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Abstract

Gaussian differential privacy (GDP) is a single-parameter family of privacy notions
that provides coherent guarantees to avoid the exposure of sensitive individual
information. Despite the extra interpretability and tighter bounds under composi-
tion GDP provides, many widely used mechanisms (e.g., the Laplace mechanism)
inherently provide GDP guarantees but often fail to take advantage of this new
framework because their privacy guarantees were derived under a different back-
ground. In this paper, we study the asymptotic properties of privacy profiles and
develop a simple criterion to identify algorithms with GDP properties. We propose
an efficient method for GDP algorithms to narrow down possible values of an
optimal privacy measurement, µ with an arbitrarily small and quantifiable margin
of error. For non GDP algorithms, we provide a post-processing procedure that can
amplify existing privacy guarantees to meet the GDP condition. As applications,
we compare two single-parameter families of privacy notions, ϵ-DP, and µ-GDP,
and show that all ϵ-DP algorithms are intrinsically also GDP. Lastly, we show
that the combination of our measurement process and the composition theorem of
GDP is a powerful and convenient tool to handle compositions compared to the
traditional standard and advanced composition theorems.

1 Introduction

Recent years have seen explosive growth in the research and application of data-driven machine
learning. While data fuels advancement in this unprecedented age of “big data”, concern for individual
privacy has deepened with the continued mining, transportation, and exchange of this new resource.
While expressions of privacy concerns can be traced back as early as 1969 [27], the concept of privacy
is often perceived as “vague and difficult to get into a right perspective” [34]. Through its alluring
convenience and promise of societal prosperity, the use of aggregated data has long outstripped the
capabilities of privacy protection measures. Indeed, early privacy protection protocols relied on the
ad hoc enforcement of anonymization and offered little to no protection against the exposure of
individual data, as evidenced by the AOL search log and Netflix Challenge dataset controversies
[30, 31, 6].
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Differential privacy (DP) first gained traction as it met the urgent need for rigour and quantifiability in
privacy protection [14]. In short, DP bounds the change in the distribution of outputs of a query made
on a dataset under an alteration of one data point. The following definition formalizes this notion.

Definition 1.1 [14] A randomized algorithmA, taking a dataset consisting of individuals as its input,
is (ϵ, δ)-differentially private if, for any pair of datasets S and S′ that differ in the record of a single
individual and any event E,

P [A(S) ∈ E] ≤ eϵP [A (S′) ∈ E] + δ.

When δ = 0, A is called ϵ-differentially private (ϵ-DP).

While the notion of (ϵ, δ)-DP has wide applications [12, 16, 10, 21], there are a few notable drawbacks
to this framework. One is the poor interpretability of (ϵ, δ)-DP: unlike other concepts in machine
learning, DP should not remain a black box. Privacy guarantees are intended for human interpretation
and so must be understandable by the users it affects and by regulatory entities. A second drawback
is (ϵ, δ)-DP’s inferior composition properties and lack of versatility. Here, “composition” refers to
the ability for DP properties to be inherited when DP algorithms are combined and used as building
blocks. As an example, the training of deep learning models involves gradient evaluations and weight
updates: each of these steps can be treated as a building block. It is natural to expect that a DP learning
algorithm can be built using differentially-private versions of these components. However, the DP
composition properties cannot generally be well characterized within the framework of (ϵ, δ)-DP,
leading to very loose composition theorems.

To overcome the drawbacks of (ϵ, δ)-DP, numerous variants have been developed, including the
hypothesis-testing-based f -DP [35, 13], the moments-accountant-based Rényi DP [28], as well as
concentrated DP and its variants [9, 8]. Despite their very different perspectives, all of these DP
variants can be fully characterized by an infinite union of (ϵ, δ)-DP guarantees. In particular, there is
a two-way embedding between f -DP and the infinite union of (ϵ, δ)-DP guarantees: any guarantee
provided by an infinite union of (ϵ, δ)-DP can be fully characterized by f -DP and vice visa [13].
Consequently, f -DP has the versatility to treat all of the above notions as special cases.

In addition to its versatility, f -DP is more interpretable than other DP paradigms because it considers
privacy protection from an attacker’s perspective. Under f -DP, an attacker is challenged with the
hypothesis-testing problem

H0 : the underlying dataset is S versus H1 : the underlying dataset is S′

and given output of an algorithm A, where S and S′ are neighbouring datasets. The harder this
testing problem is, the less privacy leakage A has. To see this, consider the dilemma that the attacker
is facing. The attacker must reject either H0 or H1 based on the given output of A: this means the
attacker must select a subset R0 of Range(A) and reject H0 if the sampled output is in R0 (or must
otherwise reject H1). The attacker is more likely to incorrectly reject H0 (in a type I error) when
R0 is large. Conversely, if R0 is small, the attacker is more likely to incorrectly reject H1 (in a type
II error). We say that an algorithm A is f -DP if, for any α ∈ [0, 1], no attacker can simultaneously
bound the probability of type I error below α and bound the probability of type II error below f(α).
Such f is called a trade-off function and controls the strength of the privacy protection.

The versatility afforded by f can be unwieldy in practice. Although f -DP is capable of handling
composition and can embed other notions of differential privacy, it is not convenient for repre-
senting safety levels as a curve amenable to human interpretation. Gaussian differential privacy
(GDP), as a parametric family of f -DP guarantees, provides a balance between interpretability and
versatility. GDP guarantees are parameterized by a single value µ and use the trade-off function
f(α) = Φ

(
Φ−1(1− α)− µ

)
, where Φ is the cumulative distribution function of the standard normal

distribution. With this choice of f , the hypothesis-testing problem faced by the attacker is as hard
as distinguishing between N(0, 1) and N(µ, 1) on the basis of a single observation. Aside from
its visual interpretation, GDP also has unique composition theorems: the composition of a µ1- and
µ2-GDP algorithm is, as expected,

√
µ2
1 + µ2

2-GDP. This property can be easily generalized to n-fold
composition. GDP also has a special central limit theorem implying that all hypothesis-testing-based
definitions of privacy converge to GDP in terms of a limit in the number of compositions. Readers
are referred to [13] for more information.
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1.1 Outline

The goal of this paper is to provide a bridge between GDP and algorithms developed under other DP
frameworks. We start by presenting an often-overlooked partial order on (ϵ, δ)-DP conditions induced
by logical implication. Ignoring this partial order will lead to problematic asymptotic analysis.

We then break down GDP into two parts: a head condition and a tail condition. We show that the
latter, through a single limit of a mechanism’s privacy profile, is sufficient to distinguish between
GDP and non-GDP algorithms. For GDP algorithms, this criterion also provides a lower bound for the
privacy protection parameter µ and can help researchers widen the set of available GDP algorithms.
This criterion furthermore gives an interesting characterization of GDP without an explicit reference
to the Gaussian distribution.

The next logical step is to measure the exact privacy performance. Interestingly, while the binary
“GDP or not” question can be answered solely by the tail, the actual performance of a DP algorithm
is determined by the head. We define and apply the Gaussian Differential Privacy Transformation
(GDPT) to narrow the set of potential optimal values of µ with an arbitrarily small and quantifiable
margin of error. We further provide procedure to adapt an algorithm to GDP or improve the privacy
parameter when results from the GDP identification and measurement procedures are undesirable.

Lastly, we demonstrate additional applications of our newly developed tools. We first make a
comparison between DP and GDP and show that any ϵ-DP algorithm is automatically GDP. We then
show that the combination of our measurement process and the GDP composition theorem is a more
powerful and convenient tool for handling compositions relative to traditional composition theorems.

2 Privacy profiles and an exact partial order on (ϵ, δ)-DP conditions

The benefits of DP come with a price. As outlined in the definition of DP, any DP algorithm must be
randomized. This randomization is usually achieved by perturbing the intermediate step or the final
output via the injection of random noise. Because of the noise, a DP algorithm cannot faithfully output
the truth like its non DP counterpart. To provide a higher level of privacy protection, a stronger utility
compromise should be made. This leads to the paramount problem of the “privacy–utility trade-off”.
Under the (ϵ, δ)-DP framework, this trade-off is often characterized in a form of σ = f(ϵ, δ): to
achieve (ϵ, δ)-DP, the utility parameter (usually the scale of noise) needs to be chosen as f(ϵ, δ).
Therefore, an algorithm can be (ϵ, δ)-DP for multiple pairs of ϵ and δ: the union of all such pairs
provides a complete image of the algorithm under the (ϵ, δ)-DP framework. In particular, an (ϵ, δ)-DP
mechanism A is also (ϵ′, δ′)-DP for any ϵ′ ≥ ϵ and any δ′ ≥ δ. The infinite union of (ϵ, δ) pairs
can thus be represented as the smallest δ associated with each ϵ. This intuition is formulated as a
privacy profile in [5]. The privacy profile corresponding to a collection of (ϵ, δ)-DP guarantees Ω is
defined as the curve in [0,∞)× [0, 1] separating the space of privacy parameters into two regions,
one of which contains exactly the pairs in Ω. The privacy profile provides as much information as Ω
itself. Many privacy guarantees and privacy notions, including (ϵ, δ)-DP, Rényi DP, f -DP, GDP, and
concentrated DP, can be embedded into a family of privacy profile curves and fully characterized [3].
A privacy profile can be provided or derived by an algorithm’s designer or users.

Before proceeding with detailed discussions, we first give three examples of DP algorithms that are
used throughout the paper. The first example we consider is the Laplace mechanism, a classical DP
mechanism whose prototype is discussed in the paper that originally defined the concept of differential
privacy [14]. The level of privacy that the Laplace mechanism can provide is determined by the
scale b of the added Laplacian noise. Given a global sensitivity ∆, the value of b needs to be chosen
as f(ϵ, 0) = ∆/ϵ in order to provide an (ϵ, 0)-DP guarantee. Despite its long history, the Laplace
mechanism has remained in use and study in recent years [32, 22, 36, 25]. Our second example is
a family of algorithms in which a noise parameter has the form σ = Aϵ−1

√
log(B/δ). Examples

include: the goodness of fit algorithm [18], noisy stochastic gradient descent and its variants [7, 1, 17]
and the one-shot spectral method and the one-shot Laplace algorithm [33]. Our third example comes
from the field of federated learning: given n users and the number of messages m, the invisibility
cloak encoder algorithm (ICEA) from [23] is (ϵ, δ)-DP if m > 10 log(n/(ϵδ)) [20]. See also [4, 19]
for other analysis of ICEA.

For figures and numerical demonstrations in this paper, we use b = 2/∆ for the Laplace mechanism;
A = 2, B = 1, and σ = 2 for the second example, which we refer to as SGD; and m = 20
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and n = 4 for the ICEA. We omit the internal details of these methods and focus on their privacy
guarantees: other than for the classical Laplace mechanism, whose privacy profile is known [3],
privacy guarantees are given in the form of a privacy–utility trade-off equation σ = g(ϵ, δ). Given
σ, it is tempting to derive the privacy profile by inverting g (i.e., as δA(ϵ) = min{δ | σ = g(ϵ, δ)})
because an (ϵ0, δ0)-DP algorithm is trivially (ϵ, δ)-DP for any ϵ ≥ ϵ0 and δ ≥ δ0. However, in
most cases, a privacy profile naively derived in this way is not tight and will lead to a problematic
asymptotic analysis, especially near the origin, because of a frequently overlooked partial order
between (ϵ, δ)-DP conditions below.

Theorem 2.1 Assume that ϵ0 ≥ 0 and 0 ≤ δ0 < 1. The (ϵ0, δ0)-DP condition implies (ϵ, δ)-DP if
and only if δ ≥ δ0 + (1− δ0)(e

ϵ0 − eϵ)+/(1 + eϵ0).

Theorem 2.1 states the exact partial order of logical implication on (ϵ, δ)-DP conditions. Though not
being explicitly discussed in this form in previous literature on DP, this partial order can be implicitly
derived from other results (e.g. proposition 2.11 of [13]). Taking this partial order into account, the
privacy profile derived from the naive inversion of the trade-off function can be refined into

δA(ϵ) = min

({
δ | σ = g(ϵ0, δ0) and δ ≥ δ0 +

(1− δ0)(e
ϵ0 − eϵ)+

1 + eϵ0

})
.

Intuitively, the refined privacy profile not only considers (ϵ, δ)-DP provided directly by the trade-off
function but also takes all pairs (ϵ, δ) inferred by corollary 2.1. See figure 1 for comparison before
and after this refinement.

3 The identification of GDP algorithms

We next show the connection between GDP and the privacy profile: briefly, Gaussian differential
privacy can be characterized as an infinite union of (ϵ, δ)-DP conditions.

Theorem 3.1 ([Corollary 2.13 [13]) A mechanism is µ-GDP if and only if it is (ϵ, δµ(ϵ))-DP for all
ϵ ≥ 0, where

δµ(ϵ) = Φ

(
− ϵ

µ
+

µ

2

)
− eϵΦ

(
− ϵ

µ
− µ

2

)
. (1)

This result follows from properties of f -DP. Prior to this general form, a expression for a special case
appeared in [5]. From the definition of the privacy profile, it follows immediately that an algorithm A
with the privacy profile δA is µ-GDP if and only if δµ(ϵ) ≥ δA(ϵ) for all non-negative ϵ. However,
this observation does not automatically lead to a meaningful way to identify GDP algorithms.

Before proceeding with an analysis of privacy profiles, we give a few visual examples in Figure 1.
The left side of1 illustrates the privacy profiles of our examples. That of the Laplace mechanism is
derived in [3] as Theorem 3: given a noise parameter b and a global sensitivity ∆, the privacy profile
of the Laplace mechanism is δ(ϵ) = max(1− exp{ε/2−∆/(2b)}, 0). For the second and the third
examples, we compare the naive privacy profiles obtained by inverting the trade-off function with
the refined privacy profiles. The refined and naive privacy profiles take on notably different values
around ϵ = 0. The inverted trade-off functions suggest that (0, δ) cannot be achieved by any choice
of parameter σ. However, this is clearly not true, considering Theorem 2.1.

As shown in right side of Figure 1, the Laplace mechanism’s privacy profile is below the 2-GDP and
4-GDP curves but crosses the 1-GDP curve, indicating that the Laplace mechanism in this case is
2-GDP and 4-GDP but not 1-GDP. The ICEA curve intersects all of the displayed GDP curves, so the
algorithm is not µ-GDP for µ ∈ {1, 2, 4}. It is hard to tell whether or not the SGD curve crosses the
1-GDP curve and we cannot say if it will cross the 2-GDP or even the 4-GDP curve at a large value of
ϵ. These examples illustrate that we cannot draw conclusions simply by looking at a graph. A privacy
profile is defined on [0,∞), so it is hard to tell if an inequality is maintained as ϵ increases. Previous
failures of ad hoc attempts at privacy have taught that privacy must be protected via tractable and
objective means [30, 31, 6].

Performing this check via numerical evaluation yields similar problems: we cannot consider all values
of ϵ on an infinite interval (or even a finite one, for that matter). Turning to closed forms for privacy
profiles and δµ is also difficult: even if a given privacy profile is easy to handle, δµ presents some
technical hurdles. The profile δµ and Φ are transcendental with different asymptotic behaviors for
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Figure 1: Left: Examples of privacy profiles obtained by inverting the trade-off function (naive) and
by Theorem 2.1 (refined). Right: Comparison of 1-GDP and 2-GDP privacy profiles against those for
our three examples.

different values of µ and ϵ. This is clear from the Figure 1: near ϵ = 0, δµ is concave for µ = 4 but
convex for µ = 1. As a further complication, both the first and second terms in the definition of δµ
converge to 1 as ϵ→∞, but the difference between them vanishes. Subtracting good approximations
of two nearby numbers may cause a phenomenon called catastrophic cancellation and lead to very
bad approximations [26, 11]. Due to the risk of catastrophic cancellation, a good approximation of
Φ does not guarantee a good approximation of the GDP privacy profile. These problems make it
difficult to tightly bound δµ by a function with a simple form.

To address the problem of differing asymptotic behaviours, we define the following two notions.

Definition 3.1 (Head condition) An algorithm A with the privacy profile δA is (ϵh, µ)-head GDP if
and only if δA(ϵ) ≤ δµ(ϵ) when ϵ ≤ ϵh.

Definition 3.2 (Tail condition) An algorithm A with the privacy profile δA is (ϵt, µ)-tail GDP if and
only if δA(ϵ) ≤ δµ(ϵ) when ϵ > ϵt.

The head condition checks the µ-GDP condition for ϵ near zero and the tail condition checks the
µ-GDP condition for ϵ far away from zero. As such, the combination of (ϵ, µ)-head GDP and
(ϵ, µ)-tail GDP is equivalent to µ-GDP. For now, we put the exact value of µ aside and consider only
the qualitative question of how to identify a GDP algorithm by its privacy profile. The following
theorem answers this question.

Theorem 3.2 An algorithm A is GDP if and only if A is (ϵ, µ)-tail GDP for any finite ϵ and µ.

Interestingly, only the tail condition figures into the identification problem. The reason for this
stems from theorem 2.1. Any nontrivial (ϵ, δ)-DP algorithm must be (0, δ)-DP for some δ < 1 and
therefore must satisfy a head condition for some sufficiently large µ. The only problem left is the
tail. However, it is not possible to check whether δ(ϵ) < δµ(ϵ) for all values of ϵ. To circumvent this
issue, we present a key lemma that underlies much of the theoretical analysis in this section and may
continue to be useful in future developments.

Lemma 3.1 Define δ̃µ(ϵ) =
µe−a2/2

√
2πa2

, where a = − ϵ
µ + µ

2 . It follows that lim
ϵ→+∞

δµ(ϵ)

δ̃µ(ϵ)
= 1.

Using the key lemma above, a condition for identifying GDP algorithms is simple to formulate:

Theorem 3.3 Let µt =
√

lim
ϵ→+∞

ϵ2

−2 log δA(ϵ) . An algorithm A with the privacy profile δA(ϵ) is

µ-GDP if and only if µt <∞ and µ is no smaller than µt.

Theorems 3.2 and 3.3 give a useful criterion characterizing GDP and deepen our understanding of
GDP. Putting the exact value of µ aside, a GDP algorithm must provide an infinite union of (ϵ, δ)-DP
conditions, where δ must be O(e−ϵ2) as ϵ→∞. Refer to Appendices B.3 for proofs of Theorems.
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4 The Gaussian differential privacy transformation

While the binary “GDP or not” question can be answered solely by the tail condition, the actual
performance of a DP algorithm is determined by the value of its privacy profile for small values of
ϵ: intuitively, all (ϵt, µ)-tail conditions are weaker than the corresponding ϵt-DP condition, and the
latter provides almost no privacy when ϵt > 10. A more detailed discussion will be presented in 4.2.
To solve the measurement problem, we first propose a new tool—the Gaussian differential privacy
transformation (GDPT).

Definition 4.1 (GDPT) Let f be a non-increasing, non-negative function defined on [0,+∞) satis-
fying f(0) ≤ 1. The Gaussian differential privacy transformation (GDPT) of f is the function Gf

mapping [0,∞) to [0,∞) such that Gf (ϵ) = µGDP(ϵ, f(ϵ)), where µGDP(x, y) is the implicit function
defined by the equation δµ(x) = y.

We highlight two critical features of the GDPT.

• The GDPT is order preserving: if f(ϵ) ≥ g(ϵ), then Gf (ϵ) ≥ Gg(ϵ).

• The GDPT of δµ is Gδµ(ϵ) = µ, a constant function.

The first of these two features derive from the monotonicity of δµ(ϵ). Given a fixed µ, δµ(ϵ) is a
strictly decreasing continuous function of ϵ. Given a fixed ϵ, δµ(ϵ) is a strictly increasing continuous
function of µ. Therefore, µGDP(x, y) is an increasing function of y: this leads to the order-preserving
property. The second property follows immediately from the definition of µGDP .

By taking advantage of the order-preserving property, direct comparisons between δµ and δA are
no longer necessary: instead, it is sufficient to compare their corresponding GDPTs. Furthermore,
appealing to the second property above, we need only compare GA to the constant function µ. The
following theorems formalize this insight.

Corollary 4.1 An algorithmA with the privacy profile δA is µ-GDP if and only if µ ≥ sup({GA(ϵ) |
ϵ ∈ [0,∞)}).

Theorem 4.1 An algorithm A with the privacy profile δA is (ϵh, µ)-head GDP or (ϵt, µ)-tail GDP
if and only if µ ≥ sup({GA(ϵ) | ϵ ∈ [0, ϵh]) or µ ≥ sup({GA(ϵ) | ϵ ∈ (ϵt,∞)), respectively.

Without the above results, we would be forced to search through a large family of functions for a single
δµ that never crosses δA anywhere on [0,∞) and has µ as small as possible. Now, with Theorem
4.1, we need only consider one function: the GDPT of δA. The tightest value µ is supϵ{GA(ϵ)}.
Now we revisit our previous three examples for which the limit in Theorem 3.3 is 0,

√
1/2, and +∞,

respectively. From these evaluations, we can conclude that the Laplace mechanism and SGD are
GDP and that the privacy profile of the ICEA algorithm crosses every µ-GDP curve regardless of
how large µ is, indicating that the ICEA algorithm is not GDP.

Figure 2: Left: Examples of GDPTs. Right: Plot of G+
A and G−

A with different values of d.
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Left side of figure 2 shows the GDPTs of the three examples considered in this paper. All three
GDPTs converge to a finite value as ϵ → 0+. This can be attributed to the fact that any algorithm
providing some non-trivial (ϵ, δ)-DP guarantee is (0, δ)-DP for some δ ∈ [0, 1) (by theorem 2.1). For
larger values of ϵ, the GDPT of the Laplace mechanism takes on a constant value of 0, the GDPT
of SGD converges to a value that is approximately 0.7, and the GDPT of the ICEA seems to be
diverging. These observations are consistent with the values of 0,

√
1/2, and ∞ obtained from

Theorem 3.3. Once an algorithm is confirmed to be GDP via Theorems 3.2 and 3.3, it is natural to
be interested in the exact level of privacy protection, quantified by µ. Nonetheless, plots are only
good for visualization and are not sufficient proof when verifying GDP. We still need objective and
tractable methods for obtaining bounds on GDPTs.

4.1 Measuring the head

Following the intuition outlined by definition 3.1 and 3.2, we decompose the GDP condition into head
and tail conditions and first focus on finding µ such that A is (ϵ, µ)-head GDP. Without additional
knowledge, finding sup{GA(ϵ) | ϵ ∈ [0, ϵh]}, even for a finite ϵh, seems computationally infeasible.
To solve this problem, we take advantage of the fact that µGDP has a uniformly bounded partial
derivative.

Theorem 4.2 0 ≤ ∂µGDP (ϵ,δ)

∂ϵ ≤
√
2π
2 .

The first half of the inequality above is no surprise to us: the GDP privacy measurement µ is expected
to be larger when ϵ is larger. However, the second half allow us to only conduct the search on a finite
list of ϵ without the concern of spikes in between. We formulate this insight as the following theorem:

Theorem 4.3 Given ϵh ≥ 0, let d = ϵh/n and xi = id for i ∈ {0, . . . , n + 1}. For ϵ ≤ ϵh, the
GDPT of A, denoted by GA(ϵ), is bounded between the two staircase functions

G−
A(ϵ) =

n+1∑
i=0

µGDP(xi, δA(xi+1))×1ϵ∈[xi,xi+1) and G+
A(ϵ) =

n+1∑
i=0

µGDP(xi+1, δA(xi))×1ϵ∈[xi,xi+1).

Specifically,

max
i∈{0,...,n}

G−
A(xi) ≤ max

ϵ∈[0,ϵh]
GA(ϵ) ≤ max

i∈{0,...,n+1}
G+

A(xi) ≤ max
i∈{0,...,n}

G−
A(xi) +

√
2πd. (2)

Refer to Appendix B.5 and B.6 for proofs of Theorem 4.2 and 4.3, respectively.

For any ϵh < +∞, we can now bound any GDPT GA to any precision on [0, ϵh] without full
pointwise evaluation because GA is bounded between G+

A and G−
A and each staircase function takes

on only finitely many values. For any c > 0, the inequalities in (2) provide a viable way to bound
maxϵ∈[0,ϵh] GA(ϵ) in an interval with a length no greater than 1/c.

First, a binary search algorithm (algorithm 2 in Appendix D) can yield µ+ and µ− such that
µ− ≤ µGDP(ϵ, δ) ≤ µ+ and µ+ − µ− < b. For future references, we use µ+

GDP
(ϵ, δ, b) and µ−

GDP
(ϵ, δ, b)

to represent such outputs of µ+ and µ−, respectively. Therefore, we can naively go thorough all
G−

A(xi) and G+
A(xi). By picking n =

⌈√
8cπϵh

⌉
+ 1 and b = 1

2c , the true gap between maxG−
A(ϵ)

and maxG+
A(ϵ) is less than 1

2c and the error margin of the binary search estimate the µGDP is also
1
2c . Therefore, the overall gap is bounded by 1

c . As for complexity, each binary search has a time
complexity of O(log(c)) and the number of binary searches is 2n + 2 = O(ϵhc). The overall
time complexity of this naive approach is O(ϵhc log(c)). For a complete pseudocode of this naive
approach, refer to algorithm 3 in Appendix D.

By leveraging some properties of µGDP and shuffling, the expected number of binary searches needed
can be reduced from linear (2n + 2 ≈ cϵh) to logarithmic (O(log(cϵh))). Such reduction will
eliminate the logarithmic term in the time complexity from the naive algorithm. The improved
algorithm is given as Algorithm 1 below.
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Algorithm 1: Finding µ with privacy profiles (optimized).

Input: δA, ϵh, µt, c. (Privacy profile, searching range ϵh, reciprocal of error margin)
n←

⌈√
8cπϵh

⌉
+ 1

d← ϵh
n−1

µ− ← 0
µ+ ← 0
S = [0, 1, · · · , n+ 1]
Shuffle S
for i = 0 to n+ 1 do

x− ← S[i]d
x+ ← (S[i] + 1)d
if δµ+(x−) < δA(x

+) then
µ+ ← µ+

GDP
(x−, δA(x

+), 1
2c ))

end if
if δµ−(x+) < δA(x

−) then
µ− ← µ−

GDP
(x+, δA(x

−), 1
2c ))

end if
end for
Output:µ−, µ+ (lower and upper bound of µ).

We remark that this algorithm also has better accuracy than the naive algorithm because the lower
and upper bounds will be closer while maintaining coverage. Refer to Appendix D for a detailed
explanation of this algorithm.

4.2 Understanding the tail

With Theorem 4.3, one can verify (ϵh, µ)-head GDP conditions for arbitrarily large ϵh and an
arbitrarily precise approximation of µ. While the error in µ can be quantified by D, one gap remains:
ϵh can be arbitrarily large but can never truly be +∞. In this subsection, we discuss the gap between
(ϵh, µ)-head GDP and actual GDP (which is equivalent to (+∞, µ)-head GDP). Before giving a
solution, we intuitively illustrate the gap between (ϵh, µ)-head GDP and actual GDP. Consider the
following two cases:

• GDP with catastrophic failure, where with probability 1 − p, A1 functions properly as
µ-GDP, with probability p, A1 malfunctions and discloses the entire dataset; and

• head-GDP with ϵ-DP, where A2 is both (ϵh, µ)-head GDP and (ϵh, 0)-DP.

The head GDP privacy guarantee lies strictly between those of A1 and A2: specifically, δA1(ϵ) <
δ(ϵ) < δA2(ϵ). As an interpretation of this inequality, a head GDP privacy guarantee is safer than
the original GDP guarantee but with a minuscule probability of failure, and when combined with a
very weak ϵ-DP condition, the head GDP will be stronger than the actual GDP. In practice, µ is rarely
above six in GDP, and ϵ is rarely above 10 in ϵ-DP because more extreme values provide almost
no privacy protection [13]. If we verify the head condition up to ϵh = 100 (which is not difficult
because the time required for verification grows linearly) and take µ = 6, then p = δµ(ϵh) will be on
the order of 10−43. Also, DP guarantee for ϵ this large is rarely considered to provide real protection.
Hence, we conclude that the gap will not make any notable difference in practice with a proper choice
of µ and ϵh.

4.3 Amplification

In some cases, one may wish to theoretically mend the gap discussed in the last subsection. This can
be achieved by adding extra steps to perturb the output of the algorithm (i.e., via post-processing).
We propose the following “clip and rectify” procedure that can turn any (ϵh, µ)-head GDP algorithm
into a µ-GDP algorithm at some utility cost.
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Theorem 4.4 Let A be an (ϵh, µ)-head GDP algorithm with a numeric output. Assume that −∞ <
y− < y+ < +∞. Define C(y) = max(min(y, y+), y−) andR(z) = z+ v, where v is sampled from
Laplace(b) with b = (y+ − y−)/ϵh. ThenR ◦ C ◦ A is µ-GDP.

Refer to Appendix B.7 for a proof of Theorem 4.4. We remark that, in order to minimize the utility
loss, the bounds y− and y+ should be properly or dynamically chosen and the head condition should
be verified to a value of ϵh that is as large as possible.

On the other hand, the performance (µ) of a GDP algorithm may be bottlenecked by the value of
its privacy profile near the origin. This problem can be remedied by subsample pre-processing, the
impact of which on privacy profiles has been thoroughly examined in [3]. The resulting privacy
profile is explicitly given in Theorems 8–10 of [3]. With the help of the GDPT, we can select different
subsample ratios and measure µ. For instance, the Laplace example in this paper was originally
1.80-GDP. If we introduce a 50%- or 10%- Poisson subsampling before the Laplace mechanism, µ
will be reduced to 0.98 or 0.28, respectively. Refer to E.2 for a complete graph of the new GDPTs.

While one could turn to other algorithms or design a new GDP mechanism in unfavourable cases where
a candidate algorithm is incompatible with GDP from the start, rectifying these incompatibilities via
pre- and post-processing may be more effective and efficient. This is especially true in cases where
raw data is not easily accessible. In other cases, the DP mechanism might be inaccessible. This is
particularly common for users of proprietary software. While they cannot identify and change the
algorithm distributed in binary code, users can still control sensitive information by only approving a
subset for release.

5 Applications

5.1 The Gaussian nature of ϵ-DP and the Laplace mechanism

By our previous analysis of the GDPT, we know that being GDP means that a privacy profile has
a quickly vanishing tail (i.e., δ(ϵ) must be O(e−ϵ2)). It is remarkable that another single parameter
family of DP conditions, the ϵ-DP conditions, is also a property that pertains to the tail of privacy
profiles. For any ϵ0-DP algorithm, the privacy profile must be exactly 0 after ϵ0. This suggests that
ϵ-DP is stronger than GDP. Next, we will quantify this intuition using the tools we developed above.

By Theorem 2.1, we know if A is ϵ0-DP, then in the worst case, δA(ϵ) = (eϵ0 − eϵ)+/(1 + eϵ0).

We consider the GDPT of δA, denoted by GA. It is easy to see that, for ϵ ≥ ϵ0, GA(ϵ) = 0: we need
only consider ϵ ∈ [0, ϵ0). Let GδA(ϵ) be denoted by µϵ. Using the partial derivative of GA derived in

Appendix B.5, we know that ∂
∂ϵGδA(ϵ) =

√
2π exp

{(
µ2
ϵ + 2ϵ

)2
/(8µ2

ϵ)
}[

Φ(−µ2
ϵ+2ϵ
2µϵ

)− Φ(−µ0

2 )
]
.

Then sign( ∂
∂ϵGδA(ϵ)) = sign(µϵ − µ0 − 2ϵ/µ0). We can conclude that µϵ ≤ µ0 and, further, that

GA(ϵ) is strictly decreasing on [0, ϵ0). By Theorem 4.1, we know that A is µ0-GDP. This finding
can be more generally formulated as the following theorem.

Theorem 5.1 Any (ϵ, 0)-DP algorithm is also µ-GDP for µ = −2Φ−1(1/(1 + eϵ)) ≤
√

π/2ϵ.

[13] pointed out that the DP guarantees of the Laplace mechanism are stronger than those correspond-
ingly provided by ϵ-DP. We reaffirm this difference by showing that it still exists under the GDP
framework. The Laplace mechanism satisfies µ-GDP for µ smaller than the bound given in Theorem
5.1. The GDPTs presented in Appendix E.1 illustrate this difference.

5.2 Handling composition with GDP

In practice, it is rare for a dataset to go through DP algorithms only once. Multiple statistics may be of
interest or one statistic may require multiple inquiries to acquire. DP algorithms applied to the same
dataset multiple times are usually still DP but with worse privacy parameters. Composition theorems
quantitatively trace privacy loss and provide a privacy parameter for the ensemble. However, not
only is exact composition an intrinsically (#P-)hard problem [29], but the conclusions of composition
theorems are also often problematic. Take traditional (ϵ, δ)-DP as an example. [24] gives an optimal
composition theorem, but the composition of two (ϵ, δ)-DP algorithms cannot be characterized
under the (ϵ, δ)-DP framework. This result damages interpretability because the representation of
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Figure 3: The plot of privacy guarantee under
different methods.

Method
δ

10−1 10−2 10−3 10−4

Basic 9.89 9.99 10 10
Advanced 5.25 6.51 7.47 8.28
RDP 12.14 17.17 21.03 24.28
GDP 3.1 5.06 6.47 7.62
GDP (Lap) 2.87 4.74 6.09 7.19
Optimal 2.12 3.64 4.76 5.28
GDP summary 2.14 3.73 4.87 5.80

Table 1: Minimum values of ϵ to achieve correspond-
ing (ϵ, δ)-DP.

a composition will no longer be in two parameters. This type of flaw is the major motivation for
a GDP characterization of algorithms derived under other DP frameworks. The composition of
GDP algorithms is easy, exact, and closed: the composition of a µ1- and µ2-GDP algorithm is
simply

√
µ2
1 + µ2

2-GDP. GDP also has a special central limit theorem which implies that, for all
privacy definitions that retain hypothesis testing with proper scaling, the privacy guarantee of a
composition converges to GDP in the limit. In this subsection, we demonstrate that GDP is a powerful
tool for composition by unifying other notions under the GDP framework and then using the GDP
composition theorem. As baselines, we select basic composition [14], advanced composition [15]
and Rényi-DP [28].

We consider the 50-fold composition of 0.2-DP algorithms. In this setting, the basic composition
is pessimistic and says that the composition will be 10-DP, which means there is next to no privacy
guarantee. According to corollary 1 of [28], the bound given by RDP is even looser. Refer to Figure
3 for the results of other theorems.

We next consider composition using the proposed measurement method. According to Theorem 5.1,
a 0.2-DP algorithm is 0.2505-GDP. If the algorithm is the Laplace mechanism, then the algorithm
in Appendix D can tighten µ to 0.2391. To compute µ for a 50-fold composition, we simply
multiply the original µ by

√
50. The result is 1.771-GDP (1.691 for the Laplace mechanism). In

this case, distinguishing two neighbouring datasets is as hard as distinguishing between N(0, 1) and
N(1.771, 1) on the basis of a single observation.

In this particular case, the ground truth can be derived from the optimal composition theorem [24].
We present the results from the optimal composition theorem in Table 1 and Figure 3 for comparison,
but we do not consider the optimal composition theorem to be generally superior because the ground
truth is not easy to compute and because the former method is not as interpretable and only works for
algorithms whose DP guarantees are fixed at (ϵ, δ). However, by applying the GDPT, the privacy
guarantee of the optimal composition theorem can be summarised as 1.420-GDP . Compared to the
central limit theorem in [13] which yields µ =

√
2 (with an unknown asymptotic approximation

error) in the same setting, the tractable numerical procedure of GDPT provides a satisfying result.

6 Conclusion and Future Work

In this paper, we provided both an analytic perspective of and engineering tools for the GDP
framework. By using the new notions we proposed, we devised solutions to three aspects of GDP:
identification, amplification, and measurement. The developments in this paper suggest numerous
interesting directions for future work. First, the more refined methods can be derived to expand the
toolbox of rectification for more versatility. Second, the measurement procedure can be combined
with the rectification procedure. Incrementally introducing more pre- and post-processing steps
and dynamically checking whether privacy guarantees are already satisfactory can also be explored.
Lastly, the idea underlying the GDPT can be generalized to other parameterized DP notions like CDP
or RDP to enrich tractability and visualizability in the DP literature.
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