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Abstract

We study the properties of various over-parameterized convolutional neural archi-
tectures through their respective Gaussian Process and Neural Tangent kernels. We
prove that, with normalized multi-channel input and ReLU activation, the eigen-
functions of these kernels with the uniform measure are formed by products of
spherical harmonics, defined over the channels of the different pixels. We next use
hierarchical factorizable kernels to bound their respective eigenvalues. We show
that the eigenvalues decay polynomially, quantify the rate of decay, and derive
measures that reflect the composition of hierarchical features in these networks.
Our theory provides a concrete quantitative characterization of the role of locality
and hierarchy in the inductive bias of over-parameterized convolutional network
architectures.

1 Introduction

Convolutional Neural Networks (CNNs) [23] have produced dramatic improvements over past
machine learning approaches [22, 35, 18]. Two key properties that distinguish CNNs are their ability
to encode geometric properties of the data, by incorporating multiscale analysis and invariance or
equivariance. Shift invariant networks produce the same output when the input is shifted, which
can be valuable, for example, in classification tasks in which objects are not well aligned. Shift
equivariant networks produce shifted output when the input is shifted, and are important in image-
to-image networks that, for example, denoise or segment the input [21, 24, 37]. Multiscale feature
representations naturally arise in these networks as the receptive field size varies with depth.

However, we still lack a theoretical analysis of CNNs that can quantitatively predict their behavior.
Our analysis builds on the Gaussian Process and Neural Tangent kernels (resp. GPK and NTK). It
has been shown theoretically that massively overparameterized networks can be well approximated
by a linearization about their initialization [1, 2, 15, 20]. With this linearization, neural networks
become kernel regressors, with training dynamics and smoothness properties determined by the
eigenfunctions and eigenvalues of their kernel, which determine their Reproducing Kernel Hilbert
Space (RKHS).

A series of interesting works has derived the spectrum of NTK for fully connected networks (denoted
FC-NTK). This eigen-analysis tells us which functions a network learns most rapidly, since the speed
of learning an eigenfunction with gradient descent (GD) is inversely proportional to the corresponding
eigenvalue [6]. For example, it allows us to determine that FC-NTK learns low frequency components
of a function faster than high frequency components, and characterize the rates at which this happens
[4, 5, 6, 8, 9]. So this eigen-analysis allows us to characterize the inductive bias of over-parametrized
neural networks. Convolutional GPKs and NTKs (resp. CGPKs and CNTKs) have been derived for
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convolutional networks [2, 30], but a characterization of their inductive bias is still missing, despite
several recent works that provide only limited characterizations (see review in Sec. 4).

In this paper we investigate the Gaussian Process and Neural Tangent kernels associated with three
deep convolutional architectures. In particular, we consider kernels associated with a shift equivariant
architecture, a convnet in which the last layer is fully connected, and a convnet with a final global
average pooling step. The former network is applicable to various image processing tasks. The
second network is similar in architecture to AlexNet and VGG [22, 35]. The latter network resembles
a residual network [18], without skip connections. All models we consider use ReLU activation.

We assume our networks receive multi-channel input signals, with the channels for each pixel
normalized to unit norm. Our results establish that the eigenfunctions of the kernels include either
products of spherical harmonics (SH-products) or sums of SH-products that are invariant to shifting the
input. The eigenvalues of these kernels decay polynomially with the frequency of the eigenfunctions
with a leading coefficient that is determined by the hierarchical architecture of the corresponding
CNN. Consequently, for the equivariant network the eigenvalues are larger for functions that are
localized in the center of the receptive field. For the other two networks the eigenvalues are larger
for functions that are spatially localized (in any position in the input image). This spectral analysis
implies that like FC-networks, CNNs are biased to learn low-frequency target functions more quickly.
Unlike FC-networks, they can more quickly learn high frequency functions when these are variable
in a small neighborhood of pixels. (Note that high frequency reflects high variability of the target
function for similar input images and does not refer to the power spectrum of individual images.)

2 Preliminaries and notations

We consider a multi-channel 1-D input signal x of length d (referred to as pixels), each with ζ
channels. We represent x by a ζ × d matrix and denote the i’th pixel by x(i) ∈ Rζ , i ∈ [d]. We
further set D = ζd. We note that our results can readily be applied also to 2-D, multi-channel
signals. We assume further that the entries of each pixel are normalized to unit norm, i.e.,

∥∥x(i)
∥∥ =∥∥∥(x(i)

1 , . . . , x
(i)
ζ

)∥∥∥ = 1. The input space, therefore, is a Cartesian product of spheres, which we call

multisphere, i.e., x ∈MS(ζ, d) = Sζ−1 × ...× Sζ−1︸ ︷︷ ︸
d

⊂
√
dSD−1 (i.e., a sphere with radius

√
d).

We use multi-index notations, i.e., n = (n1, ..., nd),k = (k1, ..., kd) ∈ Nd, to denote vectors of
polynomial orders or frequencies. N denotes the natural numbers including zero, and bn, λk ∈ R are
scalars that depend on vectors of indices n or k. We denote monomials by tn = tn1

1 tn2
2 · . . . · t

nd
d

with t ∈ Rd, and allow also for a scalar exponent, i.e., tn = (t1 · ... · td)n. For u,v ∈ Rd we
say that u ≥ v if ui ≥ vi for all i ∈ [d]. Therefore, the power series

∑
n≥0 bnt

n should read∑
n1≥0,n2≥0,... bn1,n2,...t

n1
1 tn2

2 ...

We denote by six = (x(i+1), ...x(d),x(1), ...x(i)) the cyclic shift of x to the left by i pixels.
We denote the uniform distribution in a domain Ω by Unif(Ω). We write f(x) ∼ g(x) when
limx→∞ f(x)/g(x) = 1. Throughout the paper we assume all kernels are differentiable at zero
infinitely many times and their power series converge in the hypercube [−1, 1]d. Our theorems and
lemmas are proved in the supplementary material.

2.1 The network model

We consider convolutional neural network architectures (Figure 1) of the following form. Given a
multi-channel 1-D input signal x ∈MS(ζ, d) arranged in a ζ × d matrix, we use a shift equivariant
backbone and three heads to produce scalar features. The network includes L ≥ 2 layers. The first
layer implements a 1× 1 convolution layer. This is followed by L− 1 stride-1 convolutional layers
with filters of size q, producing at each layer the same number of feature channels m in each of the d
locations.

The fEq head implements a fully convolutional network; it produces one scalar entry for the shift
equivariant network (i.e., the tuple (fEq(x, ·), ..., fEq(sd−1x, ·)) produces the shift-equivariant out-
put). fTr corresponds to applying a fully connected layer at the top layer. Finally, fGAP corresponds
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1. f(1)(x, θ) = σ
(
W (1)x

)
.

2. f
(l)
i (x, θ) =

σ
(√

cσ
mq

(∑m
j=1W

(l)
:,i,j ∗ f

(l−1)
j (x, θ)

))
,

3. with l ∈ {2, . . . , L}, i ∈ [m], and three heads:

(a) fEq(x, θ) = 〈wEq, f
(L)
:,1 (x, θ)〉.

(b) fTr(x, θ) = 1√
d
〈WTr, f(L)(x, θ)〉.

(c) fGAP(x, θ) = 1
d
wGAPf(L)(x, θ)1.

Figure 1: Left: Network architecture. An input signal x ∈ Rζ×d (left column) is fed into an equivariant
backbone (dashed box), producing m feature channels for each pixel, first using 1× 1 convolution, followed by
L− 1 convolution layers with filters of size q (marked by blueish pyramids), interleaved with ReLU activation.
The backbone is followed by one of three heads, fEq, fTr and fGAP. Right: The corresponding formulas. Here
f (l) ∈ Rm×d (l ∈ [L]); θ =

(
W (1), ...,W (L),WTr,wGAP,wEq

)
are learnable parameters initialized with

N (0, I). W (1) ∈ Rm×ζ , W (l) ∈ Rq×m×m (i.e., W (l)
:,i,j is a filter of size q), WTr ∈ Rm×d (〈·, ·〉 denotes the

standard inner product between matrices), wEq,wGAP ∈ R1×m and 1 = (1, ..., 1)T ∈ Rd. ’*’ denotes cyclic
convolution; σ is the ReLU function, and for ReLU, cσ = 1/

(
Ez∼N (0,1)[σ(z)2]

)
= 2.

Table 1: CGPK and CNTK formulas. Given x, z ∈ MS(ζ, d), we denote respectively by X and Z their

ζ × d matrix representations. Here we denote by Σ̃, ˜̇Σ, and Θ̃ respectively Σ, Σ̇ and Θ whose rows and
columns are extended with circular padding. Additionally, with ReLU activation κ0(u) = 1− arccos(u)/π,
and κ1(u) = uκ0(u) +

√
1− u2/π, u ∈ [−1, 1].

Let Σ(0)(x, z) = Θ(0)(x, z) = XTZ. For l ∈ [L] and i, j ∈ [d],

1. Σ
(1)
i,j (x, z) = κ1

(
Σ

(0)
i,j (x, z)

)
.

2. Σ̇
(1)
i,j (x, z) = κ0

(
Σ

(0)
i,j (x, z)

)
.

3. Θ
(l)
i,j(x, z) = 1

2q

∑q−1
r=0

[
˜̇Σ
(l)
i+r,j+r(x, z)Θ̃

(l−1)
i+r,j+r(x, z)+

Σ̃
(l)
i+r,j+r(x, z)

]
.

4. Σ
(l+1)
i,j (x, z) = κ1

(
1
q

∑q−1
r=0 Σ̃

(l)
i+r,j+r(x, z)

)
.

5. Σ̇
(l+1)
i,j (x, z) = κ0

(
1
q

∑q−1
r=0 Σ̃

(l)
i+r,j+r(x, z)

)
,

1. CGPK-EqNet (corresponds to fEq): Σ
(L)
1,1 (x, z).

2. CGPK (corr. to fTr): 1
d

∑d
i=1 Σ

(L)
i,i (x, z).

3. CGPK-GAP (corr. to fGAP): 1
d2

∑d
i=1

∑d
j=1 Σ

(L)
i,j (x, z).

4. CNTK-EqNet (corr. to fEq): Θ
(L)
1,1 (x, z).

5. CNTK (corr. to fTr): 1
d

∑d
i=1 Θ

(L)
i,i (x, z).

6. CNTK-GAP (corr. to fGAP): 1
d2

∑d
i=1

∑d
j=1 Θ

(L)
i,j (x, z).

to applying global average pooling, resulting in a shift invariant network. With each of the heads, the
network parameters are trained for regression with the mean square error (MSE) loss.

2.2 Derivation of CGPK and CNTK

Previous work showed that in the limit of infinite width and with small initialization, massively
over-parameterized neural networks become kernel regressors with a family of kernels called Neural
Tangent Kernels [20]. Let f(x, θ) denote a network, then for a pair of inputs xi,xj , the corresponding

NTK is defined as −k(xi,xj) = Eθ∼P
〈
∂f(xi,θ)

∂θ ,
∂f(xj ,θ)

∂θ

〉
. A related kernel, called the Gaussian

Process (or random feature) kernel, is obtained if the weights are kept in their initial random values,
and only the last layer of the network is optimized in training [13].

[2] derived expressions for CNTK and CGPK for convolutional networks and noted that they can
be computed for a pair of inputs in O(d2L). The formulas in Table 1 adapt these expressions to
our convolutional architectures and to multisphere inputs. We note that with general input in RD
additional normalization steps are needed. We refer the reader to [2] for the full derivation.

Note that for a pair of inputs x, z, this definition produces two matrices of kernels, Σ
(L)
i,j (x, z)

and Θ
(L)
i,j (x, z), i, j ∈ [d], and that Σ

(L)
i,j (x, z) = Σ

(L)
1,1 (si−1x, sj−1z) (and similarly for Θ). With

these definitions, we produce six different kernels in Table 1(right)–these describe three different
architectures for each of the Gaussian Process and the Neural Tangent kernels.
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Below we refer to these six kernels as CGPKs and CNTKs. Note that CGPK-EqNet and CNTK-EqNet
each produce a single output, corresponding to the first output of the equivariant network. The tuple
(−k(s0x, s0z), ...,−k(sd−1x, sd−1z)) ∈ Rd (with −k either CGPK-EqNet or CNTK-EqNet) produces
the full response of the equivariant network.

3 The RKHS of CGPKs and CNTKs

Our objective is to derive the spectrum of Gaussian Process and Neural Tangent kernels associated
with convolutional networks. We do so by forming bounds using products of kernels that apply to
individual pixels and are composed hierarchically. Prior work on FC-NTK has benefited from the fact
that they are dot product kernels, allowing the analysis to draw on a rich body of results. Our task is
challenging since the kernels we study are not dot product kernels; tools for spectral decomposition
of these kernels on the sphere are scarcely available. We approach this problem by first proving
general results for kernels that are functions of inner products between pixels (Sec. 3.1). We next
consider factorizable kernels and derive their spectrum (Sec. 3.2). Then, in Sec. 3.3, we refine our
expressions to account for hierarchical kernels. We finally use these derivations in Sec. 3.4 and 3.5 to
prove bounds for all six kernels.

3.1 Multi-dot product kernels

It can be readily shown that CNTK and CGPK associated with the shift equivariant network are
functions of dot products of corresponding pixels. We refer to such kernels as multi-dot product and
prove in the supplementary material several new results regarding their spectral properties, briefly
summarized here.

We call a kernel −k(x, z) : MS(ζ, d) ×MS(ζ, d)→ R multi-dot product if −k(x, z) = −k(t), where
t =

(
〈x(1), z(1)〉, .., 〈x(d), z(d)〉

)
∈ [−1, 1]d. (Note the overload of notation, which should be clear

by context.) Multi-dot product kernels can be written via Mercer’s decomposition as

−k(x, z) =
∑
k,j

λkYk,j(x)Yk,j(z), (1)

where Yk,j(x) (k, j ∈ Nd), the eigenfunctions of −k, are products of spherical harmonics in Sζ−1,
Yk,j(x) =

∏d
i=1 Ykiji

(
x(i)
)
, with ki ≥ 0, ji ∈ [N(ζ, ki)], and N(ζ, ki) denotes the number of

harmonics of frequency ki in Sζ−1. Such products are harmonic polynomials in SD−1. With ζ = 2,
these are products of Fourier series in a multi-dimensional torus. The eigenvalues λk depend on
the vector of frequencies, k, and are independent of the phases j. We note that a multi-dot product
kernel is universal for MS(ζ, d) if all its eigenvalues are strictly positive. Non-universal kernels are
obtained, e.g., when the eigenfunctions involve pixels outside of the receptive field of the respective
network, in which case these eigenfunctions lie in the null space of the kernel.

Below we consider kernels that can be expressed using a multivariate power series of the form

−k(t) =
∑
n≥0

bnt
n =

∑
n≥0

bn

d∏
i=1

〈x(i), z(i)〉ni . (2)

with bn ≥ 0 for all n ≥ 0. It can be readily shown that our CGPKs and CNTKs are positive
semidefinite (PSD) and their power series coefficients are non-negative; the kernels are obtained from
the univariate PSD κ0 and κ1 (defined in Table 1), whose coefficients are non-negative, by sequences
of multiplication, addition and composition, resulting in PSD kernels with non-negative coefficients.

The eigenvalues of multi-dot product kernels can be deduced from their power series coefficients.
This is established in the following lemma, which extends a result by [3, 32] to multi-dot product
kernels.
Lemma 3.1. Let −k be a multi-dot product kernel with the power series given in (2), where x(i), z(i) ∈
Sζ−1 respectively are pixels in x, z. Then, the eigenvalues λk(−k) of −k are given by

λk(−k) =
∣∣Sζ−2

∣∣d∑
s≥0

bk+2s

d∏
i=1

λki(t
ki+2si),
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where |Sζ−2| is the surface area of Sζ−2, and λk(tn) is the k’th eigenvalue of tn, given by

λk(tn) =
n!

(n− k)!2k+1

Γ
(
ζ−1

2

)
Γ
(
n−k+1

2

)
Γ
(
n−k+ζ

2

)
if n− k is even and non-negative, while λk(tn) = 0 otherwise, and Γ is the Gamma function.

Lemma 3.1 generalizes a result by [32] (Thm. 4.1), which deals with the special case of a kernel
made of a single convolutional layer followed by L FC layers. Our result applies to any multi-dot
product kernel, including convolutional kernels of arbitrary depths such as CNTK and CGPK.

3.2 Factorizable Kernels

Next, we consider multivariate kernels that factor into products of dot product kernels, −k(x, z) =∏d
i=1
−ki(〈x(i), z(i)〉). The power series of −k can be written as −k(t) =

∏d
i=1

(∑∞
n=0 b

(i)
n tni

)
. Their

eigenvalues satisfy λk(−k) =
∏d
i=1 λki(

−ki) and can be calculated using Lemma 3.1. Below we are
interested specifically in kernels whose power series decay polynomially with frequency. The next
theorem shows that for such kernels, the eigenvalues too decay polynomially and derives their exact
decay rate. For the theorem we further use the concept of a receptive field, which captures for a
multivariate kernel the subset of variables it depends on. That is, the receptive fieldR ⊆ [d] is the set
of indices i for which there exists n = (..., ni, ...) with ni ≥ 1 and bn 6= 0. This condition ensures
that there exists a term in the power series expansion that depends on pixel i.
Theorem 3.2. Let −k be a factorizable multi-dot product kernel with inputs x, z ∈ MS(ζ, d), and
letR ⊆ [d] denote its receptive field. Suppose that −k can be written as a multivariate power series,
−k(t) =

∑
n≥0 bnt

n with bn ∼ c
∏
i∈R, ni>0 n

−ν
i . with constants c > 0, non-integer ν > 1, and

bn = 0 if ni > 0 for any i 6∈ R. Then the eigenfunctions of −k w.r.t the uniform measure are the
SH-products. Moreover, let k ∈ Nd be a vector of frequencies. Then, the eigenvalues λk(−k) satisfy

λk ∼ c̃
∏

i∈R, ki>0

k
−(ζ+2ν−3)
i .

Finally, λk = 0 if ki > 0 for any i 6∈ R.

The theorem above significantly improves over previous results by [3, 33] in various ways. Specifi-
cally, these authors considered only dot product kernels (i.e., d = 1) and bounded the decay of their
eigenvalues by a non-tight upper bound. Here we provide both tight upper and lower bounds, which
are identical up to a constant factor, for any d ≥ 1.

3.3 Positional bias of eigenvalues

CNNs process signals by producing a hierarchy of learned features that emerge via repeated con-
volutions, interleaved with non-linear activations. It is natural to ask, therefore, to what extent this
hierarchy is reflected in the RKHS of the CGPKs and CNTKs. To answer this question we consider
kernels formed by hierarchical composition of kernels. We are further interested in such kernels that
are both factorizable and whose power series decay polynomially. For such kernels we prove that
their eigenvalues are larger for eigenfunctions that depend on pixels near the center of their receptive
field and smaller for eigenfunctions that depend only on peripheral pixels. This in turn will allow us
to derive similar bounds for the kernels associated with the equivariant network. For the trace and
GAP kernels this will reveal bias to eigenfunctions that depend on nearby pixels, compared to those
that depend only on more distant pixels.

Definition 3.3. A kernel −k(L) : [−1, 1]d → R is called (stride-1) hierarchical of depth
L > 1 and filter size q if there exists a sequence of kernels −k(1), ...,−k(L) such that −k(l)(t) =

f (l)
(
−k(l−1)(s0t), ...,

−k(l−1)(sq−1t)
)

with f (l) : Rq → R and −k(1)(t) = f (1)(t1), t1 ∈ [−1, 1].

Similar to feed-forward networks, hierarchical kernels induce a tree structure in which the leaf nodes
represent the variables t1, ..., td and parent nodes represent function applications f (l). Each variable
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may be connected by multiple paths to the root node, which corresponds to the final kernel −k(L). The
number of paths from a node ti to the root, denoted p(L)

i , plays an important role in the magnitude of
the eigenvalues. In the next theorem we bound both the power series coefficients and the eigenvalues
of hierarchical kernels, showing that the bounds depend on the number of paths in the hierarchical
tree, which in turn is determined by the position of the pixel within the receptive field.

Theorem 3.4. Let −k(L) =
∑

n≥0 bnt
n be hierarchical and factorizable of depth L > 1 with filter

size q so that bn = c
∏d
i=1,ni>0 n

−ν
i for non-integer ν > 1. Then there exists a scalar A > 1 s.t.:

1. The power series coefficients of −k(L) satisfy bn ≥ cL
∏d

i=1
ni>0

Amin(p
(L)
i ,ni)n−νi .

2. The eigenvalues λk(−k(L)) satisfy λk ≥ c̃L
∏d

i=1
ki>0

Amin(p
(L)
i ,ki)k

−(ζ+2ν−3)
i ,

where cL, c̃L are constants that depend on L, and p(L)
i denotes the number of paths from pixel i to

the output of −k(L).

The proof exploits relations between hierarchical stride-1 and stride-q kernels and relies on recursively
combining power series, which are shown to maintain their polynomial decay. We note that although
the number of paths can grow rapidly with depth, the kernels we consider are normalized so that they
always produce values in [−1, 1]. As a result, both the power series coefficients and the eigenvalues
are bounded in [0, 1]. This normalization is reflected in the magnitudes of cL and c̃L.

In fact, for a hierarchical, stride-1 kernel of depth L, the (normalized) number of paths p(L)
i of a pixel,

x(i), decays exponentially with its distance from the center of the receptive field, |i− ic|. The number
of paths is determined by convolving a rectangular function of width q, the size of the convolution
filter, (i.e., r(x) = 1/q if 0 ≤ x ≤ q and 0 otherwise) with itself L times. Note that such a repeated
convolution is equal to the density function obtained by summing L random variables distributed
uniformly, resulting in the Irwin–Hall distribution, whose support is stretched by the size of the
convolution filter q. With sufficiently largeL, using the central limit theorem and assuming the number
of pixels d is greater than the receptive field size, the number of paths p(L)

i approaches a Gaussian
centered at the central pixel with variance Vq,L ≈ Lq2/12, i.e., p(L)

i ∝ exp(−(i − ic)2/(2Vq,L))
[25]. Roughly speaking, we conclude that the position of a pixel within the receptive field has an
exponential effect on both the power series coefficients and the eigenvalues of the kernel.

Note that in the analysis above we assumed that the number of pixels d is larger than the receptive
field size. With a receptive field of size d and cyclic convolutions, the number of paths from all pixels
approaches a constant as L grows. In practice, real CNNs use zero padding, which effectively ensures
that d is always larger than the receptive field size.

3.4 Kernels associated with the equivariant network

The following theorem characterizes the spectrums of CGPK-EqNet and CNTK-EqNet, by proving
lower and upper bounds on both their power series coefficients as well as their eigenvalues.

Theorem 3.5. Let −k(L) denote either CGPK-EqNet or CNTK-EqNet of depth L whose input includes
ζ channels, with receptive fieldR and with ReLU activation. Then,

1. −k(L) can be written as a power series, −k(L)(t) =
∑

n≥0 bnt
n with

c1
∏

i∈R,ni>0

Ãmin(p
(L)
i ,ni)n−2.5

i ≤ bn ≤ c2
∏

i∈R,ni>0

n−νi ,

2. The eigenvalues of −k(L) are bounded by

c3
∏
i∈R
ki>0

Ãmin(p
(L)
i ,ki)k

−(ζ+2)
i ≤ λk ≤ c4

∏
i∈R
ki>0

k
−(ζ+2ν−3)
i ,
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Figure 2: The power series coefficients of CGPK-EqNet (left, n ≤ 50) and CNTK-EqNet (middle, n ≤ 20).
Here d = 2, q = 2, L = 2 and the receptive field size is 2. The coefficients, bn, marked with blue points, are
shown as functions of n = (n1, n2). Our bounds are depicted in each graph by two planes whose slopes are
determined by the exponents in Theorem 3.5. Right: The figure shows the relative magnitude of the eigenvalues
of a hierarchical trace kernel for SH-products involving two pixels as a function of the distance between the
pixels. This is shown for various architectures with different depths L and convolution filter sizes q that results
in the same receptive field size of 61.

where for CGPK-EqNet ν = 1 + 3/(2d) and for CNTK-EqNet ν = 1 + 1/(2d). Also, p(L)
i denotes

the number of paths from pixel i to the output of −k(L), Ã > 1 and c1, c2, c3 and c4 depend on L.

The proof relies on the recursive formulation of the kernels, which gives rise to a multivariate version
of the Faá di Bruno formula [34], involving Bell polynomials; those are exploited to bound the
coefficients of the power series expansion of the kernels. The implication of Theorem 3.5 is that
CGPK-EqNet and CNTK-EqNet are bounded from above and below by factorizable kernels. The
eigenvalues of these bounding kernels decay polynomially with the product of the frequency in each
pixel, ki, with an exponent that depends on ζ, the number of input channels. While this implies in
general that with GD, low frequencies are learned faster than high frequencies, the theorem also
states that it should be faster to learn target functions that vary (i.e., have high frequencies) in a small
set of pixels compared to ones that vary in many pixels.

Recall that learning an eigenfunction with eigenvalue λ requires O(1/λ) GD iterations (e.g., [6]).
Therefore, for example, according to the lower bound in Thm. 3.5, learning an SH-product of fre-
quency k in one pixel and constant frequencies in the other pixels should require O(kζ+2) GD itera-
tions. Learning an SH-product of frequency k/m̄ in each of m̄ pixels should requireO((k/m̄)m̄(ζ+2))
iterations. With k � m̄, this is exponentially slower by a factor of m̄. With m̄ = d, the speed of
learning decays with an exponent that depends on the size of the entire signal. For such functions,
over-parameterized CNNs behave similarly to fully connected networks, for which the eigenvalues
of their respective kernels, FC-GPK and FC-NTK, decay as resp. k−(D+2) and k−D for input in
SD−1 [8, 17, 12]. Note that the exponent in the polynomial decay does not depend on q, the size of
the convolution filter. We conclude that over-parameterized CNNs can more efficiently learn target
functions whose variation is restricted to subsets of the pixels. This is not true for fully connected
networks. We further illustrate this difference between convolutional and FC kernels in Sec. 3.5,
where we numerically compare the eigenvalues for the trace kernels.

While the form of the polynomial decay induces bias toward learning functions that depend on fewer
pixels, according to the lower bound the multiplicative factors of these polynomials exhibit bias
toward learning functions in which the variation is localized near the center of the receptive field.
This bias is affected by the number of paths from a pixel node to the output and depends on the depth
and the size of the convolution filter q.

Figure 2 provides a visualization of the power series coefficients of CGPK-EqNet and CNTK-EqNet
for d = 2 and q = 2. The upper and lower bounds, plotted as planes in these log-log plots, indicate
the maximal and minimal asymptotic directions determined by the exponents in Theorem 3.5. The
coefficients indeed appear to lie between the bounds, with coefficients of orders that vary along a
single axis (i.e., (n, 0)) lying close to the lower bound, while those of orders that vary simultaneously
along both axes (i.e., (n, n)) lie close to the upper bound. In this example the number of paths are
equal for both pixels, so position does not affect the coefficients.

3.5 Trace and GAP kernels

Our next objective is to characterize the RKHS of CGPK and CNTK and their GAP versions.
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Figure 3: Left: The eigenvalues of CGPK for frequency patterns that include either one non zero frequency
(blue dots), two (orange), three (green) or four (maroon) identical frequencies. The slopes (respectively, −5.18,
−7.06, −8.24 and −9.64) indicate the exponent for each pattern. Middle: The eigenvalues of CGPK for two
frequency patterns that include exactly two non zero frequency, either next to each other (red dots) or separated
by one zero frequency (blue). Consistent with our theory, the eigenvalues obtained with non-zero frequencies
next to each other are larger than those obtained with the same frequencies but separated. Right: The eigenvalues
of FC-GPK on MS(ζ, d) for frequency patterns that include either one non zero frequency (blue dots), two
(orange), three (green) or four (maroon) identical frequencies. The slopes (respectively, −11.26, −10.52,
−10.20 and −10.04) indicate the exponent for each pattern. We used d = 4, ζ = 3, q = 2, L = 3 in these
plots.

Definition 3.6. Let −k(x, z) be a multi-dot product kernel. We define the respective trace kernel by
kTr(x, z) = 1

d

∑d−1
i=0

−k(six, siz) and GAP kernel by kGAP(x, z) = 1
d2

∑d−1
i=0

∑d−1
j=0

−k(six, sjz).

Clearly, by their definition (Section 2.2), CGPK and CNTK respectively are the trace kernels of
CGPK-EqNet and CNTK-EqNet, while CGPK-GAP and CNTK-GAP are their GAP versions.

The eigenvalues and eigenfunctions of trace and GAP kernels can be derived from their generating
kernel, as is established in the following lemma.
Theorem 3.7. Let −k be a multi-dot-product kernel with Mercer’s decomposition as in (1), and let
kTr and kGAP respectively be its trace and GAP versions. Then,

1. kTr(x, z) =
∑

k,j λ
Tr
k Yk,j(x)Yk,j(z) with λTr

k = 1
d

∑d−1
i=0 λsik, where λk denotes an

eigenvalue of −k.

2. kGAP(x, z) =
∑

k,j λ
Tr
k Ỹk,j(x)Ỹk,j(z) with Ỹk,j(x) = 1√

d

∑d−1
i=0 Ysik,sij(x).

According to this theorem, the eigenfunctions of a trace kernel are the SH-products. This is simply
because the trace kernel itself is multi-dot product. Its eigenvalues are obtained by averaging the
eigenvalues of −k for shifted frequencies sik, making the eigenvalues λk invariant to shifts of the
index vector k. Note however that for a trace kernel, the respective eigenfunctions are not shift
invariant. The second part of the lemma establishes that GAP kernels share the same eigenvalues
as their respective trace kernels. For these kernels, however, the eigenfunctions consist of sums of
SH-products that are shift invariant.

By combining Thms 3.7 and 3.5 we obtain the following bounds on the eigenvalues of these kernels.

Corollary 3.8. Let −k(L) denote either CGPK, CGPK-GAP, CNTK or CNTK-GAP of depth L whose
input includes ζ channels, with receptive fieldR and with ReLU activation. Then, the eigenvalues of
−k(L) are bounded by

d−1∑
j=0

c3
∏

i∈R,ki+j>0

Ãmin(p
(L)
i+j ,ki+j)k

−(ζ+2)
i+j ≤ λk ≤

d−1∑
j=0

c4
∏

i∈R,ki+j>0

k
−(ζ+2ν−3)
i+j ,

where for CGPK, CGPK-GAP ν = 1 + 3/(2d), while for CNTK, CNTK-GAP ν = 1 + 1/(2d). Also,
p

(L)
i is defined in Theorem 3.5, i.e., the number of paths in the equivariant kernel, Ã > 1 and c3 and
c4 depend on L. Here ki+j is identified with i+ j − d if i+ j > d.

Overall, Corollary 3.8 indicates that the eigenvalues of the trace and GAP CGPK and CNTK decay
polynomially with bounds that are similar to those of the equivariant kernel. Here too, the exponent
depends on the number of channels and forms a bias toward learning target functions that depend
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Learning Eigenfunction With Real Network

Figure 4: Left: The eigenvalues of CGPK without the 1× 1 convolution. Eigenvalues for different frequency
patterns that include either one nonzero frequency (blue dots), two (orange), three (green) or four (maroon)
identical frequencies. The slopes (respectively, −7.32, −7.11, −8.58, −9.89) indicate the exponent for each
pattern. Middle: Eigenvalues for two frequency patterns that include exactly two nonzero frequencies, either
next to each other (red dots) or separated by one zero frequency (blue). Black lines indicate differences from the
values shown in Figure 3. (d = 4, ζ = 2, q = 2, L = 3.) Right: Convergence times of real networks, a CNN
(solid dark and light blue curves) and a fully connected network (dashed black and dotted red), trained to fit
various SH-products. (d = 8, ζ = 2, q = 2, L = 4.)

on few pixels. The multiplicative coefficients depend on the number of paths from each pixel to the
output in the corresponding equivariant kernel. In contrast to the equivariant kernels, the eigenvalues
of the trace and GAP kernels are averages over shifted indices, and therefore they depend on the
relative positions of pixels. For example, the eigenvalues of SH-products involving only two pixels
with large frequencies, ki and ki+δ, is large when δ is small, and is smaller when δ is large. This is
illustrated in the graph in Figure 2(right), which shows the relative magnitude of the eigenvalues,
according to the lower bound, involving exactly two pixels as a function of their distance. It can be
seen that the coefficients decay exponentially with the distance between the two pixels. Moreover, for
a fixed receptive field size, a more rapid decay is obtained with a smaller filter and deeper architecture,
compared to a larger filter and shallower network.

The graphs in Figure 3(left and middle) show the eigenvalues of the CGPK kernel evaluated numeri-
cally for a three-layer network. The figure shows the eigenvalues for frequencies k in 1–4 pixels. The
slope of these lines, which depicts the exponent of the decay of the corresponding eigenvalues, is in
good correspondence with our theory. Moreover, consistent with our discussion in Sec. 3.4, the decay
rate is higher for frequencies spread over more pixels. This can be contrasted with the eigenvalues for
the Gaussian Process Kernel for a fully connected network (FC-GPK) shown in Figure 3(right). For
that kernel, the decay rate is the same regardless of the pixel spread of frequencies, as is indicated
by the parallel lines in the graph, and is similar to the maximal decay rate obtained for CGPK with
d = 4 pixels. Figure 3(middle) further shows the eigenvalues of CGPK obtained with two frequency
patterns, (k1, k2, 0, 0, ...) and (k1, 0, k2, 0, ...). As is predicted by our theory, while the decay rate for
both patterns is similar, the eigenvalues for high frequencies in two adjacent pixels are larger (by a
multiplicative constant) than for the same frequencies in two non-adjacent ones. This is of course not
the case with FC-NTK, in which the spatial location of pixels makes no difference.

Removing the 1×1 convolution: Our analysis uses network models which include a 1×1 convolution
in the first layer. This simplifies our derivations and appears to have only limited effect on the analysis.
In particular, it can be readily shown that for data distributed uniformly on the multisphere, the
eigenfunctions of CGPK and CNTK without the 1 × 1 convolution are the SH-products (or their
shift invariant sums in the case of GAP kernels). Figure 4(left and middle) shows the eigenvalues
of CGPK under the same conditions as in Figure 3 with the 1 × 1 convolution removed. Overall,
similar decay patterns are observed, except that with q = 2 in the case of high frequency in one pixel
(denoted ’(k, 0, 0, 0)’) the eigenvalues decay faster than with the 1× 1 convolution.

Real networks: We further tested our predictions on two real networks, a CNN and a fully connected
architecture. We trained the networks to fit various SH-products in which the higher frequencies
(k = 1, ..., 4) are positioned at either two neighboring or two distant pixels and measured the number
of iterations to convergence. Figure 4(right) shows that, consistent with our predictions, the CNN
learned each function faster than the FC network. Moreover, the CNN learned the localized functions
faster than those in which the high frequencies are spread in distant pixels. The FC network, in
contrast, required the same number of iterations to converge for both types of functions.
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4 Related Work

A number of papers analyze the spectral properties and generalization bounds for convolutional
kernels, including CNTK. [9] derived explicit feature maps for CNTK. [29] developed spectral
decomposition and generalization bounds for CNTK with only one convolution layer and pooling
with input in the nodes of the hyper-cube {−1, 1}d. [16] considered CNTK with just one convolutional
layer that is applied to an input comprising of non-overlapping patches. Such input is equivalent to
applying only a 1× 1 convolution layer in our setup. They showed that the eigenvalues decay for this
kernel is dictated by the patch size (corresponding to the number of channels in our setup). Their
limited setup yields Mercer’s decomposition similar to that obtained with NTK for a two-layer FC
network.

[28] considered a network with one convolution layer with patches of full image size and inputs
drawn from the uniform distribution on either the sphere or the hypercube. Their work focuses on
the benefits of group invariance in reducing the sample size. [10] considered general kernels that
incorporate group invariance and derived a generalization bound based on counting the number of
eigenfunctions of the kernel. [38] studied the spectral properties of CNTK in a setting in which the
frequency is held constant, while the input dimension tends to infinity. Subsequent to our work, [11]
derived asymptotic decay rates of the eigenvalues of CNTK and further used these to derive a new
generalization bound. Both of these recent works, however, are restricted to networks that involve
convolutions with non-overlapping patches.

[27, 26] proposed a convolutional kernel network (CKN) that involves layers of patch extraction,
convolution, and pooling. Pooling in this model is implemented by a convolution with a fixed filter
such as a Gaussian, possibly followed by subsampling. We note that without subsampling, such
pooling operation can effectively result in a fully connected layer. [32] proved that the set of functions
produced by the CKN network that applies convolution with non-overlapping patches is contained
in the RKHS of a kernel that includes just one convolution layer. Similar to our work, their work
used inputs drawn from a multisphere, yielding eigenfunctions that are SH-products. Their spectral
analysis however was applied to CKNs with only one convolution layer followed by a sequence of
polynomial activations. [7] extended this setup to enable convolution with overlapping patches and
further derive generalization bounds. In contrast to these works, our work shows that the SH-products
are the eigenfunctions of all multi-dot product kernels and further provides spectral bounds for CGPK
and CNTK for multilayer CNNs.

[19] investigated the speed of convergence of GD for equivariant networks with a fully connected
layer followed by a fixed convolution layer in the context of image denoising. In a related work, [36]
used NTK for a two-layer network to relate denoising with CNNs to denoising with non-local filters.
Existing work also investigates CNNs from a non-kernel perspective, for example, by showing that
multi-layer CNNs (and related networks) can efficiently learn compositional functions [31, 14].

5 Conclusion

Our paper has derived the eigenfunctions and corresponding eigenvalues of Neural Tangent Kernels
that describe overparameterized CNNs. This provides us with a clear and specific understanding
of these networks, just as much prior work has done for fully connected networks. Of particular
interest, our work provides a concrete understanding of the inductive bias produced by the hierarchical
structure of deep CNNs. We see that CNNs can efficiently learn higher frequency functions than
FC networks when these functions are spatially localized. We provide formulas that can show the
trade-off points between higher frequency functions and spatial localization, and also show how
architectural variations can affect these biases. We believe that this is a significant step towards
understanding which features CNNs will learn, and how this depend on network architecture. In
future work we hope to provide tighter bounds for the eigenvalues, extend our analysis to residual
networks, and further test our predictions on real convolutional networks.
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