
A Notation

Symbol Usage

X A random variable representing an example’s features.
X The domain of features X .
Y A random variable representing an example’s ground truth label.
Y The domain of labels Y .
Ŷ A random variable representing the predicted label for an example.
Ŷ The domain of predicted labels Ŷ (distinguished semantically from Y).
G A random variable representing an example’s group membership.
G The domain for group membership G.
π A learned (non-deterministic) policy for predicting Ŷ from X and G.
Pr A sample probability (density) according to a referenced distribution.
P The space of probability distributions over a given domain.
D The space of distributions of examples over X × Y × G.
O The space of distributions of outcomes over X × Y × Ŷ .
G The space of distributions of group-conditioned examples X × Y .
S The source distribution in D.
T The target distribution in D to which π is now applied.
D A vectorized (by group) premetric for measuring shifts in D.

B,a,b, c A vector of element-wise bounds for D.
eg A group-specific basis vector.
∆? A disparity function, measuring “unfairness”.
Ψ A premetric function (see Definition 2.1) for measuring shifts in O.
v Supremal disparity within bounded distribution shift.

DP Abbreviation for Demographic Parity.
EO Abbreviation for Equalized Odds.

EOp Abbreviation for Equal Opportunity.
Table 1: Primary Notation

B Extended Discussion of Related Work

Domain Adaptation: Prior work has considered the conditions under which a classifier trained on a
source distribution will perform well on a given target distribution, for example, by deriving bounds
on the number of training examples from the target distribution needed to bound prediction error
[2, 27], or in conjunction with the dynamic response of a population to classification [25]. We are
interested in a similar setting and concern, but address the transferability of fairness guarantees,
rather than accuracy. In considering covariate shift and label shift as special cases in this paper, our
work may be paired with studies that address the transferability of prediction accuracy under such
assumptions [35, 37, 42].

Algorithmic Fairness: Many formulations of fairness have been proposed for the analysis of machine
learning policies. When it is appropriate to ignore the specific social and dynamical context of a
deployed policy, the statistical regularity of policy outcomes may be considered across individual
examples [14] and across groups [41, 15, 8, 19, 6]. In our paper, we focus on such statistical
definitions of fairness between groups, and develop bounds for demographic parity [6] and equalized
odds [19] as specific examples.

Dynamic Modeling: When the dynamical context of a deployed policy must be accounted for,
such as when the policy influences control over the future trajectories of a distribution of features
and labels, we benefit from modelling how populations respond to classification. Among this line
of work, [23] initiate the discussion of the long-term effect of imposing static fairness constraints
on a dynamic social system, highlighting the importance of measurement and temporal modeling
in the evaluation of fairness criteria. However, developing such models remains a challenging
problem [11, 36, 31, 12, 43, 39, 24, 7, 20, 28, 30]. In particular, [11] discuss causal directed acyclic
graphs (DAGs) as a unifying framework on fairness in dynamical systems. In this work, rather than
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relying precise models of distribution shift to quantify the transferability of fairness guarantees in
dynamical contexts, we assume a bound on the difference between source and target distributions. We
thus develop bounds on realized statistical group disparity while remaining agnostic to the specific
dynamics of the system.

C Additional Figures

x
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0 τg −Bg
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Figure 5: Distribution of the reweighting coefficient wg(x) for the setting of Covariate shift via Strategic
Response.

D A Geometric Interpretation

In this extension of Section 4.2, we fulfill the promise of Section 3.3 and consider a case in which
shared structure of between Ψ: O2 → R and each Dg : G2 → R permits a geometric interpretation
of distribution shift for Equal Opportunity EOp, building on Theorem 4.3. We continue to defer
rigorous proof to Appendix F.

We first recall the definition of the true positive rate of policy π, for each group, on distribution T .

β+
g := Pr

π,T
(Ŷ=1 | Y=1, G=g) (29)

The true positive rate may be expressed as a ratio of inner products defined over the space of
square-integrable L2 functions on X .7

β+
g [T ] =

PrT (Ŷ=1, Y=1 | G=g)

PrT (Y=1 | G=g)
=

〈
rg[T ], tg

〉
g〈

rg[T ], 1
〉
g

(30)

〈a, b〉g :=

∫
X
a(x)b(x)sg(x) dx (31)

where we use the shorthands

rg[T ](x) := Pr
T

(X=x | G=g) (32)

sg(x) := Pr
S

(Y=1 | X=x,G=g) (33)

1(x) := 1 (34)

tg(x) := Pr
π

(Ŷ=1 | Y=1, X = x,G = g) (35)

and assume that sg(x) > 0 for all x and g.

We observe that the only degree of freedom in β+
g as T varies subject to covariate shift is rg: by the

covariate assumption, sg is fixed; t meanwhile remains independent of T for fixed policy π, since π
is independent of Y conditioned on X and G.

7This precludes distributions with non-zero probability mass concentrated at singular points.
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Selection of D We now select each Dg to be the standard metric for the inner product defined by
Equation (31), where, for each group, distributions in G are mapped to the corresponding vector rg:

Dg

(
Pr
T

(X,Y | G=g) ‖ Pr
S

(X,Y | G=g)
)

:=
√
〈rg[S], rg[T ]〉g + 〈rg[T ], rg[T ]〉g − 2〈rg[S], rg[T ]〉g

(36)

In this geometric picture, D(T ‖ S) � B implies that all possible values for rg[T ] lie within a ball
of radius Bg centered at rg[S]. By the normalization condition of a probablity (density) function,
denoting s−1g (x) := (sg(x))−1, the vector rg[T ] must also lie on the hyperplane

∫
X
rg[T ] dx = 〈rg[T ], s−1g 〉g = 1 (37)

Recalling Equation (30), the group-specific true positive rate β+
g [T ] for policy π is given by a ratio

of the projected distances of rg along the tg and 1 vectors. Let us therefore denote the projection
of rg[T ] onto the (1, tg)-plane as r⊥g [T ]. We may then consider the possible values of r⊥g [T ] as
projections from the intersection of the rg[S]-centered hypersphere of radius Bg and the hyperplane
of normalized distributions (Equation (37)). Using ∠(·, ·) to denote the angle between vectors and
denoting φ′g := ∠(rg, tg), θ′g := ∠(rg, 1), φg := ∠(r⊥g , tg), and θg := ∠(r⊥g , 1), we appeal to the
geometric relationship 〈a, b〉 = cos(∠(a, b))‖a‖‖b‖ to write

β+
g

‖1‖
‖tg‖

=
cosφ′g
cos θ′g

=
cosφg
cos θg

(38)

From these observations, we need only bound the ratio between cos(φg) and cos(θg) to bound β+
g .

Relating these angles in the (1, tg)-plane by φg = ξg − θg where ξg := ∠(tg, 1), we arrive at the
following theorem:

Theorem D.1. The true positive rate β+
g is bounded over the domain of covariate shift Dcov[B],

which we define by the bound D(T ‖ S) � B, and the invariance of Pr(Y=1 | X=x,G=g) for all
x, g, as

cos
(
φug
)

cos
(
ξg − φug

) ≤ ‖1‖‖tg‖β+
g (π, T ) ≤ cos

(
φlg
)

cos
(
ξg − φlg

) (39)

with upper (φug ) and lower (φlg) bounds for φg represented as

φlg := min
T ∈Dcov[B]

φg; φug := max
T ∈Dcov[B]

φg (40)

We obtain a final bound on ∆?
EOp by substituting Equation (39) into Equation (17). We visualize

the geometric bound on β+
g (Theorem D.1) in Figure 6. In Appendix E.1, we apply this bound

to real-world credit score data assuming the model of strategic manipulation given in Section 6.1.
Although the result is not an easily interpretted formula, it provides a demonstration of geometric
reasoning applied to statistical fairness guarantees.

Finally, we note that, in addition to the constraints considered above, each vector rg is subject to the
positivity condition, ∀x ∈ X , rg(x) ≥ 0. The bound developed in this section, however, does not
benefit from this additional constraint; we leave this to potential future work.
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Figure 6: A geometric bound in an infinite-dimensional vector space (i.e., a Hilbert space), represented with a
stereoscopic (cross-eye) view in three dimensions (to provide intuition) and an examination of the (tg, 1)-plane.
The extreme values of β+

g correspond to the extremal angles of φ and θ. In this figure, the vector displayed
parallel to s−1

g from the origin terminates on the hyperplane of normalized distributions.

E Empirical Evaluations of the Bounds

E.1 Comparisons to Dynamic Models of Distribution Shift
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Figure 7: A stereoscopic (cross-eye view) comparison between the bound of Section 4.1 (gradated) and
simulated results for the model of Section 6.1 (blue) in response to a DP-fair classifier with different initial
group-independent acceptance rates. The x-axis represents the maximum shift Dg over all groups g in response
to the classifier.
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Figure 8: A stereoscopic (cross-eye view) comparison between the theoretical bound of Section 4.2 (gradated)
and simulated results for the model of Section 6.1 (blue) in response to a EOp-fair classifier with different initial
group-independent true positive rates (TPR). The x-axis represents the maximum shift Dg over all groups g in
response to the classifier. As Corollary 4.4 limits the maximum possible value of EO violation, we include this
limit as part of the bound.

Group 1 qualification rate s1

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.000
0.025
0.050
0.075
0.100
0.125

Modelled Shift

Group 1 qualification rate s1

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

0.05

0.10

0.15

Theoretical Bound

Group 1 qualification rate s1

0.0 0.2 0.4 0.6 0.8 1.0

G
ro

up
 2

 q
ua

lif
ic

at
io

n 
ra

te
 s
2

0.0
0.2
0.4
0.6
0.8
1.0

0.00
0.05

0.10

0.15

Bound - Modelled Shift

Figure 9: A policy satisfying DP is subject to distribution shift prescribed by replicator dynamics (Section 6.2).
Realized disparity increases (blue) are compared to the theoretical bound (Theorem 5.2, gradated), which is tight
when group have dissimilar qualification rates.

E.2 Comparisons to Real-World Data

We provide additional graphics comparing bounds on demographic parity or equal opportunity to
real-world distribution shifts. Figure 10 compares the covariate shift bound of Theorem 4.1 to the
violation of demographic parity for hypothetical policies trained on one US state and deployed in
another. Figure 11 compares the label shift bound of Theorem 5.2 to the violation of demographic
parity for hypothetical policies trained for a US state in 2014 and deployed in 2018. Figure 12
compares the covariate shift bound of Theorem 4.3 with Theorem D.1 to the violation of equal
opportunity for hypothetical policies trained on one US state and deployed in another.
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Figure 10: Change in violation of demographic parity for hypothetical policies trained on one US state’s data
and reused for another state (blue) compared to covariate-shift bounds (Theorem 4.1, gradated). The x-axis and
y-axis represent the thresholds τg and τh, respectively.
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Figure 11: Change in violation of demographic parity for hypothetical policies trained on 2014 data and reused
for 2018 (blue) compared to label-shift bounds (Theorem 5.2, gradated). The x-axis and y-axis represent the
thresholds τg and τh, respectively.
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Figure 12: Change in violation of equal opportunity for hypothetical policies trained on one US state’s data and
reused for another state (blue) compared to covariate-shift bounds (Theorems 4.3 and D.1, gradated). The x-axis
and y-axis represent the thresholds τg and τh, respectively.
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F Omitted Proofs

Proof of Lemma 2.7:

Statement: For all π, ∆?, and D, when B = 0, ∆?(π,S) = ∆?(π, T ).

Proof. By the definitions of group-vectorized shift (Definition 2.5) and divergence (Definition 2.4)
together with the bounded distribution shift assumption (Assumption 2.6), we note

B = 0 =⇒ D(T ‖ S) = 0 (41)

and
Dg(T ‖ S) = 0 =⇒ Pr

S
(X,Y | G=g) = Pr

T
(X,Y | G=g) (42)

Combining these implications and invoking the independence of Ŷ ∼ π and Y conditioned on X
and G (Equation (1)), it follows that

B = 0 =⇒ ∀g, Pr
π,S

(X,Y, Ŷ | G=g) = Pr
π,T

(X,Y, Ŷ | G=g) (43)

Consulting the definition of disparity (Definition 2.2), it follows that ∆?(π,S) and ∆?(π, T ) are
equal when B = 0.

Proof of Theorem 3.2:

Statement: If there exists an L such that ∇bv(∆?,D, π,S,b) � L, everywhere along some curve
from 0 to B, then

∆?(π, T ) ≤ ∆?(π,S) + L ·B (44)

Proof. We reiterate that v(∆?,D, π,S,b) defines a scalar field over the non-negative cone b ∈
(R+ ∪ 0)|G|. Treating v as a scalar potential, we may define the conservative vector field F:

F = ∇bv (45)

This formulation, in terms of a potential, ensures the path-independence of the line integral of F
along any continuous curve C from 0 to B. That is,

v(...,B)− v(..., 0) =

∫
C

F(b) · db (46)

Therefore, given a Lipshitz condition for F along any curve C with endpoints 0 and B, i.e. when
there exists some finite L such that

∀b ∈ C, F(b) � L (47)

and therefore

v(∆?,D, π,S,B) = v(..., 0) +

∫
C

F(b) · db (48)

≤ ∆?(π,S) + L ·B (49)

By the bounded distribution shift assumption (Assumption 2.6), Lemma 2.7, and the definition of
the supremum bound (Definition 3.1), we conclude

∆?(π, T ) ≤ ∆?(π,S) + L ·B (50)

Proof of Theorem 3.4:

Statement: Suppose, in the region D(T ‖ S) � B, that w is subadditive in its last argument. That
is, w(...,a) + w(..., c) ≥ w(...,a + c) for a, c � 0 and a + c � B. Then, a local, first-order
approximation of w(...,b) evaluated at 0, i.e.,

L = ∇bw(...,b)
∣∣
b=0

= ∇bv(...,b)
∣∣
b=0

(51)
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provides an upper bound for v(...,B):

v(∆?,D, π,S,B) ≤ ∆?(π,S) + L ·B (52)

Proof. Represent
B =

∑
g

egBg (53)

Then, invoking the definition of the derivative as a Weierstrass limit from elementary calculus, as
well as Lemma 2.7, and by repeatedly appealing to the assumed subadditivity condition within our
domain, we find

B · L = B · ∇bv(π,S,b)
∣∣
b=0

(54a)

=
∑
g

Bg
d

dx
v(π,S, xeg)

∣∣
x=0

(54b)

=
∑
g

Bg lim
N→∞

N
(
v(π,S, 1

N
eg)− v(π,S, 0)

)
(54c)

=
∑
g

Bg lim
N→∞

N
(
w(π,S, 1

N
eg)
)

(54d)

≥
∑
g

Bg w(π,S, eg) (54e)

≥
∑
g

w(π,S, Bgeg) (54f)

≥ w(π,S,B) (54g)

Also recall (Definition 3.3)

w(π,S,B) := v(π,S,B)−∆?(π,S) (55)

Therefore, we obtain
v(π,S,B) ≤ ∆?(π,S) + B · L (56)

Lemma F.1. For each group g ∈ G, under covariate shift,

Pr
π,T

(
Ŷ=1 | G=g

)
− Pr
π,S

(
Ŷ=1 | G=g

)
= Cov

π,S

[
ωg(T ,S, X), Pr

π(X,g)
(Ŷ=1)

]
(57)

Proof. First, note that ES [ωg(T ,S, x)] = 1, since

E
S

[ωg(T ,S, x)] =

∫
X
ωg(T ,S, x) Pr

S
(X = x | G=g) dx

=

∫
X

PrT (X=x | G=g)

PrS(X=x | G = g)
Pr
S

(X=x | G=g) dx

=

∫
X

Pr
T

(X=x | G=g) dx = 1
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Then, adopting the shorthand ωg(x) = ωg(T ,S, x), we have:

Pr
π,T

(
Ŷ=1 | G=g

)
− Pr
π,S

(
Ŷ=1 | G=g

)
(58)

=

∫
X

Pr
π(x,g)

(Ŷ=1) Pr
T

(X=x | G=g) dx−
∫
X

Pr
π(x,g)

(Ŷ=1) Pr
S

(X=x | G=g) dx (59)

=

∫
X

Pr
π(x,g)

(Ŷ=1)
(
ωg(x)− 1

)
Pr
S

(X=x | G=g) dx (60)

= E
S

[
Pr

π(x,g)
(Ŷ=1)(ωg(x)− 1) | G=g

]
(61)

= E
S

[
Pr

π(x,g)
(Ŷ=1)(ωg(x)− E

S
[ωg(x)]) | G=g

]
(since ES [ωg(x)] = 1)

= E
S

[
( Pr
π(x,g)

(Ŷ=1)− E
S

[ Pr
π(x,g)

(Ŷ=1)](ωg(x)− E
S

[ωg(x)]) | G=g
]

(E[f(x)− E[f(x)]] = 0)

= Cov
π,S

[
wg(T ,S, X), Pr

π(x,g)
(Ŷ=1)

]
(62)

Lemma F.2. If X is a random variable and X ∈ [0, 1], then Var(X) ≤ E[X](1− E(X)).

Proof.

Var[X] = E[(X − E[X])2]

= E[X2]− (E[X])2

≤ E[X]− (E[X])2 (X ∈ [0, 1])
= E[X](1− E(X))

Proof of Theorem 4.1:

Statement: For demographic parity between two groups under covariate shift (denoting, for each g,
βg := Prπ,S(Ŷ=1 | G=g)),

∆?
DP(π, T ) ≤ ∆?

DP(π,S) +
∑
g

(
βg(1− βg)Bg

)1/2

(63)
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Proof. Again adopting the shorthand ωg(x) = ωg(T ,S, x),

∆?(π, T ) (64)

=
∣∣∣ Pr
π,T

(
Ŷ=1 | G=g

)
− Pr
π,T

(
Ŷ=1 | G=h

)∣∣∣ (65)

=
∣∣∣ Pr
π,T

(
Ŷ=1 | G=g

)
− Pr
π,S

(
Ŷ=1 | G=g

)
(66)

+ Pr
π,S

(
Ŷ=1 | G=g

)
− Pr
π,S

(
Ŷ=1 | G=h

)
(67)

+ Pr
π,S

(
Ŷ=1 | G=h

)
− Pr
π,T

(
Ŷ=1 | G=h

)∣∣∣ (68)

≤ ∆?(π,S) + Cov
S

[
ωg(x), Pr

π(x,g)
(Ŷ=1)

]
+ Cov

S

[
ωh(x), Pr

π(x,h)
(Ŷ=1)

]
(By Lemma F.1)

≤ ∆?(π,S) +
√

Var
S

[ωg(x)] ·
√

Var
S

[ Pr
π(x,g)

(Ŷ=1)] +
√

Var
S

[ωh] ·
√

Var
S

[ Pr
π(x,h)

(Ŷ=1)]

(
∣∣Cov[a, b]

∣∣ ≤√Var[a] ·
√

Var[b])

≤ ∆?(π,S) +
√

Var
S

[ωg(x)] ·
√
E
S

[ Pr
π(x,g)

(Ŷ=1)](1− E
S

[ Pr
π(x,g)

(Ŷ=1)]) (69)

+
√

Var
S

(ωh(x)) ·
√
E
S

[ Pr
π(x,h)

(Ŷ=1)](1− E
S

[ Pr
π(x,h)

(Ŷ=1))]

(Ŷ ∈ {0, 1}, and Lemma F.2)

= ∆?(π,S) +
√

Var
S

[ωg(x)] ·
√
βg(1− βg) +

√
Var
S

[ωh(x)] ·
√
βh(1− βh)

(βg = Prπ,S(Ŷ=1|G=g) = ES [1π(x,g)(Ŷ=1)])

= ∆?(π,S) +
∑
g

(
βg(1− βg) Var

S
[ωg(T ,S, x)]

)1/2

(70)

Proof of Corollary 4.2: Statement: Theorem 4.1 Theorem 4.1 may be generalized to multiple classes
Y = {1, 2, ...,m} and multiple groups G ∈ {1, 2, ..., n},

∆?
DP(π, T ) :=

∑
y∈Y

∑
g,h∈G

∣∣∣ Pr
π,T

(Ŷ=y | G=g)− Pr
π,T

(Ŷ=y | G=h)
∣∣∣ (71)

∆?
DP(π, T ) ≤ ∆?

DP(π,S) +
∑
y∈Y

∑
g,h∈G

(
βg,y(1− βg,y)Bg

)1/2
(72)

where βg,y = Pr
(
Ŷ=y | G=g

)
, and assuming VarS [wg(S, T , X)] ≤ Bg .

Proof. We again adopt the shorthand ωg(x) = ωg(T ,S, x). We first generalize Lemma F.1. For
each group g ∈ G, under covariate shift, for all y ∈ Y ,

Pr
π,T

(
Ŷ=y | G=g

)
− Pr
π,S

(
Ŷ=y | G=g

)
= Cov

π,S

[
ωg(S, T , X), Pr

π(X,g)
(Ŷ=y)

]
(73)

Retracing the logic of Theorem 4.1, for VarS [ωg(T ,S, x)] ≤ Bg , it follows that

∆?
DP(π, T ) :=

∑
y∈Y

∑
g,h∈G

∣∣∣ Pr
π,T

(Ŷ=y | G=g)− Pr
π,T

(Ŷ=y | G=h)
∣∣∣ (74)

≤ ∆?
DP(π,S) +

∑
y∈Y

∑
g,h∈G

√(
βg,y(1− βg,y) Var

S
[ωg(x)]

)
(75)

≤ ∆?
DP(π,S) +

∑
y∈Y

∑
g,h∈G

√(
βg,y(1− βg,y)Bg

)
(76)

= ∆?
DP(π,S) +

∑
y∈Y

∑
g,h∈G

(
βg,y(1− βg,y)Bg

)1/2
(77)
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Proof of Theorem 4.3

Statement: Subject to covariate shift and any given D,B, assume extremal values for β+
g , i.e.,

∀g, Dg(T ‖ S) < Bg =⇒ lg ≤ β+
g (π, T ) < ug (78)

then, for v corresponding to ∆?
EOp,

v(∆?
EOp,D, π,S,B) ≤ max

xg∈{lg,ug}

∑
g,h

∣∣∣xg − xh∣∣∣ (79)

Proof. Recall that, for this setting,

v(∆?
EOp,D, π,S,B) = sup

D(T ‖S)�B
∆?

EOp (80)

and
∆?

EOp =
∑
g,h

|β+
g − β+

h | (81)

This latter expression is convex in each β+
g . Therefore, ∆?

EOp is maximized on the boundary of its
domain, i.e. β+

g ∈ {lg, ug} for each g, given the assumption of the theorem.

Proof of Corollary 4.4

Statement: The disparity measurement ∆?
EOp cannot exceed |G|

2

4 .

Proof. We note that each β+
g is ultimately confined to the interval [0, 1]. Building on our proof for

Theorem 4.3, to maximize ∆?
EOp, we must consider the boundary of this domain, where, for each

g, β+
g ∈ {0, 1}. Because the only terms that contribute to ∆?

EOp are those in which β+
g = 1 and

β+
h = 0 (as opposed to β+

g = β+
h ), we seek to maximize the number of such terms. This occurs

when as close to half of the groups as possible have one extremal true positive rate (e.g., without
loss of generality, β+

g = 1) and the remaining groups have the other (e.g., β+
g = 0). In such cases,

∆?
EOp is given by

max ∆?
EOp = bG

2
cdG

2
e ≤ |G|

2

4
(82)

Proof of Theorem 5.1:

Statement: A Lipshitz condition bounds∇bv(∆?
DP,D, π,S,b) when

Dg(T ‖ S) :=
∣∣∣Qg(S)−Qg(T )

∣∣∣ ≤ Bg (83)

Specifically,
∂

∂bg
v(∆?

DP,D, π,S,b) ≤ (|G| − 1)
∣∣∣β+
g − β−g

∣∣∣ (84)

for true positive rates β+
g and false positive rates β−g :

β+
g := Pr

π
(Ŷ=1|Y=1, G=g) ; β−g := Pr

π
(Ŷ=1|Y=0, G=g) (85)

Proof. We first establish that D(DP)
g (T ‖ S) = |Qg(S)−Qg(T )|, where

Qg(T ) := Pr
T

(Y=1 | G=g) (86)

is an appropriate measure of group-conditioned distribution shift (Definition 2.5). That D satisfies
the axioms of a divergence on group-conditioned distributions subject to the label shift assumption
(PrT (X | Y,G) = PrS(X | Y,G)) and unchanging group sizes is easily verified:

∀S, T , Dg(T ‖ S) = |Qg(S)−Qg(T )| ≥ 0 (87)
Dg(T ‖ S) = |Qg(T )−Qg(T )| = 0 (88)
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and

∀g, Dg(T ‖ S) = 0 =⇒ Pr
T

(Y | G) = Pr
S

(Y | G) (89)

=⇒ Pr
T

(Y,X | G) = Pr
S

(Y,X | G) (90)

We next show that (|G| − 1)|β+
g − β−g | is the corresponding Lipshitz bound for the slope of v with

respect to Bg , where we recall

∀g, β+
g := Pr

π,T

(
Ŷ=1 | Y=1, G=g

)
(91)

∀g, β−g := Pr
π,T

(
Ŷ=1 | Y=−1, G=g

)
(92)

That is, we wish to show

∂

∂bg
v(∆?

DP,D, π,S,b) ≤ (|G| − 1)|β+
g − β−g | (93)

This follows directly from recognition that ∆?
DP is locally always affine in the acceptance rate for

each group, with slope bounded by one less than the number of groups.

∆?
DP =

∑
g,h∈G

|βg − βh| =⇒ ∂

∂βg
∆?

DP ≤ |G| − 1 (94)

By the definition of conditional probability,

βg := Pr
(
Ŷ=1

)
= β+

g Qg + β−g (1−Qg) (95)

∂

∂Qg
βg = β+

g − β−g (96)

It follows by the chain rule that, for all T mutated from S subject to label shift,

∂

∂Qg(T )
∆?

DP(π, T ) ≤ (|G| − 1)|β+
g − β−g | (97)

By the linearity of derivatives, for fixed S, this implies that for all T attainable via label shift,

∂

∂|Qg(T )−Qg(S)|∆
?
DP(π, T ) ≤ (|G| − 1)|β+

g − β−g | (98)

Since this equation holds for all T , it must also hold when evaluated at v, the supremum of ∆?. It
follows that

∂

∂Bg
v(∆?

DP,D
(DP), π,S,B) ≤ (|G| − 1)|β+

g − β−g | (99)

Proof of Theorem 5.2:

Statement: For DP under the bounded label-shift assumption ∀g, |Qg(S)−Qg(T )| ≤ Bg ,

∆?
DP(π, T ) ≤ ∆?

DP(π,S) + (|G| − 1)
∑
g

Bg

∣∣∣β+
g − β−g

∣∣∣ (100)

Proof. This follows from the Lipshitz property implied by Theorem 5.1 (Equation (99)) and
Theorem 3.2.

F.1 Omitted details for Section 6.1

Lemma F.3. Recall the covariate shift reweighting coefficient ωg(x), defined in Section 4.1.

ωg(x) :=
PrT (X=x | G=g)

PrS(X=x | G=g)
(101)
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For our assumed setting,

ωg(x) =


1, x ∈ [0, τg −mg)
τg−x
mg

, x ∈ [τg −mg, τg)
1
mg

(−x+ τg + 2mg), x ∈ [τg, τg +mg)

1, x ∈ [τg +mg, 1]

(102)

Proof for Lemma F.3:

Proof. We discuss the target distribution by cases:
• For the target distribution between [0, τg −Mg]: since we assume the agents are rational, under

assumption 6.2, agents with feature that is smaller than [0, τg −Mg] will not perform any kinds
of adaptations, and no other agents will adapt their features to this range of features either, so the
distribution between [0, τg −Mg] will remain the same as before.

• For target distribution between [τg −Mg, τg], it can be directly calculated from assumption 6.3.
• For distribution between [τg, τg +Mg], consider a particular feature x? ∈ [τg, τg +Mg], under

Assumption 6.4, we know its new distribution becomes:

Pr
T

(x = x?) = 1 +

∫ τg

x?−Mg

1− τg−z
Mg

Mg − τg + z
dz

= 1 +

∫ τg

x?−Mg

1

Mg
dz

=
1

Mg
(−x? + τg + 2Mg)

• For the target distribution between [τg +Mg, 1]: under assumption 6.2 and 6.4, we know that no
agents will change their feature to this feature region. So the distribution between [τg +Mg, 1]
remains the same as the source distribution.

Thus, the new feature distribution of x(Mg)
τg after agents from group g strategic responding becomes:

Pr
T

(x) = Pr
(
x(Mg)
τg

)
=


1, x ∈ [0, τg −Mg) and x ∈ [τg +Mg, 1]
τg−x
Mg

, x ∈ [τg −Mg, τg)
1
Mg

(−x+ τg + 2Mg), x ∈ [τg, τg +Mg)

0, otherwise
(103)

Proof of Proposition 6.5:

Statement: For our assumed setting of strategic response involving DP for two groups {g, h},
Theorem 4.1 implies

∆?
DP(π, T ) ≤ ∆?

DP(π,S) + τg(1− τg)
2

3
mg + τh(1− τh)

2

3
mh (104)

Proof. According to Lemma F.3, we can compute the variance of wg(x): Var(wg(x)) =

E
[(
wg(x) − E[wg(x)]

)2]
= 2

3Mg. Then by plugging it to the general bound for Theorem 4.1
gives us the result.

Proof of Theorem 6.6:

Statement: For DP subject to label replicator dynamics,

∆?
DP(π, T ) ≤ ∆?

DP(π,S) +
∑
g

∣∣∣Qg[t+ 1]−Qg[t]
∣∣∣ |ρ1,1g − ρ0,1g |
ρ1,1g + ρ0,1g

(105)
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Proof. We may directly substitute

|G| = 2

Bg =
∣∣∣Qg[t+ 1]−Qg[t]

∣∣∣∣∣∣β+
g − β−g

∣∣∣ =
|ρ1,1g − ρ0,1g |
ρ1,1g + ρ0,1g

into Theorem 5.2.

Proof of Theorem D.1:

Statement: The true positive rate β+
g is bounded over the domain of covariate shiftDcov[B], which we

define by the bound D(T ‖ S) � B, and the invariance of Pr(Y=1 | X=x,G=g) for all x, g, as

cos
(
φug
)

cos
(
ξg − φug

) ≤ β+
g (π, T ) ≤ cos

(
φlg
)

cos
(
ξg − φlg

) (106)

where
φlg := min

D∈Dcov[B]
φg[D]; φug := max

D∈Dcov[B]
φg[D] (107)

Proof. To be rigorous, we may give an explicit expression for r⊥g by implicitly forming a basis in
the (1, tg)-plane via the Gram-Schmidt process.

r⊥g := 〈rg, tg〉g
tg
‖tg‖2

+ 〈rg, ug〉g
ug
‖ug‖2

(108)

ug := 1− 〈1, tg〉
tg
‖tg‖2

(109)

(110)

From which we may verify that

〈ug, tg〉 = 0 (111)

〈r⊥g , tg〉g = 〈rg, tg〉g (112)

〈r⊥g , ug〉g = 〈rg, ug〉g (113)

〈r⊥g , 1〉g = 〈rg, 1〉g (114)

Recalling the relationship between the cosine of an angle between two vectors and inner products:

cos(∠(a, b)) =
〈a, b〉
‖a‖‖b‖ (115)

It follows from Equation (31) that, defining ξg := ∠(tg, 1),

β+
g

‖1‖
‖tg‖

=
cos(∠(rg, tg))

cos(∠(rg, 1))
=

cos
(
∠(r⊥g , tg)

)
cos
(
∠(r⊥g , 1)

) =
cos(φg)

cos(ξg − φg)
(116)

By the monotonicity of the final expression above with respect to φg , for fixed ξg:

d

dx

cos(x)

cos(ξ − x)
= − sin(x) cos(ξ − x) + cos(x) sin(ξ − x)

cos2(ξ − x)
= − sin(ξ)

cos2(ξ − x)
(117)

We note that Equation (117) is strictly negative, thus the expression in Equation (116) must be
monotonic for fixed ξ. We may conclude that β+

g is extremized with extremal values of φg , denoted
as φug and φlg .
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