 8.2 9.5 17.9 20.9 44.9 40.6 16.1 21.6 15.1 63.8 52.0 43.9

Azobenzene E 1.2 1.2 0.7 0.7 - 3.6 2.8 8.5 15.9 - - 6.1 9.0 6.0 5.4
F 3.0 2.6 3.3 2.9 - 10.9 10.8 24.5 35.4 - - 5.9 28.8 20.0 17.7

Benzene E 0.4 0.3 0.03 0.04 - 0.04 0.35 0.75 3.3 - 3.4 - 0.2 0.6 0.7
F 0.3 0.2 0.3 0.3 0.5 0.5 2.6 6.0 10.0 - 8.1 - 2.7 2.9 2.7

Ethanol E 0.4 0.4 0.4 0.4 - 1.2 0.9 3.5 2.5 2.7 2.8 2.6 8.6 8.7 6.7
F 2.1 2.1 3.2 2.8 3.6 7.3 6.2 18.1 13.4 10.0 10.0 9.1 43.0 40.2 32.6

Malonaldehyde E 0.8 0.6 0.8 0.8 - 1.7 1.5 4.8 4.6 3.9 4.5 4.1 12.8 12.7 10.0
F 4.1 3.6 5.8 5.1 6.6 11.1 10.3 26.4 24.5 13.8 16.6 14.0 63.5 52.5 43.3

Naphthalene E 0.5 0.2 0.2 0.9 - 0.9 1.2 3.8 11.3 5.1 5.3 5.2 3.8 2.1 2.1
F 1.6 0.9 1.8 1.3 1.9 5.1 6.5 16.5 29.2 3.6 9.3 3.6 19.7 10.0 9.2

Paracetamol E 1.3 1.5 1.3 1.4 - 4.0 2.9 8.5 11.5 - - 6.1 13.6 14.3 9.7
F 4.8 4.9 5.8 5.9 - 12.7 12.3 28.9 30.4 - - 11.4 45.7 39.7 31.5

Salicylic acid E 0.9 0.9 0.8 0.7 - 1.8 1.8 5.6 9.2 4.9 5.8 4.9 8.9 8.0 6.5
F 3.1 2.9 4.3 4.0 5.3 9.3 9.5 24.7 29.7 9.1 16.2 8.5 41.7 35.0 28.4

Toluene E 0.5 0.4 0.3 0.3 - 1.1 1.7 4.0 7.7 4.2 4.4 4.1 5.3 3.3 3.1
F 1.5 1.8 1.9 1.6 2.2 6.5 8.8 17.8 24.3 4.4 9.4 3.8 27.1 15.1 12.1

Uracil E 0.5 0.6 0.4 0.4 - 1.1 0.6 3.0 5.1 4.5 5.0 4.6 6.5 7.3 4.4
F 2.1 1.8 3.2 3.1 3.8 6.6 4.2 17.6 21.4 6.1 13.1 6.4 36.2 40.1 25.9

the state of the art for some molecules, particularly those with the highest errors. As several methods
achieve similar accuracy on the standard task of predicting energies and forces based on the whole
training set, we also trained MACE and NequIP, another accurate model, on just 50 configurations to
increase the difficulty of the benchmark. In this case, we found that MACE outperformed NequIP for
most molecules.

5.3.2 3BPA: Extrapolation to Out-of-domain Data

The 3BPA dataset introduced in [33] tests a model’s extrapolation capabilities. Its training set contains
500 geometries sampled from 300 K molecular dynamics simulation of the large and flexible drug-like
molecule 3-(benzyloxy)pyridin-2-amine. The three test sets contain geometries sampled at 300 K,
600 K, and 1200 K to assess in- and out-of-domain accuracy. A fourth test set consists of optimized
geometries, where two of the molecule’s dihedral angles are fixed, and a third is varied between 0
and 360 degrees resulting in so-called dihedral slices through regions of the PES far away from the
training data.

The root-mean-squared errors (RMSE) on energies and forces for several models are shown in Table 2.
It can be seen that MACE outperforms the other models on all tasks. In particular, when extrapolating
to 1200 K data, MACE with L = 2 outperforms NequIP and Allegro models by about 30%. Further,
MACE with L = 2 outperforms the next best model, BOTNet, by 40% on energies for the dihedral
slices. Finally, the MACE model with invariant messages (L = 0) often nearly matches or exceeds
the performance of competitive equivariant models.

Table 2: Root-mean-square errors on the 3BPA dataset. Energy (E, meV) and force (F, meV/Å)
errors of models trained and tested on configurations collected at 300 K of the flexible drug-like
molecule 3-(benzyloxy)pyridin-2-amine (3BPA). Standard deviations are computed over three runs
and shown in brackets if available. In order to facilitate measuring the efficiency of architectures we
implemented the NequIP and BOTNet architectures in the same code that we used for MACE and
which is published together with this paper. For the precise specification of our NequIP implementa-
tion see the Appendix A.5.2. All PyTorch timings were realised on an NVIDIA A100 GPU custom
implementations.

Allegro (L=3) NequIP (L=3) NequIP (L=3) BOTNet (L=3) MACE (L=0) MACE (L=1) MACE (L=2)
Code allegro [36] nequip [5] mace mace mace mace mace

300 K E 3.84 (0.08) 3.3 (0.1) 3.1 (0.1) 3.1 (0.13) 4.5 (0.25) 3.4 (0.2) 3.0 (0.2)
F 12.98 (0.17) 10.8 (0.2) 11.3 (0.2) 11.0 (0.14) 14.6 (0.5) 10.3 (0.3) 8.8 (0.3)

600 K E 12.07 (0.45) 11.2 (0.1) 11.3 (0.31) 11.5 (0.6) 13.7 (0.16) 9.9 (0.8) 9.7 (0.5)
F 29.17 (0.22) 26.4 (0.1) 27.3 (0.3) 26.7 (0.29) 33.3 (1.35) 24.6 (1.1) 21.8 (0.6)

1200 K E 42.57 (1.46) 38.5 (1.6) 40.8 (1.3) 39.1 (1.1) 37.1 (0.8) 31.7 (0.5) 29.8 (1.0)
F 82.96 (1.77) 76.2 (1.1) 86.4 (1.5) 81.1 (1.5) 81.6 (3.89) 67.8 (1.8) 62.0 (0.7)

Dihedral Slices E - - 23.2 16.3 (1.5) 12.3 (0.8) 11.5 (0.6) 7.8 (0.6)
F - - 23.1 20.0 (1.2) 26.1 (2.8) 19.3 (0.6) 16.5 (1.7)

Time latency [ms] - - 103.5 101.2 10.5 17.5 24.3
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MACE shows excellent results while also featuring low computational cost compared to many other
models. The L = 0 model, which approaches previous models in terms of accuracy, outpaces them
by nearly a factor of 10, whereas the L = 2 model achieves state-of-the-art accuracy and is around
four times faster than other equivariant MPNN models. In the table, we characterise the evaluation
speed of the models by reporting the “latency” which is defined as the time it takes to compute forces
on a structure, which is typically independent of the number of atoms until GPU threads are filled
(typically 10,000 atoms for these models on an Nvidia A100 80GB GPU).

In Figure 3, we compare the BOTNet, NequIP, and MACE (L = 2) by inspecting their energy profile
for three dihedral slices. Overall, it can be seen that all models produce smooth energy profiles and
that, in general, MACE comes closest to the ground truth. The fact that MACE outperforms the
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Figure 3: Energy predictions on three cuts through the potential energy surface of the 3-
(benzyloxy)pyridin-2-amine (3BPA) molecule by BOTNet, NequIP, and MACE (L = 2). The
ground-truth energy (DFT) is shown in black. For each cut, the curves have been shifted vertically so
that the lowest ground-truth energy is zero.

other methods in the middle panel, which contains geometries furthest from the training dataset [3],
suggests superior extrapolation capabilities.

5.3.3 AcAc: Flexibility and Reactivity

A similar benchmark dataset assessing a model’s extrapolation capabilities to higher temperatures,
bond breaking, and bond torsions of the acetylacetone molecule was proposed in [3]. In Table 3,
we show that MACE achieves state-of-the-art results on this dataset as well. For details, see Ap-
pendix 5.3.3.

Table 3: Root-mean-square errors on the acetylacetone dataset. Energy (E, meV) and force (F,
meV/Å) errors of models trained on configurations of the acetylacetone molecule sampled at 300 K
and tested on configurations sampled at 300 K and 600 K. Standard deviations are computed over
three runs.

BOTNet NequIP MACE

300 K E 0.89 (0.0) 0.81 (0.04) 0.9 (0.03)
F 6.3 (0.0) 5.90 (0.38) 5.1 (0.10)

600 K E 6.2 (1.1) 6.04 (1.26) 4.6 (0.3)
F 29.8 (1.0) 27.8 (3.29) 22.4 (0.9)

N° Parameters 2,756,416 3,190,488 2,803,984

6 Discussions

With MACE, we extend traditional (equivariant) MPNNs from 2-body to many-body message passing
in a computationally efficient manner. Our experiments show that the approach reduces the required
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number of message passing, leading to efficient and parallelizable models. Furthermore, we have
demonstrated the high accuracy and good extrapolation capabilities of MACE, reaching state-of-the-
art accuracy on the rMD17, 3BPA, and AcAc benchmarks. Future development should concentrate
on testing MACE on larger systems, including condensed phases and solids.

7 Reproducibility Statements

We have included error bars via different seeds and various ablation studies wherever necessary and
appropriate. We have stated all hyper-parameters and data description in the Appendix A.5. Source
code is available at https://github.com/ACEsuit/mace.

8 Ethical Statements

The societal impact of MACE is challenging to predict. However, better force fields have a positive
impact on society by speeding up drug discovery and through helping to understand, control, and
design new materials. However, machine learning force fields rely on generating ab initio training
data leading to heavy computation and large energy consumption. Machine learned force fields do
alleviate the costs of doing molecular modelling significantly when compared with using solely ab
initio methods.
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Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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