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A Multi-dot product kernels

In this section we prove results presented in Section 3.1.
Lemma A.1. CGPK-EqNet and CNTK-EqNet are multi-dot product kernels.

Proof. The proof follows directly from the derivation of the kernels in Section 2.2. Note that
CGPK-EqNet is given by Σ̃

(L)
11 and CNTK-EqNet by Θ̃

(L)
11 , and their recursive definition only involve

elements of Σ̃(l) and Θ̃(l) in which i = j. Moreover, by definition the diagonal elements of Σ(0) and
Θ(0) are 〈x(i), z(i)〉 for i ∈ [d], implying the lemma.

A.1 Multivariate Gegenbauer Polynomials

We next extend basic results derived for functions on the sphere to the multisphere MS(ζ, d). These
results will assist us later to prove Mercer’s decomposition for multi-dot product kernels in the
subsequent section.

We consider the set of Gegenbauer polynomials {Q(ζ)
k (t)}k≥0 that are orthogonal in L2[−1, 1] w.r.t.

the weight function (1− t2)(ζ−3)/2 and omit the superscript. Inspired by [4], we define multivariate
Gegenbauer polynomials, using facts from harmonic analysis on the sphere. (See references [6, 7] for
background on spherical harmonics and Gegenbauer polynomials). We denote by |Sζ−1| the area of
the sphere Sζ−1.
Definition A.2. For k ≥ 0, let Qk(t) : [−1, 1]→ R be the (univariate) Gegenbauer polynomial of
degree k. Then, the multivariate Gegenbauer polynomial of order k is Qk(t) : [−1, 1]d → R, defined
by

Qk(t) = Qk1(t1) ·Qk2(t2) · ... ·Qkd(td).

These multivariate Gegenbauer polynomials enjoy several properties that they inherit from their
univariate counterpart.
Lemma A.3. Let Pk(t) denote the space of polynomials of degree ≤ k with variables t ∈ [−1, 1]d.
Then, the set {Qi(t)}|i|=ki=0 is an orthogonal basis of Pk(t) w.r.t. the weight function (1− t2)(ζ−3)/2

(with i = (i1, . . . , id) and |i| = i1 + . . .+ id).

Proof. Let p(t) =
∑|i|=k

i=0 ait
i ∈ Pk(t). Since the univariate Gegenbauer polynomials form an

orthogonal basis, for every 0 ≤ ni ≤ k and i ∈ [d] we can write tnii =
∑ni
j=0 a

(ni)
j Qj(ti), where
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a
(ni)
j ∈ R, and the superscript is used to emphasize that the expansion depends on ni. Therefore,
p(t) can be written as

p(t) =

|n|=k∑
n=0

ant
n =

|n|=k∑
n=0

an

 n1∑
j=0

a
(n1)
j Qj(t1)

 · .. ·
 nd∑
j=0

a
(nd)
j Qj(td)


=(1)

|n|=k∑
n=0

ãnQn1
(t1)Qi2(t2) · . . . ·Qnd(td) =

|n|=k∑
n=0

ãnQn(t),

where (1) is obtained by applying the distributive law with the fact that n1, .., nd ≤ k. finally, ãi can
be computed explicitly from ai and {a(ni)

j }.

We have shown that Pk(t) is spanned by the set {Qi(t)}|i|=ki=0 . Next, we show that this set is

orthogonal with respect to the measure
∏d
r=1

(
(1− t2r)

ζ−3
2

)
. Let i and j be two vectors of indices.

Then, we have that∫
[−1,1]d

Qi(t)Qj(t)

d∏
r=1

(1− t2r)
ζ−3
2 dt1 · . . . · dtd =

d∏
r=1

(∫
[−1,1]

Qir (tr)Qjr (tr)(1− t2r)
ζ−3
2 dtr

)

=

(
|Sζ−1|
|Sζ−2|

)d( d∏
r=1

N(ζ, ir)

)−1

δi1,j1 · δi2,j2 · . . . · δid,jd ,

where the last equality is due to the orthogonality property of the univariate Gegenbauer polynomials.
This concludes the proof.

The relation of the multivariate Gegenbauer polynomials to the SH-products is formulated in the
following lemma.

Lemma A.4. Let x, z ∈MS(ζ, d). It holds that

Qk(〈x(1), z(1)〉, .., 〈x(i), z(j)〉, .., 〈x(d), z(d)〉) = |Sζ−1|d
(

d∏
r=1

N(q, kr)

)−1 ∑
j:jr∈[N(ζ,kr)]

Yk,j(x)Yk,j(z),

where Yk,j(x) is homogeneous polynomial of degree k1 + .. + kd. Yk,j(x) is further given by
SH-products, i.e., Yk,j(x) =

∏d
i=1 Yki,ji(x

(i)), where Ykiji are spherical harmonics in Sζ−1, and
N(ζ, ki) are the number of harmonics of frequency ki in Sζ−1.

Proof. By the definition of the multivariate Gegenbauer polynomials and the univariate addition
theorem [9] we get

Qk(〈x(1), z(1)〉, ..., 〈x(i), z(j)〉, ..., 〈x(d), z(d)〉) = Qk1(〈x(1), z(1)〉) · ... ·Qkd(〈x(d), z(d)〉)

=

 |Sζ−1|
N(ζ, k1)

N(ζ,k1)∑
j1=1

Yk1,j1(x(1))Yk1,j1(z(1))

 · . . . ·
 |Sζ−1|
N(ζ, kd)

N(ζ,kd)∑
jd=1

Ykd,jd(x(d))Ykd,jd(z(d))


=

(
d∏
i=1

|Sζ−1|
N(ζ, ki)

)
j=(N(ζ,k1),...,N(ζ,kd))∑

j=(1,...,1)

d∏
i=1

Yki,ji(x
(i))Yki,ji(z

(i))

:=

(
d∏
i=1

|Sζ−1|
N(ζ, ki)

) ∑
j:ji∈[N(ζ,ki)]

Yk,j(x)Yk,j(z).

Note that the homogeneity of the SH-products Yk,j(x) is a direct result of the homogeneity of the
spherical harmonics Yki,ji .

Lemma A.5. The set {Yk,j} are orthonormal w.r.t uniform measure in MS(ζ, d).
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Proof. We have that∫
MS(ζ,d)

Yk,j(x)Yk′,j′(x)dx =

∫
MS(ζ,d)

(
d∏
i=1

Yki,ji(x
(i))

)(
d∏
i=1

Yk′i,j′i(x
(i))

)
dx

=

d∏
i=1

(∫
Sζ−1

Yki,ji(x
(i))Yk′i,j′i(x

(i))dx(i)

)
=

d∏
i=1

δki,k′i · δji,j′i .

A.2 Mercer’s decomposition

In this section we prove that the eigenfunctions of multi dot-product kernels consist of products
of spherical harmonics. We further provide a way to calculate the eigenvalues using products of
Gegenbauer polynomials.
Lemma A.6. Let −k be a multi-dot product kernel. Then, the eigenfunctions of −k(x, ·) w.r.t uniform
measure on MS(ζ, d) are the SH-products. Namely, the eigenfunctions are{

Yk,j(x) =

d∏
i=1

Ykiji

(
x(i)
)}

k≥0, ji∈[N(q,ki)]

,

where Ykiji are the Spherical Harmonics in Sζ−1, and N(ζ, ki) are the number of harmonics
of frequency ki in Sζ−1. The eigenvalues, λk, can be calculated using products of (univariate)
Gegenbauer polynomials as follows,

λk = C(ζ, d)

∫
[−1,1]d

−k(t)

d∏
i=1

Qki(ti)(1− t2i )
ζ−3
2 dt

where {Qk(t)} is the set of orthogonal Gegenbauer polynomials w.r.t the weights (1− t2i )
ζ−3
2 , and

C(ζ, d) is a constant that depends on both ζ and d.

Proof. Let −k be a multi-dot product kernel. By definition for such kernel, there exists a multivariate
analytic function κ such that −k(L)(x, z) = κ(〈x(1), z(1)〉, ..., 〈x(d), z(d)〉). Using lemma A.3, {Qk}
form an orthogonal basis in [−1, 1]d. Therefore, it can be readily shown (similar to [9]) that, κ can be
written as

κ(t1, .., td) := κ(t) =
∑
k≥0

(
d∏
i=1

N(ζ, ki)
|Sζ−2|
|Sζ−1|

)
Qk(t)

∫
[−1,1]d

κ(t̃)Qk(t̃)

d∏
i=1

(1− t̃2i )
ζ−3
2 dt̃ :=

∑
k≥0

λkQk(t).

Lemma A.4 implies

Qk(〈x(1), z(1)〉, .., 〈x(i), z(j)〉, .., 〈x(d), z(d)〉) =
|Sζ−1|d∏d
i=1N(ζ, ki)

∑
j:ji∈[N(ζ,ki)]

Yk,j(x)Yk,j(z),

yielding

−k(x, z) =
∑
k≥0

λk
∑

j:ji∈[N(ζ,ki)]

Yk,j(x)Yk,j(z).

Since {Yk,j(x)} are orthonormal w.r.t. the uniform measure in MS(ζ, d) (Lemma A.5) we ob-
tain that {Yk,j(x)} are the eigenfunctions of −k(L), with the corresponding eigenvalues {λk =

|Sζ−2|d
∫

[−1,1]d
−k(t)

∏d
i=1Qki(ti)(1− t2i )

ζ−3
2 dt}.

A.3 Proof of Lemma 3.1

Lemma A.7. Let −k be a multi-dot product kernel with the power series given in (2), where x(i), z(i) ∈
Sζ−1 respectively are pixels in x, z. Then, the eigenvalues λk(−k) of −k are given by λk(−k) =
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∣∣Sζ−2
∣∣d∑

s≥0 bk+2s

∏d
i=1 λki(t

ki+2si), where |Sζ−2| is the surface area of Sζ−2, and λk(tn) is the
k’th eigenvalue of tn, given by

λk(tn) =
n!

(n− k)!2k+1

Γ
(
ζ−1

2

)
Γ
(
n−k+1

2

)
Γ
(
n−k+ζ

2

)
if n− k is even and non-negative, while λk(tn) = 0 otherwise, and Γ is the Gamma function.

Proof. The proof follows the linearity of the integral operator. Let

−k(x, z) =
∑
n≥0

bn〈x(1), z(1)〉n1 · ... · 〈x(d), z(d)〉nd , (1)

and denote by C(ζ, d) =
∣∣Sζ−2

∣∣d. Following Lemma A.6 the eigenvalues of −k are given by

λk =C(ζ, d)

∫
[−1,1]d

−k(t)

d∏
i=1

Qki(ti)(1− t2i )
ζ−3
2 dt1...dtd

=C(ζ, d)

∫
[−1,1]d

∑
n≥0

bnt
n

d∏
i=1

Qki(ti)(1− t2i )
ζ−3
2 dt1...dtd

=C(ζ, d)
∑
n≥0

bn

d∏
i=1

(∫
[−1,1]

tni Qki(ti)(1− t2i )
ζ−3
2 dti

)
= C(ζ, d)

∑
n≥0

bn

d∏
i=1

λki(t
ni).

Also note from [1] that λk(tn) = 0 whenever n− k is either odd or negative, implying the statement
of the lemma.

A consequence of the lemma above is that the eigenvalues of a kernel −k can be bounded by the
eigenvalues of other kernels if the power series coefficients of −k are bounded by the respective
coefficients of the other kernels. We summarize this in the following corollary:

Corollary A.8. Let −k,−kupper,−klower : MS(ζ, d)→ R be multi-dot product kernels. Assuming that
for t ∈ [−1, 1]d,

−k(t) =
∑
n

bnt
n

−kupper(t) =
∑
n

buppern tn

−klower(t) =
∑
n

blowern tn

and suppose there exists k0 such that for all n ≥ k0, 0 ≤ c1blowern ≤ bn ≤ c2buppern , with c1, c2 > 0.
Then, for all k ≥ k0,

c1λk(−klower) ≤ λk(−k) ≤ c2λk(−kupper) (2)

This corollary is an immediate result from Lemma 3.1.

B Factorizable kernels

In this section we prove results presented in Section 3.2. We prove Theorem 3.2, which determines
the eigenvalues of factorizable kernels whose power series coefficients decay at a polynomial rate.
The following supporting lemma proves the theorem for d = 1.
Lemma B.1. Let κ̃(t) =

∑∞
n=0 ãnt

n where ãn = O(n−ν) with ν > 1 and not integer. Then, the
eigenvalues of κ̃ w.r.t. the uniform measure in Sζ−1 are

λk = Θ
(
k−(ζ+2ν−3)

)
.
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Proof. By applying Corollary A.8 with d = 1 we have that if f(t) =
∑∞
n=0 ant

n and g(t) =∑∞
n=0 bnt

n with c1an ≤ bn ≤ c2an then it holds that λk(g) = Θ(λk(f)). It is therefore enough to
find f(t) =

∑∞
n=0 ãnt

n where ãn = O(n−ν) and then calculate its eigenvalues. By [5] (Thm. VI.1,
page 381), the function f(t) = (1− t)ν−1, where ν > 1 is non-integer, satisfies f(t) =

∑∞
n=0 ãnt

n

with ãn = O (n−ν). Moreover, according to [2] (Thm. 7, page 17), the eigenvalues of f(t) =
(1− t)ν−1 in Sζ−1 are

λk(f) = c1k
−(ζ+2ν−3),

which concludes the proof.

Relying on the lemma, we can now prove Theorem 3.2.

Theorem B.2. Let −k be a factorizable multi-dot product kernel, and letR ⊆ [d] denote its receptive
field. Suppose that −k can be written as a multivariate power series, −k(t) =

∑
n≥0 bnt

n with

bn ∼ c
∏

i∈R, ni>0

n−νi .

with constants c > 0,non-integer ν > 1, and bn = 0 if ni > 0 for any i 6∈ R. Then the eigenfunctions
of −k w.r.t. the uniform measure are the SH-products, and its eigenvalues λk(−k) satisfy

λk ∼ c̃
∏

i∈R, ki>0

k
−(ζ+2ν−3)
i ,

where k ∈ Nd be a vector of frequencies. Finally, λk = 0 if ki > 0 for any i 6∈ R.

Proof. Since −k(t) is factorizable and can be written by a power series it can be written as

−k(t) = cκ̃(t1) · ... · κ̃(td),

where κ̃(t) ∼
∑∞
n=0 n

−νtn, and it can be readily shown that

λk(−k) = cλk1(κ̃) · ... · λkd(κ̃).

Using Lemma B.1 we have that

cλk1(κ̃) · .. · λkd(κ̃) ∼ c̃
∏

i∈R,ki>0

k
−(ζ+2ν−3)
i ,

which concludes our proof.

C Positional bias of eigenvalues

We next prove results presented in Section 3.3. We next prove Theorem 3.4.

Theorem C.1. Let −k(L) be hierarchical and factorizable of depth L > 1 with filter size q, so that
−k(L)(t) =

∑
n≥0 bnt

n = c
∑

n≥0 an1
· .. · andtn with a0 > 0 and ani = n−νi for ν > 1. Then there

exist a scalar A = 1 + 1
a0

such that:

1. The power series coefficients of −k(L) satisfy

cA,nn
−ν ≤ bn,

where

cA,n = cL

d∏
i=1

Amin(p
(L)
i ,ni).
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2. The eigenvalues λk(−k(L)) satisfy

cA,k

d∏
i=1
ni>0

k
−(ζ+2ν−3)
i ≤ λk,

where

cA,k = c̃L

d∏
i=1

Amin(p
(L)
i ,ki).

cL and c̃L are constants that depends on L, and p(L)
i denotes the number of paths from pixel i to the

output of −k(L).

To prove the theorem we provide several supporting lemmas and the following definition:

Definition C.2. A kernel −̃k
(L)

[−1, 1]q
L → R is called stride-q hierarchical of depth L > 1 if

there exists a sequence of kernels −̃k
(1)
, ..., −̃k

(L)
such that −̃k

(l)
(t) = f

(
−̃k

(l−1)
(t1), ..., −̃k

(l−1)
(tq)

)
with f : Rq → R, t = (t1, ..., tq) ∈ [−1, 1]q

l−1

and −k(1)(t) = t ∈ [−1, 1]. A ker-
nel −k(L) : [−1, 1]q(L−1)+1 → R is stride-1 hierarchical if for all 1 < l ≤ L, −k(l) =

f
(
−k(l−1)(t1),−k(l−1)(s1t1), ...,−k(l−1)(sq−1t1)

)
and t1 ∈ [−1, 1]l(q−1)+1.

We next formulate the relation between the power series coefficient of the two kernels:

Lemma C.3. Let −k(L)(t) : [−1, 1]d → R be stride-1 kernel and −̃k
(L)

(t̃) : [−1, 1]q
L → R be

stride-q kernel. Then, there exists a variables substitution S : [qL]→ [d] such that if t̃S(j) = tj for
all j ∈ [qL] then

−̃k
(L)

(tS(0), .., tS(qL−1)) ≡ −k(L)(t0, .., td−1).

Moreover, if −k(L)(t) =
∑

n≥0 bnt
n and −̃k

(L)
(t̃) =

∑
ñ≥0 b̃ñt̃

ñ then

bn =
∑
S
b̃ñ

where S = {ñ0, .., ñqL−1|∀i = 0, .., d− 1,
∑
i=S(j) ñj = ni}.

Proof. We assume here that d ≤ (q − 1)L, in any other case can take mod(d). We construct the
mapping S and prove its correctness by induction. For any index j = 0, .., qL − 1 we write j =
aL−1q

L−1 +aL−2q
L−2 + ..+a1q+a0 where ai = 0, 1, .., q−1. Then, we define S(j) := SL(j) =

aL−1+aL−2+..+a0. We next prove by induction that −̃k
(L)

(tS(0), .., tS(q(L)−1)) ≡ −k(L)(t0, .., td−1).
For L = 2 we have:

−̃k
(2)

(tS(0), .., tS(q2−1)) = f
(
−k(1)(tS(0), .., tS(q−1)), ...,

−k(1)(tS((q−1)q), .., tS(q2−1))
)

= f
(
−k(1)(t0, .., tq−1), ...,−k(1)(tq−1, .., t2q−2)

)
= f

(
−k(1)(t),−k(1)(s1t), ...,

−k(1)(sq−1t)
)

Where t = t0, .., tq−1 and s is the shift operator. This concludes the case of L = 2. For L > 2 we
assume that SL−1(j) = aL−2 + ..+ a0 is the correct assignment for qL−1 − 1 variables and get that

−̃k
(L)

(tS(0), .., tS(qL−1)) = f

(
−̃k

(L−1) (
tS(0), .., tS((q−1)qL−2+..+q−1)

)
, ..., −̃k

(L−1) (
tS((q−1)qL−1), .., tS(qL−1)

))
= f

(
−̃k

(L−1) (
t0, .., t(L−1)(q−1)

)
, ..., −̃k

(L−1) (
t(q−1), .., tL(q−1))

))
=(1) f

(
−k(L−1) (t) , ...,−k(L−1) (sq−1t)

)
,
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where (1) holds from the induction hypothesis and t = t0, .., t(L−1)(q−1). Therefore

−̃k
(L)

(tS(0), .., tS(qL−1)) ≡ −k(L)(t0, .., td−1).

.

Finally since f is an analytic function it holds that:

−k(L)(t) = −̃k
(L)

(tS(0), .., tS(qL−1)) =
∑
ñ≥0

b̃ñt
ñ1

S(0) · .. · t
ñqL−1

S(qL−1)
=
∑
n≥0

tn
∑
S
b̃ñ

where S = {ñ0, .., ñqL−1|∀i = 0, .., d − 1,
∑
i=S(j) ñj = ni}. Therefore, from the uniqueness of

the power series we get that

bn =
∑
S
b̃n.

Lemma C.4. Let k ∈ Nm and consider the series Sm(n) =
∑
k1+...+km=n

∏m
i=1 k

−ν
i =∑

|k|=n k
−ν with ν > 1 and the convention 0−ν = a0 > 0. Then, for n ≥ m, Sm(n) is bounded

from above and below as follows

Am−1n−ν ≤ Sm(n) ≤ Bm−1n−ν , (3)

with B > A = (a0 + 1) > 1 constants.

Proof. We show this by induction over m, i.e., the length of the vector k. We begin by showing this
for S = S2(n) for any n ≥ 2, i.e., An−ν ≤ S =

∑n
k=0 k

−ν(n − k)−ν ≤ Bn−ν for constants A
and B.

Lower bound. For n > 2 it holds that

S =

n∑
k=0

k−ν(n− k)−ν = 2 · a0 · n−ν + 2 · (n− 1)−ν +

n−2∑
k=2

k−ν(n− k)−ν

≥ 2 · a0 · n−ν + 2 · (n− 1)−ν

≥ 2(a0 + 1)n−ν ≥ (2a0 + 1)n−ν

≥ (a0 + 1)n−ν .

For n = 2, we have that S = 2a0n
−ν + (n− 1)−ν ≥ (2a0 + 1)n−ν ≥ (a0 + 1)n−ν .

Therefore, it holds for n ≥ 2 that S2(n) ≥ A−νn , where A = a0 + 1.

Upper bound. We show that for n ≥ 2 it holds that nνS2(n) = nν
∑n
k=0 k

−ν(n − k)−ν ≤
(2a0 + 2) + 2(ν+1)

ν−1 . This follows from:

nν
n∑
k=0

k−ν(n− k)−ν ≤ (2a0 + 2ν+1) +

n−2∑
k=2

(
n− k + k

k(n− k)

)ν
= (2a0 + 2ν+1) +

n−2∑
k=2

(
n− k

k(n− k)
+

k

k(n− k)

)ν

= (2a0 + 2ν+1) +

n−2∑
k=2

(
1

k
+

1

(n− k)

)ν
≤ (2a0 + 2ν+1) +

n−2∑
k=2

(
2 max

{
1

k
,

1

n− k

})ν
≤ (2a0 + 2ν+1) + 2ν2

n/2∑
k=2

k−ν .

Note that f(k) = k−ν is monotonically decreasing and therefore can be bounded by the integral

n/2∑
k=2

k−ν ≤
∫ n/2

1

1

xν
dx =

1

ν − 1
−
(

2

n

)ν−1
1

ν − 1
≤ 1

ν − 1

So overall we have that nνS2(n) ≤ 2a0 + 2ν+1 + 2(ν+1)

ν−1 implying that S2(n) ≤ Bn−ν with

B = 2a0 + 2ν+1 + 2(ν+1)

ν−1 .
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Induction step. We next use induction to prove the lemma for Sm(n) form > 2 and n ≥ m. Assume
the lemma holds for Sm, i.e., Am−1n−ν ≤ Sm(n) ≤ Bm−1n−ν for n ≥ m and A = a0 + 1 > 1,
we aim to prove this for Sm+1(n) for n ≥ m+ 1.

Sm+1(n) =

n∑
k1=0

k−ν1

∑
k2+...+km+1=n−k1

k−ν2 · · · k−νm+1.

Using the induction assumption, we obtain

Sm+1(n) =

n∑
k1=0

k−ν1

∑
k2+...+km+1=n−k1

k−ν2 · · · k−νm+1

≥ a0

∑
k2+...+km+1=n

k−ν2 · · · k−νm+1 +
∑

k2+...+km+1=n−1

k−ν2 · · · k−νm+1

≥ a0A
m−1n−ν +Am−1(n− 1)−ν ≥ (a0 + 1)mn−ν = Amn−ν .

Note that in the two sums above the induction assumption holds since n ≥ n−1 ≥ m. This concludes
the proof for the lower bound. The proof for the upper bound proceeds in a similar way.

Lemma C.5. Let k ∈ Nm and consider the series Sm(n) =
∑
|k|=n k

−ν with ν > 1 and the
convention 0−ν = a0 > 0. Then, for 2 ≤ n ≤ m, Sm(n) is bounded from above and below as
follows.

am−n0 An−1n−ν ≤ Sm(n) ≤ am−n0

(m · e
n

)n
Bn−1n−ν , (4)

where A,B are given in Lemma C.4. Note that for m = n the lower bound boils down to the lower
bound in Lemma C.4.

Proof. We next prove the lemma for 2 ≤ n ≤ m.

Sm(n) =
∑

k1+...+km=n

k−ν1 · ... · k−νm ≥ am−n0

∑
k1+...+kn=n

k−ν1 · ... · k−νn ≥ am−n0 An−1n−ν ,

where the last inequality holds from Lemma C.4 with n = m.

For the upper bound we have

Sm(n) =
∑

k1+..+km=n

k−ν1 · ... · k−νm ≤(1) am−n0

(
m

n

) ∑
k1+..+kn=n

k−ν1 · ... · k−νn

≤(2) am−n0

(
m

n

)
Bn−1n−ν ≤ am−n0

(m · e
n

)n
Bn−1n−ν ,

where (1) considers subsets of size n and sets the remaining orders ki to zero. Note that since n ≤ m
this covers all the options of satisfying the sum k1 + ..+ km = n (with some repetitions). (2) uses
the bound of Lemma C.4.

Lemma C.6. Let −k(L) be an hierarchical factorizable kernel of depth L and filter size q, where
−k(L)(t) =

∑
n≥0 bnt

n = c
∑

n≥0 an1
· .. · andtn with a0 > 0 and ani = n−νi for ν > 1. Then, the

Taylor coefficients of −k(L) satisfy
cA,nn

−ν ≤ bn ≤ cB,nn−ν

where

cA,n = cL

d∏
i=1

Āmin(p
(L)
i ,ni)

and cB,n = c̄L
∏d
i=1 cB(p

(L)
i , ni)

cB(p
(L)
i , ni) =


(
p
(L)
i ·e
ni

)ni
Bni , 1 ≤ ni < p

(L)
i

Bp
(L)
i , ni ≥ p(L)

i

with B ≥ Ā = 1 + 1
a0

and cL, c̄L are constants. p(L)
i denotes the number of paths from pixel j to the

output of the corresponding equivariant network.
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Proof. Since −k(L) is factorizable we can use the hierarchical stride q kernel −̃k
(L)

(t̃) and write:

−̃k
(L)

(t̃) =
∑
ñ≥0

b̃ñt
ñ =

∑
ñ≥0

añ1
· .. · añqL−1

tñ

with añi = ñ−νi . Moreover using the mapping S from lemma C.3 we have that −k(L)(t) =∑
n≥0 bnt

n with

bn =
∑
S
b̃ñ = c

∑
S

ñ−ν

where S = {ñ1, .., ñqL−1 |∀i = 1, .., d,
∑
i=S(j) ñj = ni}. Note that |{i|S(i) = j}| = p

(L)
j where

p
(L)
j denotes the number of paths from the input pixel to the output, therefore by combining Lemma

C.4 for the case of p(L)
j ≥ nj and Lemma C.5 for the case of p(L)

j ≤ nj we have that

c̃A,nn
−ν ≤ bn

where cA,n =
∏d
i=1 c(p

(L)
i , ni) and

c(p
(L)
i , ni) =

{
a
p
(L)
i −ni

0 (1 + a0)ni−1, ni < p
(L)
i

(1 + a0)p
(L)
i −1, ni ≥ p(L)

i

So all in all we get

c(p
(L)
i , ni) := (1 + a0)−1a

p
(L)
i

0 Amin(p
(L)
i ,ni)

with A = 1 + 1
a0

. This leads to

cA,n = cL

d∏
i=1

Amin(p
(L)
i ,ni)

where A = 1 + 1
a0

and cL = (1 + a0)−d · a
∑d
i=1 p

(L)
i

0 . The same set of steps using lemmas C.4 and
C.5 leads to the results of cB,n

Lemma C.7. Let −k(L) be a stride-1 hierarchical and factorizable of fixed depth L and filter size q,
where −k(L)(t) =

∑
n≥0 bnt

n = c
∑

n≥0 an1 · ... · andtn with a0 > 0, and ani = n−νi for ν > 1.

Then, the eigenvalues λk of −k(L) satisfy

λk ≥ cA,k
d∏
i=1
ni>0

k
−(ζ+2ν−3)
i

cA,k = cL

d∏
i=1

Amin(p
(L)
i ,ki),

with A = 1 + 1
a0

and p(L)
i denotes the number of paths from pixel i to the output of the corresponding

equivariant network.

Proof. Using Lemma C.6 we have

bn ≥c
d∏
i=1

Amin(pi,ni)n−νi .

Using Lemma 3.1 we have

λk =|Sζ−2|d
∑
s≥0

bk+2sλk
(
tk+2s

)
,

9



where we denote by λk
(
tk+2s

)
=
∏d
i=1 λki

(
tki+2si
i

)
. This implies that

λk ≥c|Sζ−2|d
∑
s≥0

d∏
i=1

Amin(pi,ki+2si)(ki + 2si)
−νλki

(
tki+2si
i

)
.

Applying the distributive law

λk ≥c|Sζ−2|d
d∏
i=1

∑
si≥0

Amin(pi,ki+2si)(ki + 2si)
−νλki

(
tki+2si
i

)
=

d∏
i=1

λki(
−ki),

where we define the kernel −ki(t) by the power series

−ki(t) =

∞∑
nj=0

c1/dAmin(pi,nj)n−νj tnj .

Therefore,

λk ≥ c
d∏
i=1

( ∞∑
ni=0

Amin(pi,ni)n−νi λki (tnii )

)
= c

d∏
i=1

( ∞∑
si=0

Amin(pi,ki+2si)(ki + 2si)
−νλki

(
tki+2si

))

≥c
d∏
i=1

Amin(pi,ki)

( ∞∑
si=0

(ki + 2si)
−νλki

(
tki+2si

))
.

Therefore, using Theorem 3.2 we get that

λk ≥ cA,k
d∏
i=1
ni>0

k
−(ζ+2ν−3)
i

cA,k = cL

d∏
i=1

Amin(p
(L)
i ,ki).

D Kernels associated with the equivariant network

In this section we prove Theorem 3.5 presented in Section 3.4.

Theorem D.1. Let −k(L) denote either CGPK-EqNet or CNTK-EqNet of depth L whose input includes
ζ channels, with receptive fieldR and with ReLU activation. Then,

1. −k(L) can be written as a power series, −k(L)(t) =
∑

n≥0 bnt
n with

c1
∏

i∈R,ni>0

n−νai ≤ bn ≤ c2
∏

i∈R,ni>0

n−νbi ,

2. The eigenvalues of −k(L) are bounded by

c3
∏
i∈R
ki>0

k
−(ζ+2νa−3)
i ≤ λk ≤ c4

∏
i∈R
ki>0

k
−(ζ+2νb−3)
i ,

where for CGPK-EqNet νa = 2.5 and νb = 1 + 3/(2d), while for CNTK-EqNet νa = 2.5 and
νb = 1 + 1/(2d) and c1, c2, c3 and c4 depend on L.

We begin by proving the lower bound for bn of CGPK-EqNet.
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Lemma D.2. Let −k(L) be a CGPK-EqNet of depth L, filter size q with ReLU activation Then, −k(L)

can be written as a power series, −k(L)(t) =
∑

n≥0 bnt
n with

c1n
−ν ≤ bn,

where c1 > 0 is constant if the receptive field of −k(L) includes n and zero otherwise and ν = 2.5.

Proof. We prove the lemma by induction on L. For L = 1

−k(1)(t) = κ1(t1) =

∞∑
n=0

ant
n
1 ,

where the equality on the right provides the power series of κ1. Consequently, for n = (n, 0, .., 0),
bn = an ∼ n−ν , and the receptive field contains only one pixel. Therefore, c1 is constant if
n = (n, 0, .., 0) and zero otherwise. For L > 1 we denote κ1(u) =

∑∞
n=0 anu

n and g(t) =
−kL−1(t) =

∑
n≥0 b̃nt

n with the induction assumption that b̃n ≥ cn−ν . Then we have that

−kL(t) = κ1

1

q

q−1∑
j=0

g(sjt)

 =

∞∑
n=0

an
qn

q−1∑
j=0

g(sjt)

n

=

∞∑
n=0

an
qn

∑
|k|=n

(
n

k

) q−1∏
i=0

gki(sit) =(1)
∑
k≥0

a|k|

q|k|

(
|k|
k

) q−1∏
i=0

∑
m≥0

b̃s−imts−im

ki

:=
∑
n≥0

bnt
n,

where (1) is due to the fact that g(sit) =
∑

m≥0 b̃m(sit)
m =

∑
m≥0 b̃s−imts−im. Next, using a

multivariate version of the Faá di Bruno formula (see, e.g., [8]), we have that:

bn =
∑
k≥0

a|k|

q|k|

(
|k|
k

) ∑
{n1,...,nq|

∑q
i=1 kini=n}

q−1∏
i=0

B̂ni,ki(.., b̃s−im, ..), (5)

where B̂n,k(·) denote ordinary multivariate Bell polynomials defined as

B̂n,k(xi1 , xi2 , ...) =
∑
J̄n,k

k!

ji1 !ji2 !...
x
ji1
i1
x
ji2
i2
...

and J̄n,k = {ji1 + ji2 + ... = k ∈ R; ji1 i1 + ji2 i2 + ... = n ∈ Rd}. Since all terms in (5)
are non-negative, it suffices to choose one term to get a lower bound. Specifically, we choose
k = (1, 1.., 1) ∈ Rq and n1,nq such that n1 + nq = n, nT1 nq = 0, and ni = 0 for i /∈ {1, q}.
Noting that |k| = q, B̂n1,1 = b̃n1

and B̂nq,1 = b̃nq , and B̂0,1 = b0, we obtain

bn ≥
aq
qq
q! b̃q−2

0 b̃n1
b̃nq = Cq b̃n1

b̃nq ≥(1) Cqc
2n−ν ,

where Cq = qq

q! aq b̃
q−2
0 and (1) is due to the induction hypothesis.

Corollary D.3. The bound in Lemma D.2 holds also for CNTK-EqNet.

Proof. Let −k(L) be a CNTK-EqNet. Denote by bn(−k(L)) as the power series coefficients of −k(L).
Then, by definition,

Σ
(l)
i,j(x, z) = κ1

(
1

q

q−1∑
r=0

Σ̃
(l−1)
i+r,j+r(x, z)

)

Θ
(l)
i,j(x, z) =

1

q

q−1∑
r=0

[
κ0

(
Σ̃

(l−1)
i+r,j+r(x, z)

)
Θ̃

(l−1)
i+r,j+r(x, z) + Σ̃

(l)
i+r,j+r(x, z)

]
,

Since κ0 and κ1 have only positive power series coefficients it holds that bn(−k(L)) = bn(Θ
(L)
i,i ) ≥

cσ
q bn(Σ̃

(L)
i,i ). Note that Σ̃

(L)
i,i is the CGPK-EqNet of L layers and therefore we can apply the lower

bound of Lemma D.2 to get bn(−k(L)) ≥ cσ
q c1n

−v .
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Next we give a general upper bound. We will use the following lemma: To prove the above lemma
we will use the following supporting lemma

Lemma D.4. Let −k(L)(t) be either CGPK-EqNet or CNTK-EqNet of depth L with filter size q.
Let KFC

L (u) be a fully connected kernel (NTK or GPK receptively) of one variable u. Then,
plugging t1 = t2.. = ti = u to −k(L)(t) gives that −k(L)(t) = KFC

L (u), where KFC
L (u) denotes the

corresponding CGPK or CNTK kernel of depth L for a fully connected network.

Proof. We prove the lemma for CGPK. The proof for CNTK is similar. We perform induction on L .
For L = 1 the claim is trivial. For L > 1 plugging t1 = ... = ti = u to −k(L)(t) together with the
induction hypothesis gives us

−k(L)(t) = κ1

cσ
q

q−1∑
j=0

−k(L−1)(sjt)


= κ1

cσ
q

q−1∑
j=0

KFC
L−1(u)

 = κ1(KFC
L−1(u)) = KFC

L (u).

Lemma D.5. Let −k(L) be either CNTK-EqNet or CGPK-EqNet of depth L with filter size q and
ReLU activation. Then, −k(L) can be written as a power series, −k(L)(t) =

∑
n≥0 bnt

n, with,∑
|n|=k bn = Θ(ak) where ak = k−ν with ν = 2.5 for CPGK and ν = 1.5 for CNTK.

Proof. Let κ(t) =
∑∞
n=0 ant

n. Using results by [3] (Theorem 8) we have that KFC
L (t) =∑∞

n=0 ãnt
n where KFC

L (t) is the NTK or GPK model for a FC network and ãn = Θ(n−ν) for
ν = 2.5, ν = 1.5 for GPK and NTK respectively. Moreover, we have that

−k(L)(t) =
∑
n≥0

bnt
n.

This, together with Lemma D.4 and plugging t1 = t2 = .. = tl = u, yields

−k(L)(t) =
∑
n

bnt
n =

∑
n

bnu
|n| =

∞∑
k=0

uk
∑
|n|=k

bn.

The uniqueness of power series further implies∑
|n|=k

bn = ãk = Θ(k−ν),

which concludes the proof.

Next we upper bound bn (Lemma D.7). We begin with a simple supporting lemma
Lemma D.6. For any d ≥ 1 positive (even) numbers c1, .., cd ≥ 1, denote the two set of indices

I1 = {(i1, .., id) ∈ N+ × ..× N+|ck/2 ≤ ik ≤ ck}
I2 = {(i1, .., id) ∈ N+ × ..× N+|(i1 + ..+ id) ∈ [c1/2 + ..+ cd/2, c1 + ..+ cd]}.

Then I1 ⊆ I2.

Proof. Let (i1, .., id) ∈ I1. Then,

c1/2 + ..+ cd/2 ≤ i1 + ..+ id ≤ c1 + ..+ cd,

implying that (i1, .., id) ∈ I2.

Lemma D.7. Let −k(t) =
∑

n≥0 bnt
n such that

∑
|n|=n bn = an ∼ n−ν with ν > 1. Then, there

exists c > 0 such that bn ≤ cn−( ν−1
d +1). The implication for CNTK-EqNet (ν = 1.5) and for

CGPK-EqNet (ν = 2.5) can appear in a separate lemma.
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Proof. Let n1, .., nd � 1 be large enough and denote by n̄ =
∑d
j=1 nj . Denote by ak = c · k−ν . By

Lemma D.5 we have that
∑
|n|=k bn ≤ Cak . Therefore,

n̄∑
k=n̄/2

∑
|n|=k

bn

 =

n̄∑
|n|=n̄/2

bn ≤ C
n̄∑

k=n̄/2

ak.

Here we can estimate the RHS using an integral and get

n̄∑
k=n̄/2

ak ≈
∫ n̄

n̄/2

1

xν
dx = (ν − 1)(2(ν−1) − 1)n̄−(ν−1).

on the other hand, by denoting

I1 = {n̄ ∈ N+ × ..× N+|nj/2 ≤ n̄j ≤ nj}
I2 = {n̄ ∈ N+ × ..× N+||n̄| ∈ [n1/2 + ..+ nd/2, n1 + ..+ nd]},

by Lemma D.6 and because bn ≥ 0 we have that

∑
n∈I1

bn ≤
∑
n∈I2

bn =

|n|=n̄∑
|n|=n̄/2

bn ≤ C
k=n̄∑
k=n̄/2

ak

Moreover |I1| = 1
2d
n1 · ... · nd· and the smallest element in the sum is minn∈I1{bn} = bn1,..,nd .

Therefore,

1

2d
n1 · .. · ndbn1,..,nd ≤

∑
n∈I1

bn ≤ (ν − 1)(2(ν−1) − 1)n̄−(ν−1),

implying that

bn1,..,nd ≤
(ν − 1)(2(ν−1) − 1)(n1 + ..+ nd)

−(ν−1)

1
2d

(n1 · .. · nd)
.

Now applying the inequality of means we obtain (n1 + ..+ nd)/d ≥ (n1 · ... · nd)
1
d , and we finally

get that

bn1,..,nd ≤ d2d(ν − 1)(2(ν−1) − 1)(n1 · .. · nd)−( ν−1
d +1).

E Trace and GAP kernels

In this section we prove results presented in Section 3.5. We prove Theorem 3.7.

Theorem E.1. Let −k be a multi-dot-product kernel with Mercer’s decomposition as in (1), and let
kTr and kGAP respectively be its trace and GAP versions. Then,

1. kTr(x, z) =
∑

k,j λ
Tr
k Yk,j(x)Yk,j(z) with

λTr
k =

1

d

d−1∑
i=0

λsik (6)

Where λk denote the eigenvalues of −k.

2. kGAP(x, z) =
∑

k,j λ
Tr
k Ỹk,j(x)Ỹk,j(z) with

Ỹk,j(x) =
1√
d

d−1∑
i=0

Ysik,sij(x).
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Proof. (1) Let kTr(x, z) be a trace kernel. By definition

kTr(x, z) =
1

d

d−1∑
i=0

−k(six, siz),

where −k is a multi-dot-product kernel, with Mercer’s decomposition

−k(x, z) =
∑
k,j

λkYk,j(x)Yk,j(z).

Note that −k(six, siz) has the same eigenfunctions as −k(x, z) with eigenvalues λsik. So we get

kTr(x, z) =
1

d

d−1∑
i=0

−k(six, siz) =
1

d

d−1∑
i=0

∑
k,j

λsikYk,j(x)Yk,j(z)

=
∑
k,j

1

d

d−1∑
i=0

λsikYk,j(x)Yk,j(z) =
∑
k,j

Yk,j(x)Yk,j(z)
1

d

d−1∑
i=0

λsik.

Therefore, we have

λTr
k =

1

d

d−1∑
i=0

λsik.

(2) Let kGAP(x, z) be GAP kernel. By definition we have that

kGAP(x, z) =
1

d2

d−1∑
i=0

d−1∑
j=0

−k(six, sjz)

Where −k is a multi-dot-product kernel. Using Mercer’s decomposition (1), we have

−k(six, sjz) =
∑
k,j

λkYk,j(six)Yk,j(sjz) =
∑
k,j

λkYs−ik,s−ij(x)Ys−jk,s−jj(z).

Therefore,

kGAP(x, z) =
1

d2

d−1∑
i=0

d−1∑
j=0

−k(six, sjz) =
1

d2

d−1∑
i=0

d−1∑
j=0

∑
k,j

λkYs−ik,s−ij(x)Ys−jk,s−jj(z)

=
∑
k,j

1

d2
λk

d−1∑
i=0

d−1∑
j=0

Ys−ik,s−ij(x)Ys−jk,s−jj(z)

=
∑
k,j

1

d2
λk

(
d−1∑
i=0

Ys−ik,s−ij(x)

)d−1∑
j=0

Ys−jk,s−jj(z)

 .

We can denote Ỹk,j(x) = 1√
d

∑d−1
i=0 Ysik,sij(x). Note that Ỹk,j(x) is invariant to all circular shifts

of indices. So we further denote by k/S the set of indices k modulu the set of circular shifts
s0, s1, .., sd−1 and write the last expression as

kGAP(x, z) =
∑
k

∑
j

1

d
λkỸk,j(x)Ỹk,j(z) =

∑
k/S

∑
j/S

(
1

d

d−1∑
i=0

λsik

)
Ỹk,j(x)Ỹk,j(z)

=
∑
k/S

∑
j/S

λTr
k Ỹk,j(x)Ỹk,j(z).

We conclude that the eigenfunctions are Ỹk,j(x), and the eigenvalues are the same as λTr. Moreover,
note that for any k,k′ such that ∀i, k 6= sik

′ it holds that ∀i Yk,j(x)⊥Ysik′,j(x). Therefore,
Ỹk,j(x)⊥Ỹk′,j(x), implying that {Ỹk,j(x)} form an orthonormal basis.
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