
Supplementary Material for End-to-End Stochastic
Optimization with Energy-Based Model

Lingkai Kong Jiaming Cui Yuchen Zhuang Rui Feng
B. Aditya Prakash Chao Zhang

College of Computing
Georgia Institute of Technology

{lkkong,jiamingcui1997,yczhuang,rfeng,badityap,chaozhang}@gatech.edu

1 Energy-based Model

The underpinning of energy-based models (EBMs) [7] is the fact that any probability density p(x; θ)
can be expressed as:

p(x; θ) =
exp(−E(x; θ))

Z(θ)
,

where E(x; θ) : RD → R is a nonlinear regression function that maps each input data to an energy
scalar; and Z(θ) =

∫
exp(−E(x; θ))dx is a normalizing constant, also known as partition function.

In this energy-based parameterization, data points with high likelihood have low energy, while data
points with low likelihood have high energy. Due to its simplicity and flexibility, EBMs have been
widely used in many learning tasks, including image generation [2, 13], out-of-distribution detection
[3, 8], and density estimation [9, 12].

2 Derivation for Eq. 6

To obtain the gradient of the model parameters, we first derive ∂log(Z(x;θ))
∂θ :

∂logZ(x; θ)

∂θ
=

∂log
∫

exp(−E(a,x; θ))da

∂θ

=

(∫
exp(−E(a,x, a; θ))da

)−1
∂
∫

exp(−E(x, a; θ))da

∂θ

=

(∫
exp(−E(a,x, a; θ))da

)−1 ∫
∂exp(−E(x, a; θ))da

∂θ

=

(∫
exp(−E(a,x, a; θ))da

)−1 ∫
exp(−E(a,x; θ))

(
−∂E(a,x; θ)

∂θ

)
da

=

∫ (∫
exp(−E(a,x, a; θ))da

)−1

exp(−E(a,x; θ))

(
−∂E(a,x; θ)

∂θ

)
da

=

∫
exp(−E(a,x; θ))

Z(x; θ)

(
−∂E(a,x; θ)

∂θ

)
da

=

∫
q(a|x; θ)

(
−∂E(a,x; θ)

∂θ

)
da

= −Eq(a|x;θ)
∂E(a,x; θ)

∂θ
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Then the gradient of the model parameters is given by:

∂LTotal

∂θ
=

∂LMLE

∂θ
+ λ

∂LKL

∂θ

= E(x,a∗)∼Da

(
∂E(a∗,x; θ)

∂θ
+

∂log(Z(x; θ))

∂θ

)

+ λE(x,y)∼D

−
∂Ep(â|y)logq(â|x; θ)

∂θ
−
��

����*
0

∂H(p(a|y))
∂θ


= E(x,a∗)∼Da

(
∂E(a∗,x; θ)

∂θ
+

∂log(Z(x; θ))

∂θ

)
+ λE(x,y)∼D

(
Ep(â|y)

∂E(â,x; θ)

∂θ
+

∂Ep(â|y)log(Z(x; θ))

∂θ

)
= E(x,a∗)∼Da

(
∂E(a∗,x; θ)

∂θ
+

∂log(Z(x; θ))

∂θ

)
+ λE(x,y)∼D

(
Ep(â|y)

∂E(â,x; θ)

∂θ
+

∂log(Z(x; θ))

∂θ

)
= E(x,a∗)∼Da

(
∂E(a∗,x; θ)

∂θ
− Eq(ã|x;θ)

∂E(ã,x; θ)

∂θ

)
+ λE(x,y)∼D

(
Ep(â|y)

∂E(â,x; θ)

∂θ
− Eq(ã|x;θ)

∂E(ã,x; θ)

∂θ

)
.

3 Training Algorithm for SO-EBM

We adopt gradient-based method such as Adam [5] to update the model parameters. At each
epoch, we need to draw samples from the distributions q(a|x; θ) and p(a|y) to estimate the gradient
of the model parameters. Based on the self-normalized importance sampler, we first sample a
set of M candidates {am}Mm=1 from a proposal distribution π(a|x), and then sample from the
empirical distribution located at each am and weighted proportionally to exp(−E(a|x; θ))/π(a|x)
and exp(−f(y, a))/π(a|x). Then, we compute the gradient of the model parameters using these
empirical samples according to Eq. 6. We summarize the overall training procedure in Alg. 1.

4 Experimental Details

4.1 Load Forecasting and Generator Scheduling

Closed-form expression of the expected objective. Given the electricity demand y ∈ R24 for
the next 24 hours, the electricity scheduling problem is to decide how much electricity a ∈ R24 to
schedule. The optimization objective is given by

minimizea∈R24

24∑
i=1

Ey∼p(y|x;θ)[γs[yi − ai]+ + γe[ai − yi]+ +
1

2
(ai − yi)

2]

subject to |ai − ai−1| ≤ cr ∀i,

where cr is the ramp constraint and γs, γe are the under-generation penalty and over-generation
penalty respectively.
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Algorithm 1 Training of SO-EBM

Require: Training data D = {(xi, yi)}Ni=1, task loss function f(y, a), model M parameterized with
parameter θ

1: Construct feature-decision pairs Da = {(xi, a
∗
i )} by solving a∗ = argmina∈C f(yi, a) for each

(xi, yi) in D
2: E(x, a; θ) ≜ −Ep(y|x;θ)f(y, a)
3: for # training iterations do
4: Sample a mini-batch By from D and Ba from Da

5: for For each (xi, a
∗
i ) and (xi, yi) in Ba and By do ▷ Self-normalized importance Sampler

6: π(a;xi) ≜ 1
K

∑K
k=1 N (a∗i ;σk)

7: for m = 1, · · · ,M do
8: Sample ami ∼ π(a;xi)
9: Compute w̃(ami ) = exp(−E(xi, a

m
i ; θ))/π(ami ;xi)

10: Compute ŵ(ami ) = exp(−f(yi, a
m
i ))/π(ami ;xi)

11: end for
12: Compute Z̃ =

∑M
m=1 w̃(a

m
i ), Ẑ =

∑M
m=1 ŵ(a

m
i )

13: q(ã|xi; θ) ≜
∑M

m=1
w̃(am

i )

Z̃
δam

i
(ã)

14: p(â|y) ≜
∑M

m=1
ŵ(am

i )

Ẑ
δam

i
(â)

15: end for
16: Compute ∂LTotal

∂θ via Eq. 6 using By , Ba, q(ã|xi; θ) and p(â|y).
17: Update θ using ADAM
18: end for

Following [1], we assume yi follows a Gaussian distribution with mean µi and variance σi and obtain
the closed form expression:
24∑
i=1

Ey∼p(y|x;θ)[γs[yi − ai]+ + γe[ai − yi]+ +
1

2
(ai − yi)

2]

=

24∑
i=1

(γs + γe)(σ
2
i p(ai;µi, σ

2
i ) + (ai − µi)F (ai, µi, σ

2
i ))− γs(ai − µi) +

1

2
((ai − µi)

2 + σ2
i ).

(1)

where p(a;µ, σ2) and F (a;µ, σ2) denote the Gaussian probability density function (PDF) and
cumulative distribution function (CDF), respectively with the given mean and variance. Eq. 1 is a
convex function of a since the expectation of a convex function is still convex.

Model hyperparameters. We use a two-hidden-layer neural network, where each “layer” is a
combination of linear, batch norm [4], ReLU, and dropout (p = 0.2) layers with dimension 200.
SO-EBM draws 512 samples from the proposal distribution to estimate the gradient of the model
parameters. The proposal distribution is a mixture of Gaussians with 3 components where the
variances are {0.02, 0.05, 0.1}. The weight parameter λ that balances the MLE and KLD terms is set
to 1. DFL-CVX draws 50 samples from p(y|x; θ) to estimate the expectation of the task loss since it
cannot use the closed-form expression.

Model optimization. We use the Adam [5] algorithm for model optimization. The number of training
epochs is 100. The learning rate is selected from {10−3, 10−4, 5× 10−5, 10−5} based on the task
loss on the validation set. Specifically, the learning rate for the two-stage model and PolicyNet is
10−3. The learning rate for DFL-QPTH and DFL-CVX is 10−4. The learning rate for SO-EBM is
5× 10−5. DFL-QPTH, DFL-CVX and SO-EBM use the two-stage model as the pre-trained model
for faster training convergence.

4.2 Resource Allocation for COVID-19

The dataset1 contains the number of hospitalized patients in California from 3/29/2020 to 12/18/2021.
We use the first 70% data as the training and validation sets, the remaining as the testing set. In the

1The dataset is available at https://gis.cdc.gov/grasp/covidnet/covid19_5.html
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first 70% data, we randomly select 80% as the training set and the remaining is used as the validation
set. For the optimization objective, we set cb = 10, ch = 1, qb = 2 and qh = 0.5.

Model hyperparameters. We use a two-layer gated recurrent unit (GRU) with hidden-size 128
as the forecasting model. SO-EBM draws 512 samples from the proposal distribution to estimate
the gradient of the model parameters. The proposal distribution is a mixture of Gaussians with 3
components where the variances are {5, 10, 20}. The weight parameter λ that balances the MLE and
KLD terms is set to 1.

Model optimization. We use the Adam [5] algorithm for model optimization. The number of
training epochs is 50. The learning rate is selected from {10−2, 10−3, 10−4} based on the task loss
on the validation set. Specifically, the learning rate for the two-stage model and DFL-QPTH is 10−2.
The learning rate for SO-EBM is 10−3. DFL-CVX and SO-EBM use the two-stage model as the
pre-trained model for faster training convergence.

4.3 Network Security Game

Dataset generaton. Following [11, 10], we generate random geometric graphs with 100 nodes.
The generated graphs have a radius of 0.2 in unit square. 5 nodes are chosen randomly as targets
with rewards u(t) ∼ U(5, 10). 5 other nodes are sampled as candidate source nodes, from which
the attacker chooses uniformly. For any node not v in the node set, its attractiveness score yv is
proportional to its distance to the closest target in with an additional uniformly distributed noise
U(−1, 1), representing the attacker’s distinct preferences. The node features x are computed with
a Graph convolutional network (GCN) [6]: x = GCN(y) + 0.2N (0, 1). In this experiment, we
use a randomly initialized GCN which has 4 convolutional layers and 3 fully connected layers. In
this way we generate random node features correlated with their attractiveness scores and nearby
node features. This is a realistic setting since neighboring locations are supposed to have similar
features. The defender uses a different GCN model for prediction, which has 2 convolutional and 2
fully connected layers, ensuring that the defender’s model is less complex than the true generative
mechanics. With the described procedure we sample 35 random (x, y) pairs for the training set, 5 for
the validation set, and 10 for the testing set.

Model hyperparameters. We follow [11] to configure the forecasting model. Specifically, we
employ a two-layer GCN with output dimensions equal to 16 and average all node representations as
the whole graph representation. The whole graph representation is further fed into a linear network
with two fully-connected layers in which the hidden dimension is set to 32. SO-EBM draws 512
samples from the proposal distribution to estimate the gradient of the model parameters. The proposal
distribution is a mixture of Gaussians with 3 components where the variances are {0.01, 0.05, 0.1}.
The weight parameter λ that balances the MLE and KLD terms is set to 1. The reparameterization
size of Surrogate is set to 10 as suggested in [11].

Model optimization. We use the Adam [5] algorithm for model optimization. All the methods are
trained for at most 100 epochs and early stopped when 3 consecutive non-improving epochs occur
on the validation set. Following [11], the learning rate for the two-stage model, CVX-block and
Surrogate is set to 10−2. The learning rate for SO-EBM is 10−3.

5 Visualization using Synthetic Dataset

To visualize whether SO-EBM can recover the landscape of the optimization objective effectively, we
conduct experiments on a 2-D synthetic dataset. We generate 500 features x ∈ R2 from the uniform
distribution U [−2, 2]. The label y ∈ R2 is generated by yi = x2

i + 0.03N (0, 1) for each dimension
independently. The optimization objective is:

minimizea∈R2Ep(y|x;θ)

2∑
i=1

3|ai − yi|+ 0.5(ai − 1.5)2. (2)

We randomly select 80% data as the training set and the remaining is used for testing. The network
architecture and model hyperparameters are the same as those we used in the load forecasting and
generator scheduling task.

Fig. 1 shows the ground-truth and SO-EBM learned landscapes of the optimization objectives. As we
can see, SO-EBM can recover the landscape of the original optimization objective effectively though
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Figure 1: Ground-truth and SO-EBM recovered landscapes of the optimization objective. Darker
colors represent smaller task loss in the heat maps.

with a small discrepancy. The small discrepancy is reasonable since the ground-truth landscape
is computed by directly using the ground-truth label, while SO-EBM uses the uncertainty-aware
neural network to first forecast the distribution of the label and then uses the predictive distribution to
compute the expected task loss.

6 Computing Infrastructure

System: Ubuntu 18.04.6 LTS; Python 3.9; Pytorch 1.11. CPU: Intel(R) Xeon(R) Silver 4214 CPU @
2.20GHz. GPU: GeForce GTX 2080 Ti.
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