- Supplementary Material On the Spectral Bias of Convolutional Neural Tangent and Gaussian Process Kernels

Amnon Geifman ${ }^{1} \quad$ Meirav Galun ${ }^{1} \quad$ David Jacobs $^{2} \quad$ Ronen Basri ${ }^{1}$
${ }^{1}$ Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
\{amnon.geifman, meirav.galun, ronen.basri\}@weizmann.ac.il
${ }^{2}$ Department of Computer Science, University of Maryland, College Park, MD
djacobs@cs.umd.edu

A Multi-dot product kernels

In this section we prove results presented in Section 3.1
Lemma A.1. CGPK-EqNet and CNTK-EqNet are multi-dot product kernels.
Proof. The proof follows directly from the derivation of the kernels in Section 2.2. Note that CGPK-EqNet is given by $\tilde{\Sigma}_{11}^{(L)}$ and CNTK-EqNet by $\tilde{\Theta}_{11}^{(L)}$, and their recursive definition only involve elements of $\tilde{\Sigma}^{(l)}$ and $\tilde{\Theta}^{(l)}$ in which $i=j$. Moreover, by definition the diagonal elements of $\Sigma^{(0)}$ and $\Theta^{(0)}$ are $\left\langle\mathbf{x}^{(i)}, \mathbf{z}^{(i)}\right\rangle$ for $i \in[d]$, implying the lemma.

A. 1 Multivariate Gegenbauer Polynomials

We next extend basic results derived for functions on the sphere to the multisphere $\mathbb{M} \mathbb{S}(\zeta, d)$. These results will assist us later to prove Mercer's decomposition for multi-dot product kernels in the subsequent section.
We consider the set of Gegenbauer polynomials $\left\{Q_{k}^{(\zeta)}(t)\right\}_{k \geq 0}$ that are orthogonal in $L_{2}[-1,1]$ w.r.t. the weight function $\left(1-t^{2}\right)^{(\zeta-3) / 2}$ and omit the superscript. Inspired by [4], we define multivariate Gegenbauer polynomials, using facts from harmonic analysis on the sphere. (See references [6] 7] for background on spherical harmonics and Gegenbauer polynomials). We denote by $\left|\mathbb{S}^{\zeta-1}\right|$ the area of the sphere $\mathbb{S}^{\zeta-1}$.
Definition A.2. For $k \geq 0$, let $Q_{k}(t):[-1,1] \rightarrow \mathbb{R}$ be the (univariate) Gegenbauer polynomial of degree k. Then, the multivariate Gegenbauer polynomial of order \mathbf{k} is $Q_{\mathbf{k}}(\mathbf{t}):[-1,1]^{d} \rightarrow \mathbb{R}$, defined by

$$
Q_{\mathbf{k}}(\mathbf{t})=Q_{k_{1}}\left(t_{1}\right) \cdot Q_{k_{2}}\left(t_{2}\right) \cdot \ldots \cdot Q_{k_{d}}\left(t_{d}\right)
$$

These multivariate Gegenbauer polynomials enjoy several properties that they inherit from their univariate counterpart.
Lemma A.3. Let $P_{k}(\mathbf{t})$ denote the space of polynomials of degree $\leq k$ with variables $\mathbf{t} \in[-1,1]^{d}$. Then, the set $\left\{Q_{\mathbf{i}}(\mathbf{t})\right\}_{\mathbf{i}=0}^{\mathbf{i} \mid=k}$ is an orthogonal basis of $P_{k}(\mathbf{t})$ w.r.t. the weight function $\left(1-t^{2}\right)^{(\zeta-3) / 2}$ (with $\mathbf{i}=\left(i_{1}, \ldots, i_{d}\right)$ and $\left.|\mathbf{i}|=i_{1}+\ldots+i_{d}\right)$.

Proof. Let $p(\mathbf{t})=\sum_{\mathbf{i}=0}^{|\mathbf{i}|=k} a_{\mathbf{i}} \mathbf{t}^{\mathbf{i}} \in P_{k}(\mathbf{t})$. Since the univariate Gegenbauer polynomials form an orthogonal basis, for every $0 \leq n_{i} \leq k$ and $i \in[d]$ we can write $t_{i}^{n_{i}}=\sum_{j=0}^{n_{i}} a_{j}^{\left(n_{i}\right)} Q_{j}\left(t_{i}\right)$, where
$a_{j}^{\left(n_{i}\right)} \in \mathbb{R}$, and the superscript is used to emphasize that the expansion depends on n_{i}. Therefore, $p(\mathbf{t})$ can be written as

$$
\begin{aligned}
p(\mathbf{t}) & =\sum_{\mathbf{n}=0}^{|\mathbf{n}|=k} a_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}=\sum_{\mathbf{n}=0}^{|\mathbf{n}|=k} a_{\mathbf{n}}\left(\sum_{j=0}^{n_{1}} a_{j}^{\left(n_{1}\right)} Q_{j}\left(t_{1}\right)\right) \cdot . .\left(\sum_{j=0}^{n_{d}} a_{j}^{\left(n_{d}\right)} Q_{j}\left(t_{d}\right)\right) \\
& ={ }^{(1)} \sum_{\mathbf{n}=0}^{|\mathbf{n}|=k} \tilde{a}_{\mathbf{n}} Q_{n_{1}}\left(t_{1}\right) Q_{i_{2}}\left(t_{2}\right) \cdot \ldots \cdot Q_{n_{d}}\left(t_{d}\right)=\sum_{\mathbf{n}=0}^{|\mathbf{n}|=k} \tilde{a}_{\mathbf{n}} Q_{\mathbf{n}}(\mathbf{t}),
\end{aligned}
$$

where ${ }^{(1)}$ is obtained by applying the distributive law with the fact that $n_{1}, . ., n_{d} \leq k$. finally, $\tilde{a}_{\mathbf{i}}$ can be computed explicitly from a_{i} and $\left\{a_{j}^{\left(n_{i}\right)}\right\}$.

We have shown that $P_{k}(\mathbf{t})$ is spanned by the set $\left\{Q_{\mathbf{i}}(\mathbf{t})\right\}_{\mathbf{i}=0}^{\mathbf{i} \mid=k}$. Next, we show that this set is orthogonal with respect to the measure $\prod_{r=1}^{d}\left(\left(1-t_{r}^{2}\right)^{\frac{\zeta-3}{2}}\right)$. Let \mathbf{i} and \mathbf{j} be two vectors of indices. Then, we have that

$$
\begin{aligned}
& \int_{[-1,1]^{d}} Q_{\mathbf{i}}(\mathbf{t}) Q_{\mathbf{j}}(\mathbf{t}) \prod_{r=1}^{d}\left(1-t_{r}^{2}\right)^{\frac{\zeta-3}{2}} d t_{1} \cdot \ldots \cdot d t_{d}=\prod_{r=1}^{d}\left(\int_{[-1,1]} Q_{i_{r}}\left(t_{r}\right) Q_{j_{r}}\left(t_{r}\right)\left(1-t_{r}^{2}\right)^{\frac{\zeta-3}{2}} d t_{r}\right) \\
& =\left(\frac{\left|\mathbb{S}^{\zeta-1}\right|}{\left|\mathbb{S}^{\zeta-2}\right|}\right)^{d}\left(\prod_{r=1}^{d} N\left(\zeta, i_{r}\right)\right)^{-1} \delta_{i_{1}, j_{1}} \cdot \delta_{i_{2}, j_{2}} \cdot \ldots \cdot \delta_{i_{d}, j_{d}}
\end{aligned}
$$

where the last equality is due to the orthogonality property of the univariate Gegenbauer polynomials. This concludes the proof.

The relation of the multivariate Gegenbauer polynomials to the SH -products is formulated in the following lemma.
Lemma A.4. Let $\mathbf{x}, \mathbf{z} \in \mathbb{M} \mathbb{S}(\zeta, d)$. It holds that
$Q_{\mathbf{k}}\left(\left\langle\mathbf{x}^{(1)}, \mathbf{z}^{(1)}\right\rangle, . .,\left\langle\mathbf{x}^{(i)}, \mathbf{z}^{(j)}\right\rangle, . .,\left\langle\mathbf{x}^{(d)}, \mathbf{z}^{(d)}\right\rangle\right)=\left|\mathbb{S}^{\zeta-1}\right|^{d}\left(\prod_{r=1}^{d} N\left(q, k_{r}\right)\right)^{-1} \sum_{\mathbf{j}: j_{r} \in\left[N\left(\zeta, k_{r}\right)\right]} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z})$,
where $Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})$ is homogeneous polynomial of degree $k_{1}+. .+k_{d} . Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})$ is further given by SH-products, i.e., $Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})=\prod_{i=1}^{d} Y_{k_{i}, j_{i}}\left(\mathbf{x}^{(i)}\right)$, where $Y_{k_{i} j_{i}}$ are spherical harmonics in $\mathbb{S}^{\zeta-1}$, and $N\left(\zeta, k_{i}\right)$ are the number of harmonics of frequency k_{i} in $\mathbb{S}^{\zeta-1}$.

Proof. By the definition of the multivariate Gegenbauer polynomials and the univariate addition theorem [9] we get

$$
\begin{aligned}
& Q_{\mathbf{k}}\left(\left\langle\mathbf{x}^{(1)}, \mathbf{z}^{(1)}\right\rangle, \ldots,\left\langle\mathbf{x}^{(i)}, \mathbf{z}^{(j)}\right\rangle, \ldots,\left\langle\mathbf{x}^{(d)}, \mathbf{z}^{(d)}\right\rangle\right)=Q_{k_{1}}\left(\left\langle\mathbf{x}^{(1)}, \mathbf{z}^{(1)}\right\rangle\right) \cdot \ldots \cdot Q_{k_{d}}\left(\left\langle\mathbf{x}^{(d)}, \mathbf{z}^{(d)}\right\rangle\right) \\
& =\left(\frac{\left|\mathbb{S}^{\zeta-1}\right|}{N\left(\zeta, k_{1}\right)} \sum_{j_{1}=1}^{N\left(\zeta, k_{1}\right)} Y_{k_{1}, j_{1}}\left(\mathbf{x}^{(1)}\right) Y_{k_{1}, j_{1}}\left(\mathbf{z}^{(1)}\right)\right) \cdot \ldots \cdot\left(\frac{\left|\mathbb{S}^{\zeta-1}\right|}{N\left(\zeta, k_{d}\right)} \sum_{j_{d}=1}^{N\left(\zeta, k_{d}\right)} Y_{k_{d}, j_{d}}\left(\mathbf{x}^{(d)}\right) Y_{k_{d}, j_{d}}\left(\mathbf{z}^{(d)}\right)\right) \\
& =\left(\prod_{i=1}^{d} \frac{\left|\mathbb{S}^{\zeta-1}\right|}{N\left(\zeta, k_{i}\right)}\right) \sum_{\mathbf{j}=(1, \ldots, 1)}^{\mathbf{j}=\left(N\left(\zeta, k_{1}\right), \ldots, N\left(\zeta, k_{d}\right)\right)} \prod_{i=1}^{d} Y_{k_{i}, j_{i}}\left(\mathbf{x}^{(i)}\right) Y_{k_{i}, j_{i}}\left(\mathbf{z}^{(i)}\right) \\
& :=\left(\prod_{i=1}^{d} \frac{\left|\mathbb{S}^{\zeta-1}\right|}{N\left(\zeta, k_{i}\right)}\right) \sum_{\mathbf{j}: j_{i} \in\left[N\left(\zeta, k_{i}\right)\right]} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z}) .
\end{aligned}
$$

Note that the homogeneity of the SH-products $Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})$ is a direct result of the homogeneity of the spherical harmonics $Y_{k_{i}, j_{i}}$.

Lemma A.5. The set $\left\{Y_{\mathbf{k}, \mathbf{j}}\right\}$ are orthonormal w.r.t uniform measure in $\mathbb{M} \mathbb{S}(\zeta, d)$.

Proof. We have that

$$
\begin{aligned}
\int_{\mathbb{M}(\zeta, d)} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}^{\prime}, \mathbf{j}^{\prime}}(\mathbf{x}) d \mathbf{x} & =\int_{\mathbb{M S}(\zeta, d)}\left(\prod_{i=1}^{d} Y_{k_{i}, j_{i}}\left(\mathbf{x}^{(i)}\right)\right)\left(\prod_{i=1}^{d} Y_{k_{i}^{\prime}, j_{i}^{\prime}}\left(\mathbf{x}^{(i)}\right)\right) d \mathbf{x} \\
& =\prod_{i=1}^{d}\left(\int_{\mathbb{S} \zeta-1} Y_{k_{i}, j_{i}}\left(\mathbf{x}^{(i)}\right) Y_{k_{i}^{\prime}, j_{i}^{\prime}}\left(\mathbf{x}^{(i)}\right) d \mathbf{x}^{(i)}\right)=\prod_{i=1}^{d} \delta_{k_{i}, k_{i}^{\prime}} \cdot \delta_{j_{i}, j_{i}^{\prime}}
\end{aligned}
$$

A. 2 Mercer's decomposition

In this section we prove that the eigenfunctions of multi dot-product kernels consist of products of spherical harmonics. We further provide a way to calculate the eigenvalues using products of Gegenbauer polynomials.
Lemma A.6. Let \boldsymbol{k} be a multi-dot product kernel. Then, the eigenfunctions of $\boldsymbol{k}(\mathbf{x}, \cdot)$ w.r.t uniform measure on $\mathbb{M S}(\zeta, d)$ are the SH-products. Namely, the eigenfunctions are

$$
\left\{Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})=\prod_{i=1}^{d} Y_{k_{i} j_{i}}\left(\mathbf{x}^{(i)}\right)\right\}_{\mathbf{k} \geq 0, j_{i} \in\left[N\left(q, k_{i}\right)\right]}
$$

where $Y_{k_{i} j_{i}}$ are the Spherical Harmonics in $\mathbb{S}^{\zeta-1}$, and $N\left(\zeta, k_{i}\right)$ are the number of harmonics of frequency k_{i} in $\mathbb{S}^{\zeta-1}$. The eigenvalues, $\lambda_{\mathbf{k}}$, can be calculated using products of (univariate) Gegenbauer polynomials as follows,

$$
\lambda_{\mathbf{k}}=C(\zeta, d) \int_{[-1,1]^{d}} \boldsymbol{k}(\mathbf{t}) \prod_{i=1}^{d} Q_{k_{i}}\left(t_{i}\right)\left(1-t_{i}^{2}\right)^{\frac{\zeta-3}{2}} d \mathbf{t}
$$

where $\left\{Q_{k}(t)\right\}$ is the set of orthogonal Gegenbauer polynomials w.r.t the weights $\left(1-t_{i}^{2}\right)^{\frac{\zeta-3}{2}}$, and $C(\zeta, d)$ is a constant that depends on both ζ and d.

Proof. Let \boldsymbol{k} be a multi-dot product kernel. By definition for such kernel, there exists a multivariate analytic function κ such that $\boldsymbol{k}^{(L)}(\mathbf{x}, \mathbf{z})=\kappa\left(\left\langle\mathbf{x}^{(1)}, \mathbf{z}^{(1)}\right\rangle, \ldots,\left\langle\mathbf{x}^{(d)}, \mathbf{z}^{(d)}\right\rangle\right)$. Using lemma A.3. $\left\{Q_{\mathbf{k}}\right\}$ form an orthogonal basis in $[-1,1]^{d}$. Therefore, it can be readily shown (similar to [9]) that, κ can be written as
$\kappa\left(t_{1}, . ., t_{d}\right):=\kappa(\mathbf{t})=\sum_{\mathbf{k} \geq 0}\left(\prod_{i=1}^{d} N\left(\zeta, k_{i}\right) \frac{\left|\mathbb{S}^{\zeta-2}\right|}{\left|\mathbb{S}^{\zeta-1}\right|}\right) Q_{\mathbf{k}}(\mathbf{t}) \int_{[-1,1]^{d}} \kappa(\tilde{\mathbf{t}}) Q_{\mathbf{k}}(\tilde{\mathbf{t}}) \prod_{i=1}^{d}\left(1-\tilde{t}_{i}^{2}\right)^{\frac{\zeta-3}{2}} d \tilde{\mathbf{t}}:=\sum_{\mathbf{k} \geq 0} \lambda_{\mathbf{k}} Q_{\mathbf{k}}(\mathbf{t})$.
Lemma A. 4 implies

$$
Q_{\mathbf{k}}\left(\left\langle\mathbf{x}^{(1)}, \mathbf{z}^{(1)}\right\rangle, . .,\left\langle\mathbf{x}^{(i)}, \mathbf{z}^{(j)}\right\rangle, . .,\left\langle\mathbf{x}^{(d)}, \mathbf{z}^{(d)}\right\rangle\right)=\frac{\left|\mathbb{S}^{\zeta-1}\right|^{d}}{\prod_{i=1}^{d} N\left(\zeta, k_{i}\right)} \sum_{\mathbf{j}: j_{i} \in\left[N\left(\zeta, k_{i}\right)\right]} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z}),
$$

yielding

$$
\boldsymbol{k}(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{k} \geq 0} \lambda_{\mathbf{k}} \sum_{\mathbf{j}: j_{i} \in\left[N\left(\zeta, k_{i}\right)\right]} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z}) .
$$

Since $\left\{Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})\right\}$ are orthonormal w.r.t. the uniform measure in $\mathbb{M S}(\zeta, d)$ (Lemma A.5) we obtain that $\left\{Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x})\right\}$ are the eigenfunctions of $\boldsymbol{k}^{(L)}$, with the corresponding eigenvalues $\left\{\lambda_{\mathbf{k}}=\right.$ $\left.\left|\mathbb{S}^{\zeta-2}\right|^{d} \int_{[-1,1]^{d}} \boldsymbol{k}(\mathbf{t}) \prod_{i=1}^{d} Q_{k_{i}}\left(t_{i}\right)\left(1-t_{i}^{2}\right)^{\frac{\zeta-3}{2}} d \mathbf{t}\right\}$.

A. 3 Proof of Lemma 3.1

Lemma A.7. Let \boldsymbol{k} be a multi-dot product kernel with the power series given in (2), where $\mathbf{x}^{(i)}, \mathbf{z}^{(i)} \in$ $\mathbb{S}^{\zeta-1}$ respectively are pixels in \mathbf{x}, \mathbf{z}. Then, the eigenvalues $\lambda_{\mathbf{k}}(\boldsymbol{k})$ of \boldsymbol{k} are given by $\lambda_{\mathbf{k}}(\boldsymbol{k})=$
$\left|\mathbb{S}^{\zeta-2}\right|^{d} \sum_{\mathbf{s} \geq 0} b_{\mathbf{k}+2 \mathbf{s}} \prod_{i=1}^{d} \lambda_{k_{i}}\left(t^{k_{i}+2 s_{i}}\right)$, where $\left|\mathbb{S}^{\zeta-2}\right|$ is the surface area of $\mathbb{S}^{\zeta-2}$, and $\lambda_{k}\left(t^{n}\right)$ is the k 'th eigenvalue of t^{n}, given by

$$
\lambda_{k}\left(t^{n}\right)=\frac{n!}{(n-k)!2^{k+1}} \frac{\Gamma\left(\frac{\zeta-1}{2}\right) \Gamma\left(\frac{n-k+1}{2}\right)}{\Gamma\left(\frac{n-k+\zeta}{2}\right)}
$$

if $n-k$ is even and non-negative, while $\lambda_{k}\left(t^{n}\right)=0$ otherwise, and Γ is the Gamma function.
Proof. The proof follows the linearity of the integral operator. Let

$$
\begin{equation*}
\boldsymbol{k}(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}}\left\langle\mathbf{x}^{(1)}, \mathbf{z}^{(1)}\right\rangle^{n_{1}} \cdot \ldots \cdot\left\langle\mathbf{x}^{(d)}, \mathbf{z}^{(d)}\right\rangle^{n_{d}} \tag{1}
\end{equation*}
$$

and denote by $C(\zeta, d)=\left|\mathbb{S}^{\zeta-2}\right|^{d}$. Following Lemma A. 6 the eigenvalues of \boldsymbol{k} are given by

$$
\begin{aligned}
\lambda_{\mathbf{k}} & =C(\zeta, d) \int_{[-1,1]^{d}} \boldsymbol{k}(\mathbf{t}) \prod_{i=1}^{d} Q_{k_{i}}\left(t_{i}\right)\left(1-t_{i}^{2}\right)^{\frac{\zeta-3}{2}} d t_{1} \ldots d t_{d} \\
& =C(\zeta, d) \int_{[-1,1]^{d}} \sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}} \prod_{i=1}^{d} Q_{k_{i}}\left(t_{i}\right)\left(1-t_{i}^{2}\right)^{\frac{\zeta-3}{2}} d t_{1} \ldots d t_{d} \\
& =C(\zeta, d) \sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \prod_{i=1}^{d}\left(\int_{[-1,1]} t_{i}^{n} Q_{k_{i}}\left(t_{i}\right)\left(1-t_{i}^{2}\right)^{\frac{\zeta-3}{2}} d t_{i}\right)=C(\zeta, d) \sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \prod_{i=1}^{d} \lambda_{k_{i}}\left(t^{n_{i}}\right) .
\end{aligned}
$$

Also note from [1] that $\lambda_{k}\left(t^{n}\right)=0$ whenever $n-k$ is either odd or negative, implying the statement of the lemma.

A consequence of the lemma above is that the eigenvalues of a kernel k can be bounded by the eigenvalues of other kernels if the power series coefficients of k are bounded by the respective coefficients of the other kernels. We summarize this in the following corollary:
Corollary A.8. Let $\boldsymbol{k}, \boldsymbol{k}^{\text {upper }}, \boldsymbol{k}^{\text {lower }}: \mathbb{M S}(\zeta, d) \rightarrow \mathbb{R}$ be multi-dot product kernels. Assuming that for $\mathbf{t} \in[-1,1]^{d}$,

$$
\begin{array}{r}
\boldsymbol{k}(\mathbf{t})=\sum_{\mathbf{n}} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}} \\
\boldsymbol{\kappa}^{\text {upper }}(\mathbf{t})=\sum_{\mathbf{n}} b_{\mathbf{n}}^{\text {upper }} \mathbf{t}^{\mathbf{n}} \\
\boldsymbol{k}^{\text {lower }}(\mathbf{t})=\sum_{\mathbf{n}} b_{\mathbf{n}}^{\text {lower }} \mathbf{t}^{\mathbf{n}}
\end{array}
$$

and suppose there exists \mathbf{k}_{0} such that for all $\mathbf{n} \geq \mathbf{k}_{0}, 0 \leq c_{1} b_{\mathbf{n}}^{\text {lower }} \leq b_{\mathbf{n}} \leq c_{2} b_{\mathbf{n}}^{\text {upper }}$, with $c_{1}, c_{2}>0$. Then, for all $\mathbf{k} \geq \mathbf{k}_{0}$,

$$
\begin{equation*}
c_{1} \lambda_{\mathbf{k}}\left(\boldsymbol{k}^{\text {lower }}\right) \leq \lambda_{\mathbf{k}}(\boldsymbol{\kappa}) \leq c_{2} \lambda_{\mathbf{k}}\left(\boldsymbol{\kappa}^{\text {upper }}\right) \tag{2}
\end{equation*}
$$

This corollary is an immediate result from Lemma 3.1.

B Factorizable kernels

In this section we prove results presented in Section 3.2, We prove Theorem 3.2, which determines the eigenvalues of factorizable kernels whose power series coefficients decay at a polynomial rate. The following supporting lemma proves the theorem for $d=1$.
Lemma B.1. Let $\tilde{\kappa}(t)=\sum_{n=0}^{\infty} \tilde{a}_{n} t^{n}$ where $\tilde{a}_{n}=O\left(n^{-\nu}\right)$ with $\nu>1$ and not integer. Then, the eigenvalues of $\tilde{\kappa}$ w.r.t. the uniform measure in $\mathbb{S}^{\zeta-1}$ are

$$
\lambda_{k}=\Theta\left(k^{-(\zeta+2 \nu-3)}\right) .
$$

Proof. By applying Corollary A.8 with $d=1$ we have that if $f(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$ and $g(t)=$ $\sum_{n=0}^{\infty} b_{n} t^{n}$ with $c_{1} a_{n} \leq b_{n} \leq c_{2} a_{n}$ then it holds that $\lambda_{k}(g)=\Theta\left(\lambda_{k}(f)\right)$. It is therefore enough to find $f(t)=\sum_{n=0}^{\infty} \tilde{a}_{n} t^{n}$ where $\tilde{a}_{n}=O\left(n^{-\nu}\right)$ and then calculate its eigenvalues. By [5] (Thm. VI.1, page 381), the function $f(t)=(1-t)^{\nu-1}$, where $\nu>1$ is non-integer, satisfies $f(t)=\sum_{n=0}^{\infty} \tilde{a}_{n} t^{n}$ with $\tilde{a}_{n}=O\left(n^{-\nu}\right)$. Moreover, according to [2] (Thm. 7, page 17), the eigenvalues of $f(t)=$ $(1-t)^{\nu-1}$ in $\mathbb{S}^{\zeta-1}$ are

$$
\lambda_{k}(f)=c_{1} k^{-(\zeta+2 \nu-3)}
$$

which concludes the proof.

Relying on the lemma, we can now prove Theorem 3.2 .
Theorem B.2. Let \boldsymbol{k} be a factorizable multi-dot product kernel, and let $\mathcal{R} \subseteq[d]$ denote its receptive field. Suppose that \boldsymbol{k} can be written as a multivariate power series, $\boldsymbol{k}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ with

$$
b_{\mathbf{n}} \sim c \prod_{i \in \mathcal{R}, n_{i}>0} n_{i}^{-\nu}
$$

with constants $c>0$,non-integer $\nu>1$, and $b_{\mathbf{n}}=0$ if $n_{i}>0$ for any $i \notin \mathcal{R}$. Then the eigenfunctions of \boldsymbol{k} w.r.t. the uniform measure are the SH-products, and its eigenvalues $\lambda_{\mathbf{k}}(\boldsymbol{k})$ satisfy

$$
\lambda_{\mathbf{k}} \sim \tilde{c} \prod_{i \in \mathcal{R}, k_{i}>0} k_{i}^{-(\zeta+2 \nu-3)}
$$

where $\mathbf{k} \in \mathbb{N}^{d}$ be a vector of frequencies. Finally, $\lambda_{\mathbf{k}}=0$ if $k_{i}>0$ for any $i \notin \mathcal{R}$.

Proof. Since $\boldsymbol{k}(\mathbf{t})$ is factorizable and can be written by a power series it can be written as

$$
\boldsymbol{\kappa}(\mathbf{t})=c \tilde{\kappa}\left(t_{1}\right) \cdot \ldots \cdot \tilde{\kappa}\left(t_{d}\right)
$$

where $\tilde{\kappa}(t) \sim \sum_{n=0}^{\infty} n^{-\nu} t^{n}$, and it can be readily shown that

$$
\lambda_{\mathbf{k}}(\boldsymbol{k})=c \lambda_{k_{1}}(\tilde{\kappa}) \cdot \ldots \cdot \lambda_{k_{d}}(\tilde{\kappa})
$$

Using Lemma B. 1 we have that

$$
c \lambda_{k_{1}}(\tilde{\kappa}) \cdot . . \cdot \lambda_{k_{d}}(\tilde{\kappa}) \sim \tilde{c} \prod_{i \in R, k_{i}>0} k_{i}^{-(\zeta+2 \nu-3)}
$$

which concludes our proof.

C Positional bias of eigenvalues

We next prove results presented in Section 3.3. We next prove Theorem 3.4.
Theorem C.1. Let $\boldsymbol{k}^{(L)}$ be hierarchical and factorizable of depth $L>1$ with filter size q, so that $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}=c \sum_{\mathbf{n} \geq 0} a_{n_{1}} \cdot . . a_{n_{d}} \mathbf{t}^{\mathbf{n}}$ with $a_{0}>0$ and $a_{n_{i}}=n_{i}^{-\nu}$ for $\nu>1$. Then there exist a scalar $\bar{A}=1+\frac{1}{a_{0}}$ such that:

1. The power series coefficients of $\boldsymbol{k}^{(L)}$ satisfy

$$
c_{A, \mathbf{n}} \mathbf{n}^{-\nu} \leq b_{\mathbf{n}}
$$

where

$$
c_{A, \mathbf{n}}=c_{L} \prod_{i=1}^{d} A^{\min \left(p_{i}^{(L)}, n_{i}\right)}
$$

2. The eigenvalues $\lambda_{\mathbf{k}}\left(\boldsymbol{k}^{(L)}\right)$ satisfy

$$
c_{A, \mathbf{k}} \prod_{\substack{i=1 \\ n_{i}>0}}^{d} k_{i}^{-(\zeta+2 \nu-3)} \leq \lambda_{\mathbf{k}}
$$

where

$$
c_{A, \mathbf{k}}=\tilde{c}_{L} \prod_{i=1}^{d} A^{\min \left(p_{i}^{(L)}, k_{i}\right)}
$$

c_{L} and \tilde{c}_{L} are constants that depends on L, and $p_{i}^{(L)}$ denotes the number of paths from pixel i to the output of $\boldsymbol{k}^{(L)}$.

To prove the theorem we provide several supporting lemmas and the following definition:
Definition C.2. A kernel $\tilde{\boldsymbol{k}}^{(L)}[-1,1]^{q^{L}} \rightarrow \mathbb{R}$ is called stride-q hierarchical of depth $L>1$ if there exists a sequence of kernels $\tilde{\boldsymbol{k}}^{(1)}, \ldots, \tilde{\boldsymbol{k}}^{(L)}$ such that $\tilde{\boldsymbol{k}}^{(l)}(\mathbf{t})=f\left(\tilde{\boldsymbol{k}}^{(l-1)}\left(\mathbf{t}_{1}\right), \ldots, \tilde{\boldsymbol{k}}^{(l-1)}\left(\mathbf{t}_{q}\right)\right)$ with $f: \mathbb{R}^{q} \rightarrow \mathbb{R}, \mathbf{t}=\left(\mathbf{t}_{1}, \ldots, \mathbf{t}_{q}\right) \in[-1,1]^{q^{l-1}}$ and $\boldsymbol{k}^{(1)}(t)=t \in[-1,1]$. A kernel $\boldsymbol{k}^{(L)}:[-1,1]^{q(L-1)+1} \rightarrow \mathbb{R}$ is stride-1 hierarchical if for all $1<l \leq L$, $\boldsymbol{k}^{(l)}=$ $f\left(\boldsymbol{k}^{(l-1)}\left(\mathbf{t}_{1}\right), \boldsymbol{k}^{(l-1)}\left(s_{1} \mathbf{t}_{1}\right), \ldots, \boldsymbol{k}^{(l-1)}\left(s_{q-1} \mathbf{t}_{1}\right)\right)$ and $\mathbf{t}_{1} \in[-1,1]^{l(q-1)+1}$.

We next formulate the relation between the power series coefficient of the two kernels:
Lemma C.3. Let $\boldsymbol{k}^{(L)}(\mathbf{t}):[-1,1]^{d} \rightarrow \mathbb{R}$ be stride-1 kernel and $\tilde{\boldsymbol{k}}^{(L)}(\tilde{\mathbf{t}}):[-1,1]^{q^{L}} \rightarrow \mathbb{R}$ be stride- q kernel. Then, there exists a variables substitution $S:\left[q^{L}\right] \rightarrow[d]$ such that if $\tilde{t}_{S(j)}=t_{j}$ for all $j \in\left[q^{L}\right]$ then

$$
\tilde{\boldsymbol{k}}^{(L)}\left(t_{S(0)}, . ., t_{S\left(q^{L}-1\right)}\right) \equiv \boldsymbol{k}^{(L)}\left(t_{0}, . ., t_{d-1}\right)
$$

Moreover, if $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ and $\tilde{\boldsymbol{k}}^{(L)}(\tilde{\mathbf{t}})=\sum_{\tilde{\mathbf{n}} \geq 0} \tilde{b}_{\tilde{\mathbf{n}}} \tilde{\mathbf{t}}^{\tilde{\mathbf{n}}}$ then

$$
b_{\mathbf{n}}=\sum_{\mathcal{S}} \tilde{b}_{\tilde{\mathbf{n}}}
$$

where $\mathcal{S}=\left\{\tilde{n}_{0}, . ., \tilde{n}_{q^{L}-1} \mid \forall i=0, . ., d-1, \sum_{i=S(j)} \tilde{n}_{j}=n_{i}\right\}$.
Proof. We assume here that $d \leq(q-1) L$, in any other case can take $\bmod (d)$. We construct the mapping S and prove its correctness by induction. For any index $j=0, . ., q^{L}-1$ we write $j=$ $a_{L-1} q^{L-1}+a_{L-2} q^{L-2}+. .+a_{1} q+a_{0}$ where $a_{i}=0,1, . ., q-1$. Then, we define $S(j):=S_{L}(j)=$ $a_{L-1}+a_{L-2}+. .+a_{0}$. We next prove by induction that $\tilde{\boldsymbol{k}}^{(L)}\left(t_{S(0)}, . ., t_{S\left(q^{(L)}-1\right)}\right) \equiv \boldsymbol{k}^{(L)}\left(t_{0}, . ., t_{d-1}\right)$. For $L=2$ we have:

$$
\begin{aligned}
\tilde{\boldsymbol{k}}^{(2)}\left(t_{S(0)}, . ., t_{S\left(q^{2}-1\right)}\right) & =f\left(\boldsymbol{k}^{(1)}\left(t_{S(0)}, . ., t_{S(q-1)}\right), \ldots, \boldsymbol{k}^{(1)}\left(t_{S((q-1) q)}, . ., t_{S\left(q^{2}-1\right)}\right)\right) \\
& =f\left(\boldsymbol{k}^{(1)}\left(t_{0}, . ., t_{q-1}\right), \ldots, \boldsymbol{k}^{(1)}\left(t_{q-1}, . ., t_{2 q-2}\right)\right)=f\left(\boldsymbol{k}^{(1)}(\mathbf{t}), \boldsymbol{k}^{(1)}\left(s_{1} \mathbf{t}\right), \ldots, \boldsymbol{k}^{(1)}\left(s_{q-1} \mathbf{t}\right)\right)
\end{aligned}
$$

Where $\mathbf{t}=t_{0}, . ., t_{q-1}$ and s is the shift operator. This concludes the case of $L=2$. For $L>2$ we assume that $S_{L-1}(j)=a_{L-2}+. .+a_{0}$ is the correct assignment for $q^{L-1}-1$ variables and get that

$$
\begin{aligned}
\tilde{\tilde{\boldsymbol{k}}}^{(L)}\left(t_{S(0)}, . ., t_{S\left(q^{L}-1\right)}\right) & =f\left(\tilde{\tilde{\boldsymbol{k}}}^{(L-1)}\left(t_{S(0)}, . ., t_{S\left((q-1) q^{L-2}+. .+q-1\right)}\right), \ldots, \tilde{\tilde{\boldsymbol{k}}}^{(L-1)}\left(t_{S\left((q-1) q^{L-1}\right)}, . ., t_{S\left(q^{L}-1\right)}\right)\right) \\
& =f\left(\tilde{\boldsymbol{k}}^{(L-1)}\left(t_{0}, . ., t_{(L-1)(q-1)}\right), \ldots, \tilde{\boldsymbol{k}}^{(L-1)}\left(t_{(q-1)}, . ., t_{L(q-1))}\right)\right) \\
& ={ }^{(1)} f\left(\boldsymbol{k}^{(L-1)}(\mathbf{t}), \ldots, \boldsymbol{k}^{(L-1)}\left(s_{q-1} \mathbf{t}\right)\right)
\end{aligned}
$$

where ${ }^{(1)}$ holds from the induction hypothesis and $\mathbf{t}=t_{0}, . ., t_{(L-1)(q-1)}$. Therefore

$$
\tilde{\boldsymbol{k}}^{(L)}\left(t_{S(0)}, . ., t_{S\left(q^{L}-1\right)}\right) \equiv \boldsymbol{k}^{(L)}\left(t_{0}, . ., t_{d-1}\right)
$$

Finally since f is an analytic function it holds that:

$$
\boldsymbol{k}^{(L)}(\mathbf{t})=\tilde{\boldsymbol{k}}^{(L)}\left(t_{S(0)}, . ., t_{S\left(q^{L}-1\right)}\right)=\sum_{\tilde{\mathbf{n}} \geq 0} \tilde{b}_{\tilde{\mathbf{n}}} t_{S(0)}^{\tilde{n}_{1}} \cdot . . \cdot t_{S\left(q^{L}-1\right)}^{\tilde{n}_{q L}-1}=\sum_{\mathbf{n} \geq 0} \mathbf{t}^{\mathbf{n}} \sum_{\mathcal{S}} \tilde{b}_{\tilde{\mathbf{n}}}
$$

where $\mathcal{S}=\left\{\tilde{n}_{0}, . ., \tilde{n}_{q^{L}-1} \mid \forall i=0, . ., d-1, \sum_{i=S(j)} \tilde{n}_{j}=n_{i}\right\}$. Therefore, from the uniqueness of the power series we get that

$$
b_{\mathbf{n}}=\sum_{\mathcal{S}} \tilde{b}_{\mathbf{n}}
$$

Lemma C.4. Let $\mathbf{k} \in \mathbb{N}^{m}$ and consider the series $S_{m}(n)=\sum_{k_{1}+\ldots+k_{m}=n} \prod_{i=1}^{m} k_{i}^{-\nu}=$ $\sum_{|\mathbf{k}|=n} \mathbf{k}^{-\nu}$ with $\nu>1$ and the convention $0^{-\nu}=a_{0}>0$. Then, for $n \geq m, S_{m}(n)$ is bounded from above and below as follows

$$
\begin{equation*}
A^{m-1} n^{-\nu} \leq S_{m}(n) \leq B^{m-1} n^{-\nu} \tag{3}
\end{equation*}
$$

with $B>A=\left(a_{0}+1\right)>1$ constants.
Proof. We show this by induction over m, i.e., the length of the vector \mathbf{k}. We begin by showing this for $S=S_{2}(n)$ for any $n \geq 2$, i.e., $A n^{-\nu} \leq S=\sum_{k=0}^{n} k^{-\nu}(n-k)^{-\nu} \leq B n^{-\nu}$ for constants A and B.
Lower bound. For $n>2$ it holds that

$$
\begin{aligned}
S=\sum_{k=0}^{n} k^{-\nu}(n-k)^{-\nu} & =2 \cdot a_{0} \cdot n^{-\nu}+2 \cdot(n-1)^{-\nu}+\sum_{k=2}^{n-2} k^{-\nu}(n-k)^{-\nu} \\
& \geq 2 \cdot a_{0} \cdot n^{-\nu}+2 \cdot(n-1)^{-\nu} \\
& \geq 2\left(a_{0}+1\right) n^{-\nu} \geq\left(2 a_{0}+1\right) n^{-\nu} \\
& \geq\left(a_{0}+1\right) n^{-\nu}
\end{aligned}
$$

For $n=2$, we have that $S=2 a_{0} n^{-\nu}+(n-1)^{-\nu} \geq\left(2 a_{0}+1\right) n^{-\nu} \geq\left(a_{0}+1\right) n^{-\nu}$.
Therefore, it holds for $n \geq 2$ that $S_{2}(n) \geq A_{n}^{-\nu}$, where $A=a_{0}+1$.
Upper bound. We show that for $n \geq 2$ it holds that $n^{\nu} S_{2}(n)=n^{\nu} \sum_{k=0}^{n} k^{-\nu}(n-k)^{-\nu} \leq$ $\left(2 a_{0}+2\right)+\frac{2^{(\nu+1)}}{\nu-1}$. This follows from:

$$
\begin{aligned}
& n^{\nu} \sum_{k=0}^{n} k^{-\nu}(n-k)^{-\nu} \leq\left(2 a_{0}+2^{\nu+1}\right)+\sum_{k=2}^{n-2}\left(\frac{n-k+k}{k(n-k)}\right)^{\nu}=\left(2 a_{0}+2^{\nu+1}\right)+\sum_{k=2}^{n-2}\left(\frac{n-k}{k(n-k)}+\frac{k}{k(n-k)}\right)^{\nu} \\
& =\left(2 a_{0}+2^{\nu+1}\right)+\sum_{k=2}^{n-2}\left(\frac{1}{k}+\frac{1}{(n-k)}\right)^{\nu} \leq\left(2 a_{0}+2^{\nu+1}\right)+\sum_{k=2}^{n-2}\left(2 \max \left\{\frac{1}{k}, \frac{1}{n-k}\right\}\right)^{\nu} \leq\left(2 a_{0}+2^{\nu+1}\right)+2^{\nu} 2 \sum_{k=2}^{n / 2} k^{-\nu} .
\end{aligned}
$$

Note that $f(k)=k^{-\nu}$ is monotonically decreasing and therefore can be bounded by the integral

$$
\sum_{k=2}^{n / 2} k^{-\nu} \leq \int_{1}^{n / 2} \frac{1}{x^{\nu}} d x=\frac{1}{\nu-1}-\left(\frac{2}{n}\right)^{\nu-1} \frac{1}{\nu-1} \leq \frac{1}{\nu-1}
$$

So overall we have that $n^{\nu} S_{2}(n) \leq 2 a_{0}+2^{\nu+1}+\frac{2^{(\nu+1)}}{\nu-1}$ implying that $S_{2}(n) \leq B n^{-\nu}$ with $B=2 a_{0}+2^{\nu+1}+\frac{2^{(\nu+1)}}{\nu-1}$.

Induction step. We next use induction to prove the lemma for $S_{m}(n)$ for $m>2$ and $n \geq m$. Assume the lemma holds for S_{m}, i.e., $A^{m-1} n^{-\nu} \leq S_{m}(n) \leq B^{m-1} n^{-\nu}$ for $n \geq m$ and $A=a_{0}+1>1$, we aim to prove this for $S_{m+1}(n)$ for $n \geq m+1$.

$$
S_{m+1}(n)=\sum_{k_{1}=0}^{n} k_{1}^{-\nu} \sum_{k_{2}+\ldots+k_{m+1}=n-k_{1}} k_{2}^{-\nu} \cdots k_{m+1}^{-\nu}
$$

Using the induction assumption, we obtain

$$
\begin{aligned}
S_{m+1}(n) & =\sum_{k_{1}=0}^{n} k_{1}^{-\nu} \sum_{k_{2}+\ldots+k_{m+1}=n-k_{1}} k_{2}^{-\nu} \cdots k_{m+1}^{-\nu} \\
& \geq a_{0} \sum_{k_{2}+\ldots+k_{m+1}=n} k_{2}^{-\nu} \cdots k_{m+1}^{-\nu}+\sum_{k_{2}+\ldots+k_{m+1}=n-1} k_{2}^{-\nu} \cdots k_{m+1}^{-\nu} \\
& \geq a_{0} A^{m-1} n^{-\nu}+A^{m-1}(n-1)^{-\nu} \geq\left(a_{0}+1\right)^{m} n^{-\nu}=A^{m} n^{-\nu}
\end{aligned}
$$

Note that in the two sums above the induction assumption holds since $n \geq n-1 \geq m$. This concludes the proof for the lower bound. The proof for the upper bound proceeds in a similar way.
Lemma C.5. Let $\mathbf{k} \in \mathbb{N}^{m}$ and consider the series $S_{m}(n)=\sum_{|\mathbf{k}|=n} \mathbf{k}^{-\nu}$ with $\nu>1$ and the convention $0^{-\nu}=a_{0}>0$. Then, for $2 \leq n \leq m, S_{m}(n)$ is bounded from above and below as follows.

$$
\begin{equation*}
a_{0}^{m-n} A^{n-1} n^{-\nu} \leq S_{m}(n) \leq a_{0}^{m-n}\left(\frac{m \cdot e}{n}\right)^{n} B^{n-1} n^{-\nu} \tag{4}
\end{equation*}
$$

where A, B are given in Lemma C. 4 Note that for $m=n$ the lower bound boils down to the lower bound in Lemma C. 4

Proof. We next prove the lemma for $2 \leq n \leq m$.

$$
S_{m}(n)=\sum_{k_{1}+\ldots+k_{m}=n} k_{1}^{-\nu} \cdot \ldots \cdot k_{m}^{-\nu} \geq a_{0}^{m-n} \sum_{k_{1}+\ldots+k_{n}=n} k_{1}^{-\nu} \cdot \ldots \cdot k_{n}^{-\nu} \geq a_{0}^{m-n} A^{n-1} n^{-\nu},
$$

where the last inequality holds from LemmaC. 4 with $n=m$.
For the upper bound we have

$$
\begin{aligned}
S_{m}(n) & =\sum_{k_{1}+. .+k_{m}=n} k_{1}^{-\nu} \cdot \ldots \cdot k_{m}^{-\nu} \leq^{(1)} a_{0}^{m-n}\binom{m}{n} \sum_{k_{1}+. .+k_{n}=n} k_{1}^{-\nu} \cdot \ldots \cdot k_{n}^{-\nu} \\
& \leq^{(2)} a_{0}^{m-n}\binom{m}{n} B^{n-1} n^{-\nu} \leq a_{0}^{m-n}\left(\frac{m \cdot e}{n}\right)^{n} B^{n-1} n^{-\nu}
\end{aligned}
$$

where ${ }^{(1)}$ considers subsets of size n and sets the remaining orders k_{i} to zero. Note that since $n \leq m$ this covers all the options of satisfying the sum $k_{1}+. .+k_{m}=n$ (with some repetitions). ${ }^{(2)}$ uses the bound of Lemma C. 4
Lemma C.6. Let $\boldsymbol{k}^{(L)}$ be an hierarchical factorizable kernel of depth L and filter size q, where $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}=c \sum_{\mathbf{n} \geq 0} a_{n_{1}} \cdot . . \cdot a_{n_{d}} \mathbf{t}^{\mathbf{n}}$ with $a_{0}>0$ and $a_{n_{i}}=n_{i}^{-\nu}$ for $\nu>1$. Then, the Taylor coefficients of $\boldsymbol{k}^{(L)}$ satisfy

$$
c_{A, \mathbf{n}} \mathbf{n}^{-\nu} \leq b_{\mathbf{n}} \leq c_{B, \mathbf{n}} \mathbf{n}^{-\nu}
$$

where

$$
c_{A, \mathbf{n}}=c_{L} \prod_{i=1}^{d} \bar{A}^{\min \left(p_{i}^{(L)}, n_{i}\right)}
$$

and $c_{B, \mathbf{n}}=\bar{c}_{L} \prod_{i=1}^{d} c_{B}\left(p_{i}^{(L)}, n_{i}\right)$

$$
c_{B}\left(p_{i}^{(L)}, n_{i}\right)= \begin{cases}\left(\frac{p_{i}^{(L)} \cdot e}{n_{i}}\right)^{n_{i}} B^{n_{i}}, & 1 \leq n_{i}<p_{i}^{(L)} \\ B^{p_{i}^{(L)}}, & n_{i} \geq p_{i}^{(L)}\end{cases}
$$

with $B \geq \bar{A}=1+\frac{1}{a_{0}}$ and c_{L}, \bar{c}_{L} are constants. $p_{i}^{(L)}$ denotes the number of paths from pixel j to the output of the corresponding equivariant network.

Proof. Since $\boldsymbol{k}^{(L)}$ is factorizable we can use the hierarchical stride q kernel $\tilde{\boldsymbol{k}}^{(L)}(\tilde{\mathbf{t}})$ and write:

$$
\tilde{\boldsymbol{k}}^{(L)}(\tilde{\mathbf{t}})=\sum_{\tilde{\mathbf{n}} \geq 0} \tilde{b}_{\tilde{\mathbf{n}}} \mathbf{t}^{\tilde{\mathbf{n}}}=\sum_{\tilde{\mathbf{n}} \geq 0} a_{\tilde{n}_{1}} \cdot . . a_{\tilde{n}_{q L_{-1}}} \mathbf{t}^{\tilde{\mathbf{n}}}
$$

with $a_{\tilde{n}_{i}}=\tilde{n}_{i}^{-\nu}$. Moreover using the mapping S from lemma C. 3 we have that $\boldsymbol{k}^{(L)}(\mathbf{t})=$ $\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ with

$$
b_{\mathbf{n}}=\sum_{\mathcal{S}} \tilde{b}_{\tilde{\mathbf{n}}}=c \sum_{\mathcal{S}} \tilde{\mathbf{n}}^{-\nu}
$$

where $\mathcal{S}=\left\{\tilde{n}_{1}, . ., \tilde{n}_{q^{L-1}} \mid \forall i=1, . ., d, \sum_{i=S(j)} \tilde{n}_{j}=n_{i}\right\}$. Note that $|\{i \mid S(i)=j\}|=p_{j}^{(L)}$ where $p_{j}^{(L)}$ denotes the number of paths from the input pixel to the output, therefore by combining Lemma C. 4 for the case of $p_{j}^{(L)} \geq n_{j}$ and LemmaC. 5 for the case of $p_{j}^{(L)} \leq n_{j}$ we have that

$$
\tilde{c}_{A, \mathbf{n}} \mathbf{n}^{-\nu} \leq b_{\mathbf{n}}
$$

where $c_{A, \mathbf{n}}=\prod_{i=1}^{d} c\left(p_{i}^{(L)}, n_{i}\right)$ and

$$
c\left(p_{i}^{(L)}, n_{i}\right)= \begin{cases}a_{0}^{p_{i}^{(L)}-n_{i}}\left(1+a_{0}\right)^{n_{i}-1}, & n_{i}<p_{i}^{(L)} \\ \left(1+a_{0}\right)^{p_{i}^{(L)}}-1, & n_{i} \geq p_{i}^{(L)}\end{cases}
$$

So all in all we get

$$
c\left(p_{i}^{(L)}, n_{i}\right):=\left(1+a_{0}\right)^{-1} a_{0}^{p_{i}^{(L)}} A^{\min \left(p_{i}^{(L)}, n_{i}\right)}
$$

with $A=1+\frac{1}{a_{0}}$. This leads to

$$
c_{A, \mathbf{n}}=c_{L} \prod_{i=1}^{d} A^{\min \left(p_{i}^{(L)}, n_{i}\right)}
$$

where $A=1+\frac{1}{a_{0}}$ and $c_{L}=\left(1+a_{0}\right)^{-d} \cdot a_{0}^{\sum_{i=1}^{d} p_{i}^{(L)}}$. The same set of steps using lemmas C.4 and C. 5 leads to the results of $c_{B, \mathbf{n}}$

Lemma C.7. Let $\boldsymbol{k}^{(L)}$ be a stride-1 hierarchical and factorizable of fixed depth L and filter size q, where $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}=c \sum_{\mathbf{n} \geq 0} a_{n_{1}} \cdot \ldots \cdot a_{n_{d}} \mathbf{t}^{\mathbf{n}}$ with $a_{0}>0$, and $a_{n_{i}}=n_{i}^{-\nu}$ for $\nu>1$. Then, the eigenvalues $\lambda_{\mathbf{k}}$ of $\boldsymbol{k}^{(L)}$ satisfy

$$
\begin{aligned}
& \lambda_{\mathbf{k}} \geq c_{A, \mathbf{k}} \prod_{\substack{i=1 \\
n_{i}>0}}^{d} k_{i}^{-(\zeta+2 \nu-3)} \\
& c_{A, \mathbf{k}}=c_{L} \prod_{i=1}^{d} A^{\min \left(p_{i}^{(L)}, k_{i}\right)}
\end{aligned}
$$

with $A=1+\frac{1}{a_{0}}$ and $p_{i}^{(L)}$ denotes the number of paths from pixel i to the output of the corresponding equivariant network.

Proof. Using LemmaC.6 we have

$$
b_{\mathbf{n}} \geq c \prod_{i=1}^{d} A^{\min \left(p_{i}, n_{i}\right)} n_{i}^{-\nu}
$$

Using Lemma 3.1 we have

$$
\lambda_{\mathbf{k}}=\left|\mathbb{S}^{\zeta-2}\right|^{d} \sum_{\mathbf{s} \geq 0} b_{\mathbf{k}+2 \mathbf{s}} \lambda_{\mathbf{k}}\left(\mathbf{t}^{\mathbf{k}+2 \mathbf{s}}\right)
$$

where we denote by $\lambda_{\mathbf{k}}\left(\mathbf{t}^{\mathbf{k}+2 \mathbf{s}}\right)=\prod_{i=1}^{d} \lambda_{k_{i}}\left(t_{i}^{k_{i}+2 s_{i}}\right)$. This implies that

$$
\lambda_{\mathbf{k}} \geq c\left|\mathbb{S}^{\zeta-2}\right|^{d} \sum_{\mathbf{s} \geq 0} \prod_{i=1}^{d} A^{\min \left(p_{i}, k_{i}+2 s_{i}\right)}\left(k_{i}+2 s_{i}\right)^{-\nu} \lambda_{k_{i}}\left(t_{i}^{k_{i}+2 s_{i}}\right)
$$

Applying the distributive law

$$
\lambda_{\mathbf{k}} \geq c\left|\mathbb{S}^{\zeta-2}\right|^{d} \prod_{i=1}^{d} \sum_{s_{i} \geq 0} A^{\min \left(p_{i}, k_{i}+2 s_{i}\right)}\left(k_{i}+2 s_{i}\right)^{-\nu} \lambda_{k_{i}}\left(t_{i}^{k_{i}+2 s_{i}}\right)=\prod_{i=1}^{d} \lambda_{k_{i}}\left(\boldsymbol{k}_{i}\right)
$$

where we define the kernel $\boldsymbol{k}_{i}(t)$ by the power series

$$
\boldsymbol{\kappa}_{i}(t)=\sum_{n_{j}=0}^{\infty} c^{1 / d} A^{\min \left(p_{i}, n_{j}\right)} n_{j}^{-\nu} t^{n_{j}}
$$

Therefore,

$$
\begin{aligned}
& \lambda_{\mathbf{k}} \geq c \prod_{i=1}^{d}\left(\sum_{n_{i}=0}^{\infty} A^{\min \left(p_{i}, n_{i}\right)} n_{i}^{-\nu} \lambda_{k_{i}}\left(t_{i}^{n_{i}}\right)\right)=c \prod_{i=1}^{d}\left(\sum_{s_{i}=0}^{\infty} A^{\min \left(p_{i}, k_{i}+2 s_{i}\right)}\left(k_{i}+2 s_{i}\right)^{-\nu} \lambda_{k_{i}}\left(t^{k_{i}+2 s_{i}}\right)\right) \\
& \geq c \prod_{i=1}^{d} A^{\min \left(p_{i}, k_{i}\right)}\left(\sum_{s_{i}=0}^{\infty}\left(k_{i}+2 s_{i}\right)^{-\nu} \lambda_{k_{i}}\left(t^{k_{i}+2 s_{i}}\right)\right)
\end{aligned}
$$

Therefore, using Theorem 3.2 we get that

$$
\begin{aligned}
& \lambda_{\mathbf{k}} \geq c_{A, \mathbf{k}} \prod_{\substack{i=1 \\
n_{i}>0}}^{d} k_{i}^{-(\zeta+2 \nu-3)} \\
& c_{A, \mathbf{k}}=c_{L} \prod_{i=1}^{d} A^{\min \left(p_{i}^{(L)}, k_{i}\right)} .
\end{aligned}
$$

D Kernels associated with the equivariant network

In this section we prove Theorem 3.5 presented in Section 3.4 .
Theorem D.1. Let $\boldsymbol{k}^{(L)}$ denote either CGPK-EqNet or CNTK-EqNet of depth L whose input includes ζ channels, with receptive field \mathcal{R} and with ReLU activation. Then,

1. $\boldsymbol{k}^{(L)}$ can be written as a power series, $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ with

$$
c_{1} \prod_{i \in \mathcal{R}, n_{i}>0} n_{i}^{-\nu_{a}} \leq b_{\mathbf{n}} \leq c_{2} \prod_{i \in \mathcal{R}, n_{i}>0} n_{i}^{-\nu_{b}}
$$

2. The eigenvalues of $\boldsymbol{k}^{(L)}$ are bounded by

$$
c_{3} \prod_{\substack{i \in \mathcal{R} \\ k_{i}>0}} k_{i}^{-\left(\zeta+2 \nu_{a}-3\right)} \leq \lambda_{\mathbf{k}} \leq c_{4} \prod_{\substack{i \in \mathcal{R} \\ k_{i}>0}} k_{i}^{-\left(\zeta+2 \nu_{b}-3\right)}
$$

where for CGPK-EqNet $\nu_{a}=2.5$ and $\nu_{b}=1+3 /(2 d)$, while for CNTK-EqNet $\nu_{a}=2.5$ and $\nu_{b}=1+1 /(2 d)$ and c_{1}, c_{2}, c_{3} and c_{4} depend on L.

We begin by proving the lower bound for $b_{\mathbf{n}}$ of CGPK-EqNet.

Lemma D.2. Let $\boldsymbol{k}^{(L)}$ be a CGPK-EqNet of depth L, filter size q with ReLU activation Then, $\boldsymbol{k}^{(L)}$ can be written as a power series, $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ with

$$
c_{1} \mathbf{n}^{-\nu} \leq b_{\mathbf{n}}
$$

where $c_{1}>0$ is constant if the receptive field of $\boldsymbol{k}^{(L)}$ includes \mathbf{n} and zero otherwise and $\nu=2.5$.
Proof. We prove the lemma by induction on L. For $L=1$

$$
\boldsymbol{k}^{(1)}(\mathbf{t})=\kappa_{1}\left(t_{1}\right)=\sum_{n=0}^{\infty} a_{n} t_{1}^{n}
$$

where the equality on the right provides the power series of κ_{1}. Consequently, for $\mathbf{n}=(n, 0, . ., 0)$, $b_{\mathbf{n}}=a_{n} \sim n^{-\nu}$, and the receptive field contains only one pixel. Therefore, c_{1} is constant if $\mathbf{n}=(n, 0, . .0)$ and zero otherwise. For $L>1$ we denote $\kappa_{1}(u)=\sum_{n=0}^{\infty} a_{n} u^{n}$ and $g(\mathbf{t})=$ $\boldsymbol{k}^{L-1}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} \tilde{b}_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ with the induction assumption that $\tilde{b}_{\mathbf{n}} \geq c \mathbf{n}^{-\nu}$. Then we have that

$$
\begin{aligned}
& \boldsymbol{k}^{L}(\mathbf{t})=\kappa_{1}\left(\frac{1}{q} \sum_{j=0}^{q-1} g\left(s_{j} \mathbf{t}\right)\right)=\sum_{n=0}^{\infty} \frac{a_{n}}{q^{n}}\left(\sum_{j=0}^{q-1} g\left(s_{j} \mathbf{t}\right)\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{a_{n}}{q^{n}} \sum_{|\mathbf{k}|=n}\binom{n}{\mathbf{k}} \prod_{i=0}^{q-1} g^{k_{i}}\left(s_{i} \mathbf{t}\right)={ }^{(1)} \sum_{\mathbf{k} \geq 0} \frac{a_{|\mathbf{k}|}}{q^{|\mathbf{k}|}}\binom{|\mathbf{k}|}{\mathbf{k}} \prod_{i=0}^{q-1}\left(\sum_{\mathbf{m} \geq 0} \tilde{b}_{s_{-i} \mathbf{m}} \mathbf{t}^{s_{-i} \mathbf{m}}\right)^{k_{i}}:=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}},
\end{aligned}
$$

where ${ }^{(1)}$ is due to the fact that $g\left(s_{i} \mathbf{t}\right)=\sum_{\mathbf{m} \geq 0} \tilde{b}_{\mathbf{m}}\left(s_{i} \mathbf{t}\right)^{\mathbf{m}}=\sum_{\mathbf{m} \geq 0} \tilde{b}_{s_{-i} \mathbf{m}} \mathbf{t}^{s_{-i} \mathbf{m}}$. Next, using a multivariate version of the Faá di Bruno formula (see, e.g., [8]), we have that:

$$
b_{\mathbf{n}}=\sum_{\mathbf{k} \geq 0} \frac{a_{|\mathbf{k}|}}{q^{|\mathbf{k}|}}\left(\begin{array}{c}
|\mathbf{k}| \tag{5}\\
\mathbf{k}
\end{array} \sum_{\left\{\mathbf{n}_{1}, \ldots, \mathbf{n}_{q} \mid \sum_{i=1}^{q} k_{i} \mathbf{n}_{i}=\mathbf{n}\right\}} \prod_{i=0}^{q-1} \hat{B}_{\mathbf{n}_{i}, k_{i}}\left(. ., \tilde{b}_{s_{-i} \mathbf{m}}, . .\right),\right.
$$

where $\hat{B}_{\mathbf{n}, k}(\cdot)$ denote ordinary multivariate Bell polynomials defined as

$$
\hat{B}_{\mathbf{n}, k}\left(x_{\mathbf{i}_{1}}, x_{\mathbf{i}_{2}}, \ldots\right)=\sum_{\overline{\mathcal{J}}_{\mathbf{n}, k}} \frac{k!}{j_{\mathbf{i}_{1}}!j_{\mathbf{i}_{2}}!\ldots} x_{\mathbf{i}_{1}}^{j_{\mathbf{i}_{1}}} x_{\mathbf{i}_{2}}^{j_{\mathbf{i}_{2}}} \ldots
$$

and $\overline{\mathcal{J}}_{\mathbf{n}, k}=\left\{j_{\mathbf{i}_{1}}+j_{\mathbf{i}_{2}}+\ldots=k \in \mathbb{R} ; j_{\mathbf{i}_{1}} \mathbf{i}_{1}+j_{\mathbf{i}_{2}} \mathbf{i}_{2}+\ldots=\mathbf{n} \in \mathbb{R}^{d}\right\}$. Since all terms in (5) are non-negative, it suffices to choose one term to get a lower bound. Specifically, we choose $\mathbf{k}=(1,1 . ., 1) \in \mathbb{R}^{q}$ and $\mathbf{n}_{1}, \mathbf{n}_{q}$ such that $\mathbf{n}_{1}+\mathbf{n}_{q}=\mathbf{n}, \mathbf{n}_{1}^{T} \mathbf{n}_{q}=0$, and $\mathbf{n}_{i}=0$ for $i \notin\{1, q\}$. Noting that $|\mathbf{k}|=q, \hat{B}_{\mathbf{n}_{1}, 1}=\tilde{b}_{\mathbf{n}_{1}}$ and $\hat{B}_{\mathbf{n}_{q}, 1}=\tilde{b}_{\mathbf{n}_{q}}$, and $\hat{B}_{\mathbf{0}, 1}=b_{0}$, we obtain

$$
b_{\mathbf{n}} \geq \frac{a_{q}}{q^{q}} q!\tilde{b}_{0}^{q-2} \tilde{b}_{\mathbf{n}_{1}} \tilde{b}_{\mathbf{n}_{q}}=C_{q} \tilde{b}_{\mathbf{n}_{1}} \tilde{b}_{\mathbf{n}_{q}} \geq^{(1)} C_{q} c^{2} \mathbf{n}^{-\nu}
$$

where $C_{q}=\frac{q^{q}}{q!} a_{q} \tilde{b}_{0}^{q-2}$ and ${ }^{(1)}$ is due to the induction hypothesis.
Corollary D.3. The bound in Lemma D.2 holds also for CNTK-EqNet.
Proof. Let $\boldsymbol{k}^{(L)}$ be a CNTK-EqNet. Denote by $b_{\mathbf{n}}\left(\boldsymbol{k}^{(L)}\right)$ as the power series coefficients of $\boldsymbol{k}^{(L)}$. Then, by definition,

$$
\begin{aligned}
& \Sigma_{i, j}^{(l)}(\mathbf{x}, \mathbf{z})=\kappa_{1}\left(\frac{1}{q} \sum_{r=0}^{q-1} \tilde{\Sigma}_{i+r, j+r}^{(l-1)}(\mathbf{x}, \mathbf{z})\right) \\
& \Theta_{i, j}^{(l)}(\mathbf{x}, \mathbf{z})=\frac{1}{q} \sum_{r=0}^{q-1}\left[\kappa_{0}\left(\tilde{\Sigma}_{i+r, j+r}^{(l-1)}(\mathbf{x}, \mathbf{z})\right) \tilde{\Theta}_{i+r, j+r}^{(l-1)}(\mathbf{x}, \mathbf{z})+\tilde{\Sigma}_{i+r, j+r}^{(l)}(\mathbf{x}, \mathbf{z})\right],
\end{aligned}
$$

Since κ_{0} and κ_{1} have only positive power series coefficients it holds that $b_{\mathbf{n}}\left(\boldsymbol{k}^{(L)}\right)=b_{\mathbf{n}}\left(\Theta_{i, i}^{(L)}\right) \geq$ $\frac{c_{\sigma}}{q} b_{\mathbf{n}}\left(\tilde{\Sigma}_{i, i}^{(L)}\right)$. Note that $\tilde{\Sigma}_{i, i}^{(L)}$ is the CGPK-EqNet of L layers and therefore we can apply the lower bound of Lemma D. 2 to get $b_{\mathbf{n}}\left(\boldsymbol{k}^{(L)}\right) \geq \frac{c_{\sigma}}{q} c_{1} \mathbf{n}^{-v}$.

Next we give a general upper bound. We will use the following lemma: To prove the above lemma we will use the following supporting lemma
Lemma D.4. Let $\boldsymbol{k}^{(L)}(\mathbf{t})$ be either CGPK-EqNet or CNTK-EqNet of depth L with filter size q. Let $K_{L}^{F C}(u)$ be a fully connected kernel (NTK or GPK receptively) of one variable u. Then, plugging $t_{1}=t_{2} . .=t_{i}=u$ to $\boldsymbol{k}^{(L)}(\mathbf{t})$ gives that $\boldsymbol{k}^{(L)}(\mathbf{t})=K_{L}^{F C}(u)$, where $K_{L}^{F C}(u)$ denotes the corresponding CGPK or CNTK kernel of depth L for a fully connected network.

Proof. We prove the lemma for CGPK. The proof for CNTK is similar. We perform induction on L. For $L=1$ the claim is trivial. For $L>1$ plugging $t_{1}=\ldots=t_{i}=u$ to $\boldsymbol{k}^{(L)}(\mathbf{t})$ together with the induction hypothesis gives us

$$
\begin{aligned}
\boldsymbol{k}^{(L)}(\mathbf{t}) & =\kappa_{1}\left(\frac{c_{\sigma}}{q} \sum_{j=0}^{q-1} \boldsymbol{\kappa}^{(L-1)}\left(s_{j} \mathbf{t}\right)\right) \\
& =\kappa_{1}\left(\frac{c_{\sigma}}{q} \sum_{j=0}^{q-1} K_{L-1}^{F C}(u)\right)=\kappa_{1}\left(K_{L-1}^{F C}(u)\right)=K_{L}^{F C}(u)
\end{aligned}
$$

Lemma D.5. Let $\boldsymbol{k}^{(L)}$ be either CNTK-EqNet or CGPK-EqNet of depth L with filter size q and ReLU activation. Then, $\boldsymbol{k}^{(L)}$ can be written as a power series, $\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$, with, $\sum_{|\mathbf{n}|=k} b_{\mathbf{n}}=\Theta\left(a_{k}\right)$ where $a_{k}=k^{-\nu}$ with $\nu=2.5$ for CPGK and $\nu=1.5$ for CNTK.

Proof. Let $\kappa(t)=\sum_{n=0}^{\infty} a_{n} t^{n}$. Using results by [3] (Theorem 8) we have that $K_{L}^{F C}(t)=$ $\sum_{n=0}^{\infty} \tilde{a}_{n} t^{n}$ where $K_{L}^{F C}(t)$ is the NTK or GPK model for a FC network and $\tilde{a}_{n}=\Theta\left(n^{-\nu}\right)$ for $\nu=2.5, \nu=1.5$ for GPK and NTK respectively. Moreover, we have that

$$
\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}
$$

This, together with Lemma D. 4 and plugging $t_{1}=t_{2}=. .=t_{l}=u$, yields

$$
\boldsymbol{k}^{(L)}(\mathbf{t})=\sum_{\mathbf{n}} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}=\sum_{\mathbf{n}} b_{\mathbf{n}} u^{|\mathbf{n}|}=\sum_{k=0}^{\infty} u^{k} \sum_{|\mathbf{n}|=k} b_{\mathbf{n}}
$$

The uniqueness of power series further implies

$$
\sum_{|\mathbf{n}|=k} b_{\mathbf{n}}=\tilde{a}_{k}=\Theta\left(k^{-\nu}\right)
$$

which concludes the proof.
Next we upper bound $b_{\mathbf{n}}$ (Lemma D.7). We begin with a simple supporting lemma
Lemma D.6. For any $d \geq 1$ positive (even) numbers $c_{1}, . ., c_{d} \geq 1$, denote the two set of indices

$$
\begin{aligned}
& I_{1}=\left\{\left(i_{1}, . ., i_{d}\right) \in \mathbb{N}_{+} \times . . \times \mathbb{N}_{+} \mid c_{k} / 2 \leq i_{k} \leq c_{k}\right\} \\
& I_{2}=\left\{\left(i_{1}, . ., i_{d}\right) \in \mathbb{N}_{+} \times . . \times \mathbb{N}_{+} \mid\left(i_{1}+. .+i_{d}\right) \in\left[c_{1} / 2+. .+c_{d} / 2, c_{1}+. .+c_{d}\right]\right\}
\end{aligned}
$$

Then $I_{1} \subseteq I_{2}$.
Proof. Let $\left(i_{1}, . ., i_{d}\right) \in I_{1}$. Then,

$$
c_{1} / 2+. .+c_{d} / 2 \leq i_{1}+. .+i_{d} \leq c_{1}+. .+c_{d}
$$

implying that $\left(i_{1}, . ., i_{d}\right) \in I_{2}$.
Lemma D.7. Let $\boldsymbol{k}(\mathbf{t})=\sum_{\mathbf{n} \geq 0} b_{\mathbf{n}} \mathbf{t}^{\mathbf{n}}$ such that $\sum_{|\mathbf{n}|=n} b_{\mathbf{n}}=a_{n} \sim n^{-\nu}$ with $\nu>1$. Then, there exists $c>0$ such that $b_{\mathbf{n}} \leq c \mathbf{n}^{-\left(\frac{\nu-1}{d}+1\right)}$. The implication for CNTK-EqNet $(\nu=1.5)$ and for CGPK-EqNet $(\nu=2.5)$ can appear in a separate lemma.

Proof. Let $n_{1}, . ., n_{d} \gg 1$ be large enough and denote by $\bar{n}=\sum_{j=1}^{d} n_{j}$. Denote by $a_{k}=c \cdot k^{-\nu}$. By LemmaD. 5 we have that $\sum_{|\mathbf{n}|=k} b_{\mathbf{n}} \leq C a_{k}$. Therefore,

$$
\sum_{k=\bar{n} / 2}^{\bar{n}}\left(\sum_{|\mathbf{n}|=k} b_{\mathbf{n}}\right)=\sum_{|\mathbf{n}|=\bar{n} / 2}^{\bar{n}} b_{\mathbf{n}} \leq C \sum_{k=\bar{n} / 2}^{\bar{n}} a_{k}
$$

Here we can estimate the RHS using an integral and get

$$
\sum_{k=\bar{n} / 2}^{\bar{n}} a_{k} \approx \int_{\bar{n} / 2}^{\bar{n}} \frac{1}{x^{\nu}} d x=(\nu-1)\left(2^{(\nu-1)}-1\right) \bar{n}^{-(\nu-1)}
$$

on the other hand, by denoting

$$
\begin{aligned}
I_{1} & =\left\{\overline{\mathbf{n}} \in \mathbb{N}_{+} \times . . \times \mathbb{N}_{+} \mid n_{j} / 2 \leq \bar{n}_{j} \leq n_{j}\right\} \\
I_{2} & =\left\{\overline{\mathbf{n}} \in \mathbb{N}_{+} \times . . \times \mathbb{N}_{+}| | \overline{\mathbf{n}} \mid \in\left[n_{1} / 2+. .+n_{d} / 2, n_{1}+. .+n_{d}\right]\right\}
\end{aligned}
$$

by LemmaD.6 and because $b_{\mathbf{n}} \geq 0$ we have that

$$
\sum_{\mathbf{n} \in I_{1}} b_{\mathbf{n}} \leq \sum_{\mathbf{n} \in I_{2}} b_{\mathbf{n}}=\sum_{|\mathbf{n}|=\bar{n} / 2}^{|\mathbf{n}|=\bar{n}} b_{\mathbf{n}} \leq C \sum_{k=\bar{n} / 2}^{k=\bar{n}} a_{k}
$$

Moreover $\left|I_{1}\right|=\frac{1}{2^{d}} n_{1} \cdot \ldots \cdot n_{d}$. and the smallest element in the sum is $\min _{\mathbf{n} \in I_{1}}\left\{b_{\mathbf{n}}\right\}=b_{n_{1}, \ldots, n_{d}}$. Therefore,

$$
\frac{1}{2^{d}} n_{1} \cdot . . \cdot n_{d} b_{n_{1}, . ., n_{d}} \leq \sum_{\mathbf{n} \in I_{1}} b_{\mathbf{n}} \leq(\nu-1)\left(2^{(\nu-1)}-1\right) \bar{n}^{-(\nu-1)}
$$

implying that

$$
b_{n_{1}, . ., n_{d}} \leq \frac{(\nu-1)\left(2^{(\nu-1)}-1\right)\left(n_{1}+. .+n_{d}\right)^{-(\nu-1)}}{\frac{1}{2^{d}}\left(n_{1} \cdot . . \cdot n_{d}\right)}
$$

Now applying the inequality of means we obtain $\left(n_{1}+. .+n_{d}\right) / d \geq\left(n_{1} \cdot \ldots \cdot n_{d}\right)^{\frac{1}{d}}$, and we finally get that

$$
b_{n_{1}, . ., n_{d}} \leq d 2^{d}(\nu-1)\left(2^{(\nu-1)}-1\right)\left(n_{1} \cdot . . \cdot n_{d}\right)^{-\left(\frac{\nu-1}{d}+1\right)}
$$

E Trace and GAP kernels

In this section we prove results presented in Section 3.5. We prove Theorem 3.7 .
Theorem E.1. Let \boldsymbol{k} be a multi-dot-product kernel with Mercer's decomposition as in (1), and let $\boldsymbol{k}^{\mathrm{Tr}}$ and $\boldsymbol{k}^{\mathrm{GAP}}$ respectively be its trace and GAP versions. Then,

1. $\boldsymbol{k}^{\operatorname{Tr}}(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{k}, \mathbf{j}} \lambda_{\mathbf{k}}^{\operatorname{Tr}} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z})$ with

$$
\begin{equation*}
\lambda_{\mathbf{k}}^{\mathrm{Tr}}=\frac{1}{d} \sum_{i=0}^{d-1} \lambda_{s_{i} \mathbf{k}} \tag{6}
\end{equation*}
$$

Where $\lambda_{\mathbf{k}}$ denote the eigenvalues of \boldsymbol{k}.
2. $\boldsymbol{k}^{\mathrm{GAP}}(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{k}, \mathbf{j}} \lambda_{\mathbf{k}}^{\operatorname{Tr}} \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{z})$ with

$$
\tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x})=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} Y_{s_{i} \mathbf{k}, s_{i} \mathbf{j}}(\mathbf{x})
$$

Proof. (1) Let $\boldsymbol{k}^{\operatorname{Tr}}(\mathbf{x}, \mathbf{z})$ be a trace kernel. By definition

$$
\boldsymbol{k}^{\operatorname{Tr}}(\mathbf{x}, \mathbf{z})=\frac{1}{d} \sum_{i=0}^{d-1} \boldsymbol{k}\left(s_{i} \mathbf{x}, s_{i} \mathbf{z}\right)
$$

where \boldsymbol{k} is a multi-dot-product kernel, with Mercer's decomposition

$$
\boldsymbol{k}(\mathbf{x}, \mathbf{z})=\sum_{\mathbf{k}, \mathbf{j}} \lambda_{\mathbf{k}} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z})
$$

Note that $\boldsymbol{k}\left(s_{i} \mathbf{x}, s_{i} \mathbf{z}\right)$ has the same eigenfunctions as $\boldsymbol{k}(\mathbf{x}, \mathbf{z})$ with eigenvalues $\lambda_{s_{i} \mathbf{k}}$. So we get

$$
\begin{aligned}
\boldsymbol{k}^{\operatorname{Tr}}(\mathbf{x}, \mathbf{z}) & =\frac{1}{d} \sum_{i=0}^{d-1} \boldsymbol{k}\left(s_{i} \mathbf{x}, s_{i} \mathbf{z}\right)=\frac{1}{d} \sum_{i=0}^{d-1} \sum_{\mathbf{k}, \mathbf{j}} \lambda_{s_{i} \mathbf{k}} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z}) \\
& =\sum_{\mathbf{k}, \mathbf{j}} \frac{1}{d} \sum_{i=0}^{d-1} \lambda_{s_{i} \mathbf{k}} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z})=\sum_{\mathbf{k}, \mathbf{j}} Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) Y_{\mathbf{k}, \mathbf{j}}(\mathbf{z}) \frac{1}{d} \sum_{i=0}^{d-1} \lambda_{s_{i} \mathbf{k}}
\end{aligned}
$$

Therefore, we have

$$
\lambda_{\mathbf{k}}^{\operatorname{Tr}}=\frac{1}{d} \sum_{i=0}^{d-1} \lambda_{s_{i} \mathbf{k}}
$$

(2) Let $\boldsymbol{k}^{\text {GAP }}(\mathbf{x}, \mathbf{z})$ be GAP kernel. By definition we have that

$$
\boldsymbol{k}^{\mathrm{GAP}}(\mathbf{x}, \mathbf{z})=\frac{1}{d^{2}} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \boldsymbol{k}\left(s_{i} \mathbf{x}, s_{j} \mathbf{z}\right)
$$

Where \boldsymbol{k} is a multi-dot-product kernel. Using Mercer's decomposition (1), we have

$$
\boldsymbol{k}\left(s_{i} \mathbf{x}, s_{j} \mathbf{z}\right)=\sum_{\mathbf{k}, \mathbf{j}} \lambda_{\mathbf{k}} Y_{\mathbf{k}, \mathbf{j}}\left(s_{i} \mathbf{x}\right) Y_{\mathbf{k}, \mathbf{j}}\left(s_{j} \mathbf{z}\right)=\sum_{\mathbf{k}, \mathbf{j}} \lambda_{\mathbf{k}} Y_{s_{-i} \mathbf{k}, s_{-i} \mathbf{j}}(\mathbf{x}) Y_{s_{-j} \mathbf{k}, s_{-j} \mathbf{j}}(\mathbf{z})
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{k}^{\mathrm{GAP}}(\mathbf{x}, \mathbf{z}) & =\frac{1}{d^{2}} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \boldsymbol{k}\left(s_{i} \mathbf{x}, s_{j} \mathbf{z}\right)=\frac{1}{d^{2}} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{\mathbf{k}, \mathbf{j}} \lambda_{\mathbf{k}} Y_{s_{-i} \mathbf{k}, s_{-i} \mathbf{j}}(\mathbf{x}) Y_{s_{-j} \mathbf{k}, s_{-j} \mathbf{j}}(\mathbf{z}) \\
& =\sum_{\mathbf{k}, \mathbf{j}} \frac{1}{d^{2}} \lambda_{\mathbf{k}} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} Y_{s_{-i} \mathbf{k}, s_{-i} \mathbf{j}}(\mathbf{x}) Y_{s_{-j} \mathbf{k}, s_{-j} \mathbf{j}}(\mathbf{z}) \\
& =\sum_{\mathbf{k}, \mathbf{j}} \frac{1}{d^{2}} \lambda_{\mathbf{k}}\left(\sum_{i=0}^{d-1} Y_{s_{-i} \mathbf{k}, s_{-i} \mathbf{j}}(\mathbf{x})\right)\left(\sum_{j=0}^{d-1} Y_{s_{-j} \mathbf{k}, s_{-j} \mathbf{j}}(\mathbf{z})\right)
\end{aligned}
$$

We can denote $\tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x})=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} Y_{s_{i} \mathbf{k}, s_{i} \mathbf{j}}(\mathbf{x})$. Note that $\tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x})$ is invariant to all circular shifts of indices. So we further denote by \mathbf{k} / S the set of indices \mathbf{k} modulu the set of circular shifts $s_{0}, s_{1}, . ., s_{d-1}$ and write the last expression as

$$
\begin{aligned}
\boldsymbol{k}^{\mathrm{GAP}}(\mathbf{x}, \mathbf{z}) & =\sum_{\mathbf{k}} \sum_{\mathbf{j}} \frac{1}{d} \lambda_{\mathbf{k}} \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{z})=\sum_{\mathbf{k} / S} \sum_{\mathbf{j} / S}\left(\frac{1}{d} \sum_{i=0}^{d-1} \lambda_{s_{i} \mathbf{k}}\right) \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{z}) \\
& =\sum_{\mathbf{k} / S} \sum_{\mathbf{j} / S} \lambda_{\mathbf{k}}^{\operatorname{Tr}} \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) \tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{z}) .
\end{aligned}
$$

We conclude that the eigenfunctions are $\tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x})$, and the eigenvalues are the same as $\lambda^{\operatorname{Tr} r}$. Moreover, note that for any $\mathbf{k}, \mathbf{k}^{\prime}$ such that $\forall i, \mathbf{k} \neq s_{i} \mathbf{k}^{\prime}$ it holds that $\forall i Y_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) \perp Y_{s_{i} \mathbf{k}^{\prime}, \mathbf{j}}(\mathbf{x})$. Therefore, $\tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x}) \perp \tilde{Y}_{\mathbf{k}^{\prime}, \mathbf{j}}(\mathbf{x})$, implying that $\left\{\tilde{Y}_{\mathbf{k}, \mathbf{j}}(\mathbf{x})\right\}$ form an orthonormal basis.

References

[1] Douglas Azevedo and Valdir A Menegatto. Eigenvalues of dot-product kernels on the sphere. Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, 3(1), 2015.
[2] Alberto Bietti and Francis Bach. Deep equals shallow for relu networks in kernel regimes. arXiv preprint arXiv:2009.14397, 2020.
[3] Lin Chen and Sheng Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. arXiv preprint arXiv:2009.10683, 2020.
[4] Abdallah Dhahri. Multi-variable orthogonal polynomials. arXiv preprint arXiv:1401.5434, 2014.
[5] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. cambridge University press, 2009.
[6] Helmut Groemer. Geometric applications of Fourier series and spherical harmonics, volume 61. Cambridge University Press, 1996.
[7] Claus Müller. Analysis of spherical symmetries in Euclidean spaces, volume 129. Springer Science \& Business Media, 2012.
[8] Aidan Schumann. Multivariate bell polynomials and derivatives of composed functions. arXiv preprint arXiv:1903.03899, 2019.
[9] Alex J Smola, Zoltan L Ovari, Robert C Williamson, et al. Regularization with dot-product kernels. Advances in neural information processing systems, pages 308-314, 2001.

