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Abstract

Protecting the privacy of user data is crucial for text generation models, which can
leak sensitive information during generation. Differentially private (DP) learning
methods provide guarantees against identifying the existence of a training sample
from model outputs. PATE is a recent DP learning algorithm that achieves high
utility with strong privacy protection on training samples. However, text genera-
tion models output tokens sequentially in a large output space; the classic PATE
algorithm is not customized for this setting. Furthermore, PATE works well to
protect sample-level privacy, but is not designed to protect phrases in samples. In
this paper, we propose SeqPATE, an extension of PATE to text generation that
protects the privacy of individual training samples and sensitive phrases in training
data. To adapt PATE to text generation, we generate pseudo-contexts and reduce
the sequence generation problem to a next-word prediction problem. To handle
the large output space, we propose a candidate filtering strategy to dynamically
reduce the output space, and refine the teacher aggregation of PATE to avoid low
agreement due to voting for a large number of candidates. To further reduce privacy
losses, we use knowledge distillation to reduce the number of teacher queries.
The experiments verify the effectiveness of SeqPATE in protecting both training
samples and sensitive phrases.

1 Introduction

Recent work has shown that sensitive user information in training corpora, such as addresses and
names, can be extracted from text generation models [6]. Providing privacy guarantees to the
training corpora of text generation models has become a critical problem. Differential privacy (DP)
provides provable guarantees against detecting individuals in datasets. Deep learning models with
DP guarantees ensure that the existence of a specific training sample cannot be detected.

NoisySGD [42, 3, 1] is a popular DP algorithm for deep learning that adds noise to the gradients.
PATE [31] is another type of DP learning algorithm that transfers knowledge from teachers trained
on private data to a student model, where noises are added to teacher predictions to satisfy DP. PATE
is model-agnostic, and its privacy cost derives from the knowledge distillation process instead of the
model gradients in NoisySGD [42, 24]. Therefore, the noises required by PATE do not scale with
model size. Given this benefit, PATE has great potential for text generation, since large language
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models (e.g., GPT-2 [35]) have become the backbone of most text generation models. However,
NoisySGD and PATE are used to protect sample-level privacy [52, 24] and not customized to protect
sensitive phrases in the data with a low privacy cost [22, 39, 51]. Additionally, PATE, originally
designed for classification tasks, is not customized for sequential generation on a large output space
(i.e., the natural language vocabulary), which is very common in text generation.

In this paper, we propose SeqPATE, a DP learning algorithm for text generation to protect the privacy
of training corpora. By satisfying DP, SeqPATE has the guarantee of preventing the existence of
training samples and sensitive phrases in the training corpora from being detected. Similarly to PATE,
SeqPATE employs a teacher-student framework: (i) a student model learns to generate text from non-
sensitive samples; and (ii) a number of teacher models, trained on sensitive text, supervise the student
through noised outputs of aggregated teachers. The calibrated noise added to the output ensures that
SeqPATE satisfies the DP requirements. This framework still faces some challenges in text generation.
First, it suffers from the high costs of GPU memory and time. To obtain sentence-level supervision
for text generation, the model needs to roll out all teachers to produce a sentence (i.e. all teachers
vote to generate a word, which is then used as the input for the next word prediction). It results in a
high inference cost with a large number of teachers (e.g. 2k teachers which are common in PATE).
Second, the large output space (i.e., the vocabulary) in text generation leads to (i) low agreement
rates among teachers and (ii) large noises required by DP, both of which significantly hurt the task
performance.

To address the challenges, we generate pseudo-data using a pre-trained language model so that
teachers only need to provide token-level supervision given the pseudo inputs. To handle the large
output space and reduce the noise, we propose to dynamically filter the candidate words and select
only words with high probabilities. Also, we aggregate teachers’ outputs by interpolating their
output distributions instead of voting with argmax predictions. DP learning methods provide privacy
protection by adding noise, which also reduces the utility of the model. To reduce utility loss, we
avoid unnecessary knowledge distillation by selectively applying knowledge distillation to generation
steps where the student struggles. Most DP learning methods, including SeqPATE, prevent samples
from being extracted. SeqPATE has further advantages in protecting users’ secret phrases that
occur multiple times in the corpora. We evaluate SeqPATE on a sentence completion task, which
demonstrates its advantage in protecting samples and phrases compared to the baselines.

Our contribution is twofold: (i) We propose SeqPATE that provides privacy at both the sample level
and the phrase level with theoretical analyses. (ii) We propose several strategies for SeqPATE to
handle autoregressive text generation models with a large vocabulary.

2 Problem Setup

Our goal is to achieve the privacy protection quantified by DP in text generation to prevent attackers
from inferring whether a sample or an n-gram appears in the training set. Our setting contains two
types of textual datasets: (1) a private set Dpri from a corpus with sensitive information, (2) a public
set Dpub that contains no sensitive information or comes from data contributors (e.g., volunteers) who
have no objection to publishing their data. We aim to protect the privacy on the private set and can
ignore the privacy protection on the public set.

Our application, sentence completion, aims to complete the whole sentence given the prefix. We train
a language model to accomplish the task. The public set Dpub consists of prefixes, which can hardly
contain sensitive information. The private set Dpri consists of whole sentences. Such a setting fits
some real-world text generation applications: in dialog systems, the training samples from online
services consist of questions and responses. The questions from customer service staff or service
robots can be public, and the response from users carrying individual information should be private.

3 Background on DP and PATE

Definition 3.1. [Differential privacy (DP) [13, 14]] For any two neighboring datasets D,D′ (differ in
only one individual), a randomized algorithm M : Xn → Y is (ε, δ)-differentially private if,

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ, ∀S ⊆ Y, where ε > 0, δ ≥ 0. (1)
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Figure 1: Overview of SeqPATE. SeqPATE trains teachers on private data. Student models are trained
on pseudo-sentences generated by a pre-trained language model given the public prefixes. The student
is supervised by aggregated teacher output distributions. SeqPATE benefits from candidate filtering
(white block in the top right corner) and efficient knowledge distillation that determines whether
teacher supervision is needed (pink block).

By definition, DP is a quantifiable definition of privacy that provides guarantees on identifications of
individual data (preventing an adversary from inferring whether the input is D or D′). ML models
with DP ensure that each training sample has a degree of plausible deniability, i.e., the trained model
is just as likely as to be trained on an alternative dataset without that sample. In SeqPATE, M is the
entire training and inference process, S is the vocabulary, and Pr[·] denotes the output distribution
of generating a word. Attackers cannot tell whether a sample is in the training set or not, since the
output distributions of the datasets with or without that sample are very similar (bounded by Eq. 1).

PATE [31], designed for classification tasks, takes advantage of an unlabeled public dataset Dpub and
also trains on a labeled private set Dpri in a semi-supervised scenario. PATE achieves DP through a
teacher-student framework with M teacher models and a student model, where the student learns
from the private set via knowledge distillation through teachers. PATE has three parts: (i) The
teacher models are trained on the private set Dpri, which is shuffled and divided into M disjoint
subsets. Each teacher is trained on one subset. (ii) Teacher aggregation merges the teachers’ outputs.
Each of the trained teachers then provides supervision to the student’s unlabeled public set Dpub. We
use noised majority votes from teachers as labels to supervise the student. (iii) A student model is
trained on the public set Dpub with the supervision of the aggregated teachers.

4 Approach

Fig. 1 shows an overview of SeqPATE. Given the public prefix (e.g., “Cats sit”), we first obtain the
pseudo-inputs by completing the sentence (e.g., “Cats sit on the mats”) using a pre-trained language
model (Sec. 4.1). At each word, we then aggregate the teachers’ prediction of the next word as
supervision for training the student model (Sec. 4.2). To reduce the noise required by DP for a
large output space of the size of the vocabulary, we reduce the output space by dynamically filtering
unimportant words. To reduce the number of teacher queries that incur privacy losses, we propose
an efficient knowledge distillation strategy that only queries teacher labels on uncertain examples
(Sec. 4.3). We show the training algorithm in App. B and a running example in App. K.

4.1 Pseudo Input Generation

Conventional text generation models generate words sequentially from left to right. Thus, naively
applying PATE to text generation requires rolling out all teachers word by word, i.e., iteratively
sampling the next word from the aggregated teacher prediction. This is costly in both computation
(running inference for hundreds of teacher models) and privacy costs (querying teachers at every step).

3



To tackle this challenge, we use a pre-trained language model to complete the public prefixes into
pseudo sentences; thus, we only need to query teachers on the next word given a (pseudo) context.

4.2 Teacher Aggregation

PATE aggregates teacher predictions by majority vote. While it works for classification problems
with a relatively small number of classes, the output space of text generation models contains all
words in the vocabulary. As a result, the number of votes for each candidate word may be very low
without a clear winner. For example, multiple candidates may tie for the top-1 prediction.

Inspired by Chen et al. [9, 17], we aggregate teacher results by averaging their output distributions.
We first train M teacher models on disjoint subsets of the private data. To produce the aggregated
next word distribution given a context c, we average the teachers’ output distributions, add calibrated
noises, and then renormalize the results into a proper distribution. Following Papernot et al. [32], we
apply the Gaussian mechanism. Formally, let pmϕ (· | c) be the prediction of the m-th teacher. The
aggregated distribution is pagg(· | c) ∝ 1

M

∑M
m=1(p

m
ϕ (· | c)+N (0, σ2)), 2 where the Gaussian noise

is added to the aggregated output distribution. The way of SeqPATE satisfies DP guarantee (Eq. 1) is
to add that calibrated noise to the teachers’ output as mentioned above (detailed analyses in Sec. 5).

4.3 Training of the Student Model

The student model is trained on public pseudo-data and also supervised by the aggregated teachers.

Training objectives. The student model is a language model that predicts the next word given prior
contexts. Given contexts from the (public) pseudo-data autocompleted by a pre-trained language
model (GPT-2), the student is supervised by both the aggregated teacher predictions and the next
word in the pseudo-data (i.e. pseudo label). The pseudo-data acts as a prior for the student given that
the number of teacher queries is limited due to privacy concerns. The student’s loss function has two
parts:

• Lteacher denotes the loss with respect to teacher supervision. Note that the aggregated teacher output
is a distribution over words. Therefore, we minimize the forward KL divergence between the
aggregated teacher distribution pagg and the student output distribution pθ:

Lteacher(c, pagg) = KL (pagg(· | c) ∥ pθ(· | c)) . (2)

• Lpseudo denotes the loss with respect to the pseudo-labels w from D̃pub (i.e. next words generated by a
generic language model). Similar to standard language modeling, we use the negative log-likelihood:

Lpseudo(c, w) = − log pθ(w | c). (3)

Eq. 4 shows the complete loss. (λ balances the two terms and we discuss the noise scale σ in Sec. 5.)

L(pagg, D̃pub) =
∑

(c,w)∈D̃pub

Lpseudo(c, w) + λLteacher(c, pagg), (4)

Reducing the output space via candidate filtering. The high-dimensionality of the output of text
generation models results in large noise (which is added to each coordinate). To reduce the output
dimension (hence the amount of noise), we filter words on the tail of the distribution of the student
model (i.e. set their probability to zero), and renormalize the teacher’s aggregated distribution and the
student output distribution over the rest words.

Note that the candidate filtering is based on the student’s outputs on public or already released inputs,
thus it does not affect the privacy guarantee. This choice improves the privacy-utility tradeoff by
adaptively allocating the privacy budget to release the information most helpful to the task.

We experiment with two filtering strategies: top-k and top-p. In top-k filtering, we retain only the
top-k most likely candidates and filter the rest according to the student model. In top-p filtering [18],

2Mathematically, the aggregated distribution with noises may be negative. If so, we renormalize the negative
value to 0. Practically, we observed that being negative is an extremely rare event, since the M is usually very
large (e.g., 2k) and the first term dominates the above equation.
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k is chosen dynamically such that the top-k words are the minimum set whose cumulative probability
is at least p. The strategy seldom loses good candidates because the student usually does well on
top-k predictions since the beginning of the training. 3

Reducing the number of teacher queries via efficient knowledge distillation. While the aggre-
gated teacher model satisfies DP, each query from the student incurs some privacy loss. Therefore, we
obtain teacher supervision only on “hard” examples when training the student. Note that the student
is trained on both the pseudo-data and local supervision from the teachers. We consider an example
to be hard if the student cannot imitate the pseudo-label, in which case distilling knowledge from the
teachers that are trained on large private data is helpful.

Concretely, we query teachers only when the rank of the pseudo-label is below a certain threshold
among words ordered by descending probabilities under the student model. If we query the teachers,
the student is trained via complete loss L(pagg, D̃pub) (Eq. 4); otherwise, the student is trained via the
Lpseudo (Eq. 3). We note that the selection of tokens relies only on the student and is independent of
the teachers; thus, the selection does not cause any additional privacy loss.

5 Privacy Analyses

5.1 Preliminary of Differential Privacy

Lemma 5.1 (Analytical Gaussian mechanism [2]). For a numeric query f : Xn → Rd over a
dataset D, the randomized algorithm that outputs f(D) + Z where Z ∼ N (0, σ2Id) satisfies
(ε, δ(ε))-DP for all ε ≥ 0 and δ(ε) = Φ( ∆

2σ − εσ
∆ ) − eεΦ(− ∆

2σ − εσ
∆ ). where ∆ := ∆

(f)
2 =

maxD∼D′ ∥f(D)− f(D′)∥2 is the global L2 sensitivity of f and Φ is the CDF function of N (0, 1).

We can use the same result for an adaptive composition of a sequence of Gaussian mechanisms.

Lemma 5.2 (Composition of Gaussian mechanisms [11]). The adaptive composition of a sequence
of Gaussian mechanisms with a noise level σ1, σ2, . . . and global L2 sensitivity ∆1,∆2, . . . satisfies
(ε, δ(ε))-DP for all ε ≥ 0 and δ(ε) ≤ δM(ε) where M is a Gaussian mechanism with noise
multiplier σ/∆ =

(∑
i(∆i/σi)

2
)−1/2

.

Specifically, the adaptive composition of a k identical Gaussian mechanism with a noise multiplier σ
satisfies the same privacy guarantee of a single Gaussian mechanism with a noise multiplier σ/

√
k.

By fixing k and ε, we can calibrate the noise by choosing an appropriate σ in Sec. 4.2.

5.2 Differential Privacy for Language Models at the Sample Level

Recall that we partition the private dataset into M disjoint subsets, and train each teacher model
on one of the subsets. Let vector xi ∈ R|V| denote the probability distribution predicted by the
i-th teacher model given some context, where |V| is the vocabulary size. The aggregation function
f(D) :=

∑M
i=1 xi is the sum of the probability distributions predicted by all teachers. Since the

datasets are disjoint, changing one sample affects only one teacher model. For neighboring datasets
D, D′, let j denote the index of each teacher model; the probability distributions xj and x′

j (derived
from D and D′ respectively) are different. Then, the sensitivity ∆ in Lemma 5.1 & 5.2 is (See
detailed deductions in App. C),

∆ := ∆
(f)
2 = ∥f(D)− f(D′)∥2 ≤ ∥xj − x′

j∥2 ≤
√
2.

Adding the noises given by Lemma 5.2 to each coordinate (each candidate at each generation step
of SeqPATE) preserves (ε, δ(ε))-DP for f(D). Finally, when we extract top-k coordinates by top-k
candidate filtering (Sec. 4.3), the privacy guarantee also holds due to the post-processing property [14].
Therefore, the fact about whether a sample is in SeqPATE’s private sets is protected (satisfying (ε,
δ(ε))-DP).

3In the first 10 training batches, the top-50 predictions of the student cover 94% “true” labels of pseudo
samples.
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5.3 Differential Privacy of Users’ Secret Phrases

The above analyses show that we can protect the privacy of each sample (i.e., one occurrence of
a sentence). However, in practice, we may want to protect all occurrences of some secret phrases
specific to a user (e.g., names and addresses).4 Consider a secret phrase s that occurs ns times
(ns ≥ 1) in the private set. According to group privacy [14], the protection on phrase s satisfies
(nε, enε−1

eε−1 δ)-DP [22], where the privacy loss scales linearly with the number of occurrences of s
(We discuss and analyze a better strategy to reduce the privacy loss of baselines in App. M).

Naively applying a DP algorithm requires larger noise to protect phrases that may occur multiple
times. SeqPATE enjoys a stronger guarantee by assigning all data of a single user to one or a few
teachers, such that any user-specific phrase occurs in the training data of only one or a few teachers.
We denote ñs as the number of teachers whose data contain the phrase s. Since adding or removing
the phrase s affects only ñs teachers (ñs is usually 1 or 2) and thus results in a sensitivity of

√
2ñs

(See App. D for details). In this way, the strength of protection on secret phrases is roughly equal to
that we have derived for sample-level DP. The exact (ε, δ(ε, ñs))-DP for the phrase s can be obtained
according to Lemma 5.1 & 5.2, where δ(ε, ñs) = Φ( ñs√

2σ
− εσ√

2ñs
)− eεΦ(− ñs√

2σ
− εσ√

2ñs
). Unlike

other generic DP algorithms such as NoisySGD, SeqPATE avoids a linear increase in privacy loss
(i.e., a linear increase in ε) on user phrases by careful partitioning of the private data.

This effect is complimentary to other generic, but more intrusive, techniques such as redaction and
deduplication [51] for addressing the same issue. Finally, a user-specific partitioning with SeqPATE
also protects multiple secret phrases of the same user (e.g., a combination of SSN, credit card numbers,
address, day of birth) jointly without incurring a larger privacy loss — a benefit that deduplication
does not provide.

5.4 How does DP prevent memorization in SeqPATE?

In practice, the privacy of the language model is usually interpreted as not generating a secret phrase
in the training data as-is during inference. Thus, one may wonder how DP prevents such unintended
memorization of the training data. We remark that the protection against memorization follows the
definition of DP. Consider the attack by Carlini et al. [6], which uses a language model to predict a
secret phrase s given a prefix. By the closure to post-processing [14], the prediction also satisfies
DP. We denote W as the undesirable event where SeqPATE generates the phrase s verbatim. The DP
definition implies that the probability of W to happen when s is in the SeqPATE’s private sets is at
most eε larger than the probability of an alternative SeqPATE model trained without s in those sets.
The chances for the latter model to generate text with s are astronomically small. Hence, DP implies
that the probability of W under the former model (i.e. any SeqPATE model in general) is small.

6 Experiments

6.1 Experimental Settings

Datasets. We evaluate our model on two datasets. AirDialog [48] consists of 1M utterances from
customer service dialog on flight booking; Europarl_v6 consists of 2M English sentences collected
from European Parliament.5 (See details about datasets in App. E.)

Baselines. We compare SeqPATE with two DP baselines: (1) standard NoisySGD trained on the
private data with calibrated noise on clipped gradients [1, 22] and further trained on public set Dpub

without protection; (2) based on NoisySGD, NoisySGD+GC [24] applies a ghost clipping which
enables large batch size with memory saving techniques.

Additionally, we use two non-DP methods as reference: (1) Pri-GPT trained on the private set
without any privacy protection; (2) the public pre-trained GPT-2 model Pub-GPT without access to
private data. For all methods, we can optionally fine-tune on the generated pseudo-data as a warm-up,
and the operation is denoted as +D̃pub.

4A formal definition of this is called personalized differential privacy, first seen in [16].
5www.statmt.org/europarl
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Implementation details. All models are fine-tuned from the (public) pre-trained GPT-2 model [35].
The batch size is 32 for all comparing methods except the GC [24] (GC [24] requires 2048). We use
Adam [23] and adjust the initial learning rate with a range of 10−3 to 10−6 for all methods. The δ
mentioned in Sec. 5 for all DP methods is 10−6.

For SeqPATE, before training the student model with teacher supervision, we first fine-tune it on the
public pseudo-data D̃pub as a warm-up. The coefficient λ that balances supervision for the teacher
and the pseudo-data (Eq. 4) is set to 20, where we have tuned it on the validation set of the public
pseudo-data. The default number of teacher models is 2k, where our model works well according to
the experiments in App. H. We designed some strategies 6 to reduce memory and disk usage (See
strategies and the computational cost in App. I). We run SeqPATE with 2k teachers on a single GPU
in 3 days. Our code is publicly accessible. 7. (See details about hyperparameters in App. G.)

Evaluation Metrics. We evaluate the generated text by perplexity (PPL) and Bleu (Bleu-n) [33].

6.2 Overall Performance

Table 1: The performance on the two datasets with sample-level protections (mentioned in Sec. 5.2).
All SeqPATE results are statistically significant compared to the strongest baseline under paired
sample t-test (p < 0.05).

AirDialog Europarl_v6
PPL ↓ Bleu-3 ↑ Bleu-4 ↑ PPL ↓ Bleu-3 ↑ Bleu-4 ↑

Pri-GPT 3.88 21.51 17.16 23.25 1.77 0.86
Pub-GPT 63.16 0.31 0.10 57.40 1.02 0.35Non-DP
Pub-GPT+D̃pub 19.39 0.71 0.25 45.40 1.38 0.52
NoisySGD 17.49 1.97 0.96 37.31 1.28 0.46
NoisySGD+D̃pub 16.78 2.21 1.09 37.69 1.31 0.42
NoisySGD+GC+D̃pub 11.17 3.15 1.54 35.77 1.56 0.57

DP (sample)
ε = 3

SeqPATE 8.00 5.09 3.24 33.92 1.60 0.61

Protection at the sample level. Tab. 1 show the performance on the two datasets. Among the
non-DP baselines, Pri-GPT acts as an upper bound on the performance, since it can fully utilize the
private set by discarding privacy protection. Pub-GPT+D̃pub outperforms Pub-GPT on both datasets,
showing that the pseudo data is helpful (additional ablation study on the pseudo data in App. J
also verifies this). NoisySGD+GC+D̃pub surpasses the above two methods, since it uses a much
larger batch size (2048 vs 32) than NoisySGD. Our method, SeqPATE, significantly outperforms
NoisySGD+GC+D̃pub (+59% in Bleu4 on AirDialog and +7.0% in Bleu4 on Europarl_v6) while
ensuring the same level of privacy protection in terms of ε.

Protection on the user’s secret phrases. We evaluate our method for privacy protection of secret
phrases mentioned in Sec 5.3. The key step is to partition the data such that each phrase only occurs
in the training data of very few teachers, which is straightforward given the user ID associated with
the private data. In general, SeqPATE works with any set of secret phrases. In our experiments, we
consider a user’s full name as their secret phrase since it can be easily recognized from the data. We
partition AirDialog’s private data according to the accompanying user IDs. As a result, there are
96.6% users whose data are assigned to a single teacher (details about the data partition in App. F).

As described in Sec. 5.3, standard DP methods incur larger privacy loss on secret phrases. In Tab. 13,
we see that NoisySGD+GC+D̃pub needs large noise to achieve a satisfactory level of protection on
phrases, because ε increases linearly with the frequency of the phrase (group privacy [14]). “Batching
users” indicates partitioning data into batches according to users, which helps NoisySGD protect
users’ phrases (more analyses in App. M). For SeqPATE, the number of teachers trained on data
containing the phrase ñs is close to 1 on average after our partition. Thus, SeqPATE provides the same
level of protection on users’ secret phrases with a smaller noise and thus achieves better performance
(+70% and +36% in Bleu4) (see more about the protection level on users’ secret phrases in App. F).

6We train and conduct the inference on the teachers one-by-one and cache the teachers’ outputs.
7https://github.com/tianzhiliang/SeqPATE
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Table 2: The performance on AirDialog with the protections of users’ secret phrases (mentioned in
Sec. 5.3). εavg is the average ε over all secret phrases, as ε of each phrase varies with the frequency
of the phrase and the number of teachers (see App. F for detailed analyses about εavg). All results of
SeqPATE are statistically significant compared to the strongest baseline under paired sample t-test
(p < 0.05).

PPL ↓ Bleu-3 ↑ Bleu-4 ↑
NoisySGD+GC+D̃pub 16.75 1.71 0.57
NoisySGD+GC+D̃pub (batching users) 13.42 3.25 1.45DP (phrase)

εavg = 3 SeqPATE 10.10 4.20 2.46
NoisySGD+GC+D̃pub 16.49 1.89 0.69
NoisySGD+GC+D̃pub (batching users) 10.56 4.60 2.87DP (phrase)

εavg = 5 SeqPATE 8.06 6.10 3.90
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Figure 2: The private-utility tradeoff in Bleu-4 and PPL on a different ε. All the results are under
sample level protections. Subfigure a & b show the results on AirDialog; c & d show the results on
Europarl_v6. The grey lines show the “lower bound” since the method does not access the private set.

Privacy-utility tradeoff. In Fig. 2, we show the private-utility tradeoff curve of all DP algorithms.
8 Typically, DP with ε ∈ [0.1, 10] is considered to provide a meaningful protection [45]. We observe
that SeqPATE outperforms NoisySGD and NoisySGD+GC+D̃pub in this range. However, SeqPATE
does not work better than the two methods when ε > 10. The reason is that NoisySGD+GC+D̃pub

approaches Pri-GPT as ε approaches infinity (i.e. the noise approaches 0). However, SeqPATE
with an infinite ε is still weaker than Pri-GPT because distillation still incurs performance loss: the
teachers cannot completely transfer knowledge from the private data to the student. Therefore, we
suggest using SeqPATE if strong privacy protection is desirable.

Table 3: Ablation studies. “−” means not using that strategy.
AirDialog Europarl_v6

PPL ↓ Bleu-3 ↑ Bleu-4 ↑ PPL ↓ Bleu-3 ↑ Bleu-4 ↑
SeqPATE 8.00 5.09 3.24 33.92 1.60 0.61
−Merge_P 11.96 3.14 1.85 39.19 1.40 0.47
−KL 12.08 3.26 1.81 39.81 1.41 0.52
−Lpseudo 8.11 4.74 3.17 33.81 1.58 0.60
−Effi KD 9.37 4.45 3.02 34.10 1.57 0.57
−Gaussian 9.54 4.33 2.78 35.31 1.54 0.55
−All 13.21 2.95 1.69 42.74 1.32 0.44

8For the models without protections, we consider ε to be zero for baselines using the public data and ε to be
infinity for baselines using the private data.
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6.3 Ablation Studies

There are several design choices in SeqPATE and we study the importance of each of them. In
Tab. 3, we consider the following variants of SeqPATE: (1) −Merge_P: aggregating the teachers
by voting instead of averaging their output distributions; (2) −KL: training the student using the
cross-entropy loss with respect to teachers’ top-1 prediction instead of KL divergence; (3) −Lpseudo:
not learning from the pseudo label (Eq. 3); (4) −Effi KD: querying teachers on all samples without
selection; (5) −Gaussian: using the Laplace mechanism as the original PATE algorithm instead of the
Gaussian mechanism; and (6) −All: using none of the above strategies, which is similar (although not
equivalent) to the original PATE (the difference is that PATE needs to roll out all teachers (Sec. 4.1)).

Aggregating the teachers by voting and training with KL loss are the most important strategies for
SeqPATE. The poor performance on −Merge_P shows that voting is not suitable for text generation.
The reason is that voting over a large output space leads to low agreement rates. The results show
that the Lpseudo loss makes little contribution to SeqPATE. The reason is that we have pre-trained on
the student’s training set via Lpseudo before the student’s training. The promotion caused by efficient
knowledge distillation (Effi KD) on AirDialog is larger than that on Europarl_v6, which shows that
the “clever” student (e.g., models on AirDialog with low PPL and high Bleu) benefits more from this
strategy. This is because the “clever” student can dramatically save the privacy cost and transfer it
to where it would benefit the student most. The poor performance of −All verifies that the original
PATE is not suitable for text generation.

Table 4: Analyses about the candidate filtering strategies.
AirDialog Europarl_v6

PPL ↓ Bleu-3 ↑ Bleu-4 ↑ PPL ↓ Bleu-3 ↑ Bleu-4 ↑
top-p 8.00 5.09 3.24 33.92 1.60 0.61
top-k=1 18.23 0.89 0.38 45.15 1.40 0.53
top-k=10 12.47 3.47 1.95 35.94 1.55 0.54
top-k=50 7.89 4.96 3.35 33.74 1.59 0.59
top-k=100 8.78 4.64 3.17 34.48 1.60 0.62
top-k=200 9.24 3.77 2.94 34.63 1.57 0.55

6.4 Analyses on Candidate Filtering and Teacher Numbers

To analyze candidate filtering with different filtering strategies, we conduct experiments on top-p
and top-k filtering. As shown in Tab. 4, our full model employs the top-p filtering (the threshold
p is 0.95) surpasses most variants with manually chosen k. Top-k filtering (k =50 or 100) also
works well. Filtering with a too small k (k = 1 or k = 10) implies discarding too much useful
information from the supervision (k = 1 is different from − KL in Tab. 3, which uses the Top-1 of
teachers’ results). Filtering with oversize k results in unnecessarily large noises. Candidates with
very small probabilities should be filtered during generation; however, random noises may increase
their probabilities, so models may generate those words that are misled by the noise.

The results in App. H show that more teachers lead to better results when the number of teachers
is in the range of 1 ∼ 2k. This is because the noise assigned to each teacher drops linearly as the
number of teachers increases. Note that SeqPATE cannot always benefit from increasing the teacher
numbers, because the scale of each teacher’s data is linearly decreased as the teacher numbers go up.
We choose ε = 3 on the sample level protection for all results in Tabs. 3 and 4.

Additionally, we conduct empirical comparisons and analyses of SeqPATE versus the original PATE
in App. N. We show the effects of protections on users’ secret phrases in App. O. We compare
SeqPATE with another non-DP based baseline (i.e. blacklist based filtering) in App. P. We also
conduct a case study in App. Q.

7 Related Work

Text generation models may leak user information through the generated texts [19, 7]. One direction
of privacy protection is to protect author-level (user-level) information. The methods prevent attackers
from inferring the author attributes (e.g., gender, age) [25] and the relationship between information
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and authors [29]. Some researchers [40, 41] infer the membership (whether samples from a given
author are used to train the model) given a black-box model. Some papers protect user privacy of
training data against untrusted servers via federated learning [27, 10]. Another direction is to prevent
attackers from extracting sensitive information in training sets by analyzing the outputs [30, 22],
which is urgently needed [7]. Our SeqPATE focuses on this direction. In this direction, regularization
methods [6, 43, 20] restrict the model capacity and prevent the model from memorizing exact training
samples. Anonymization methods [26, 44] detect sensitive text and replace it with non-sensitive
text. Unlike DP [14] methods, the above methods do not provide a quantifiable guarantee for privacy
protection. Some researchers focus on protecting user privacy against untrusted servers via federated
learning [27, 10].

Some researchers apply DP to text generation. For user-level privacy, ER-AE [4] augments the
semantic information in the generated text to hide authors’ writing styles from attackers. McMahan
et al. [28] propose a recurrent language model with a DP guarantee against the identification of users.
Note that the user-level privacy (relationships between users and their information) is different from
the privacy of users’ secret phrases in our model: Our model prevents individual user phrases from
being detected. Some researchers apply NoisySGD to text generation to prevent sensitive training
samples from being extracted: some of them [37, 39, 51] employ DP to protect a part of selected
tokens; others [22, 50, 24] apply DP to protect both samples and all tokens, but the privacy cost on
tokens is very high (Sec. 5.3). Our model falls into the latter category and reduces the privacy cost
of tokens. Kerrigan et al. [22] apply NoisySGD [1] to text generation. Yu et al. [50] investigate
fine-tuning strategies on pre-trained language models with NoisySGD. Li et al. [24] apply ghost
clipping to pre-trained language models with NoisySGD and reduce memory usage. Shi et al. [38]
apply DP to particular generation steps instead of training samples or n-grams. Brown et al. [5]
analyze DP based method versus data sanitization of text generation models. Brown et al. [12]
propose a efficient NoisySGD to speed up model training.

Differential privacy (DP) [13, 14] formally defines and quantifies privacy. ML models with DP
guarantee [47, 15, 53] prevent the existence of individual training examples from being detected
[6]. Some researchers protect the privacy of empirical risk minimization classifiers [8] and SVM
[36] with DP. Following Song et al. [42], NoisySGD [1] achieves DP on deep learning models by
adding noises to gradients. Pichapati et al. [34] adaptively clip the gradient in NoisySGD. PATE
[31, 32] transfers the knowledge from teacher models trained on private sets with noises to a student
model. KNN-PATE [52] refines PATE by accessing only the k-nearest neighbors from the private set.
Jordon et al. [21] adversarially learn to generate synthetic data with discriminators trained by PATE.
These methods are not customized for text generation models. Xie et al. [49] propose DPGAN to
adversarially learn with a generator and a discriminator.

8 Conclusion

In this paper, we propose a novel framework, SeqPATE, to protect the privacy of the training data for
text generation models with DP guarantees. SeqPATE achieves a good privacy-utility trade-off by
leveraging both private and public data. As an extension of PATE, SeqPATE can handle the sequential
generation paradigm with large output space at each step and is therefore adaptive to text generation
models. We avoid rolling out teachers by providing pseudo-inputs for the teacher’s inference and the
student’s training. We further reduce the output space by candidate filtering and limit privacy losses
via efficient knowledge distillation. SeqPATE achieves a better performance with the sample-level
protection and further provides much stronger protection on users’ secret phrases. The limitations,
ethical considerations, and social impacts of this paper are in App. A and L.
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A Ethical Considerations and Potential Negative Societal Impacts

This paper aims to protect the privacy of the training data for text generation models. Hence, our
paper can tackle some ethical issues about privacy concerns in the existing text generation models
(e.g., GPT-2). In terms of motivation and the algorithm, our paper would not cause ethical issues.

However, we should also consider some extreme situations where someone intentionally applies our
model to illegal applications. Someone may employ text generation models to create fake news or
misinformation and protect himself or herself from being detected. In this way, our model may be
used for illegal applications, which is a kind of potential negative societal impact. In the future, we
will add some constraints to our model so that our model cannot generate texts for illegal applications
(e.g., fake news generation).

In addition, we know large ε (e.g., ε = 500) cannot provide a meaningful protection. We should
carefully use our model and cannot assume that the model is perfect no matter what parameters (ε
and δ) we use. One possible unethical application is to collect the data from users who believe our
model can fully protect their privacy. It means the users may ignore the strength of privacy protection
(in terms of the value of ε and δ). That may result in a negative impact on society. Hence, we kindly
remind the researchers, who will use this model, to pay more attention to the strength of privacy
protection. Further, we should prevent some researchers from collecting data from users who do not
have a correct understanding of our algorithm. We suggest that the researchers should ensure the
users, who contribute their data, fully understand the risks in our model.

As for the two datasets in the experiments, the Europarl_v6 does not contain the personally identifiable
information of the real user. The Airdialog dataset contains some personally identifiable information
of users, which enables us to conduct experiments to verify the performance of privacy protection.
Note that the dataset had been already published to the public. So, our work in this paper does not
further release the user’s personal information.

B Algorithm for the Training of SeqPATE

The pseudo code of SeqPATE’s training procedure is shown in Algorithm 1.

C Detailed Deduction of the Sensitivity in Sample Level DP

We obtain the Equations in Sec. 5.2 of the paper body since xj and x′
j are the probability distributions

over the vocabulary V .

∆
(f)
2 = ∥f(D)− f(D′)∥2 ≤ ∥xj − x′

j∥2 =

( |V|∑
v=1

(xjv − x′
jv)

2

)1/2

(5)

We know (xjv − x′
jv)

2 is smaller than |xjv − x′
jv| since |xjv − x′

jv| ∈ (0, 1) for each v. Hence, we
have, ( |V|∑

v=1

(xjv − x′
jv)

2

)1/2

≤
( |V|∑

v=1

|xjv − x′
jv|

)1/2

≤
( |V|∑

v=1

|xjv + x′
jv|

)1/2

We know |a+ b| = a+ b when a, b ∈ (0, 1), so we have,( |V|∑
v=1

|xjv + x′
jv|

)1/2

=

( |V|∑
v=1

xjv +

|V|∑
v=1

x′
jv

)1/2

=

(
1 + 1

)1/2

≤
√
2,

In summary, the upper bound of the sensitivity is,

∆
(f)
2 = ∥f(D)− f(D′)∥2 ≤ ∥xj − x′

j∥2 =
√
2,
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Algorithm 1 Training procedure of SeqPATE

Require: Dpri,Dpub: datasets, GPT : a pre-trained GPT-2 model.
1: {fm

ϕ }Mm=1: M teacher models, fθ: a student model, fΘ: a student model for self pre-training,
2: {ϕm}Mm=1 ← GPT , Θ← GPT # Initialize teachers and the student for self pre-training.
3: GPT generates a pseudo dataset D̃pub based on Dpub.
4: {Dpri

m}Mm=1 ← Dpri # Divide private dataset into m subsets.
5: for all m in M do
6: Train teacher fm

ϕ on Dpri
m

7: end for
8: Teachers {ϕm}Mm=1 conduct inference on D̃pub to get pmϕ (· | c) required in Sec. 4.2 for all samples.
9:

10: Train fΘ on D̃pub # self pre-training for the student.
11: θ ← Θ # Initialize the student model.
12:
13: while not converge do
14: for all batch of samples {S}batchsize in D̃pub do
15: Student fθ conducts feed-forward on {S}batchsize.
16: for all sample S in the batch {S}batchsize do
17: for all token wi in sample S do
18: pagg(· | c) ∝ 1

M

∑M
m=1(p

m
ϕ (· | c) +N (0, σ2)) # Aggregate teachers’ outputs

19: Select only top-k or top-p predicted tokens as student’s output.
20: Obtain Lteacher and Lpseudo as Eq. 4 in the paper body. # Noise is added into Lteacher to protect the

privacy.
21: Get L by combining Lteacher and Lpseudo # Knowledge distillation with active learning.
22: end for
23: end for
24: Update ϕ respect to L.
25: end for
26: end while

D Detailed Deduction of the Sensitivity of the Privacy on Users’ Secret
Phrases

Here, we show the detailed deduction of obtaining the sensitivity of the privacy on users’ secret
phrases mentioned in Sec. 5.3 (in the paper body). we treat each user’s secret phrase s as a data point.
As only ñs teacher models can access the phrase s in the private set, changing the phrase s affects at
most ñs teacher models. We redefine the neighboring datasets D, D′ are two datasets differ at only
one user’s secret phrase s. It means the phrase s occurs in one dataset but not in another one. Let
j denotes the index of each teacher model, and {x1, ..., xj , ..., xa} and {x′

1, ..., x
′
j , ..., x

′
b} mean the

teacher outputs affected by the phrase s (for the datasets D and D′). We have a ≤ ñs and b ≤ ñs

since changing a secret phrase s affects at most ñs teacher models. We calculate the sensitivity of f
as follows.

∆
(f)
2 = ∥f(D)− f(D′)∥2 ≤ ∥

a∑
j=1

xj −
b∑

j=1

x′
j∥2 ≤ ∥

ñs∑
j=1

xj −
ñs∑
j=1

x′
j∥2

For the above equation, we obtain the following equation (xj and x′
j are the probability distributions

over the vocabulary V).

∥
ñs∑
j=1

xj −
ñs∑
j=1

x′
j∥2 =

( |V|∑
v=1

(

ñs∑
j=1

xjv −
ñs∑
j=1

x′
jv)

2

)1/2

=

( |V|∑
v=1

(
ñs

ñs

ñs∑
j=1

xjv −
ñs

ñs

ñs∑
j=1

x′
jv)

2

)1/2

=

( |V|∑
v=1

ñ2
s(

∑ñs

j=1 xjv

ñs
−

∑ñs

j=1 x
′
jv

ñs
)2
)1/2

= ñs

( |V|∑
v=1

(

∑ñs

j=1(xjv − x′
jv)

ñs
)2
)1/2
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We know (
∑ñs

j=1(xjv−x′
jv)

ñs
)2 ∈ (0, 1) since |xjv − x′

jv| ∈ (0, 1). Then, we have (
∑ñs
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∑ñs

j=1(xjv − x′
jv)

ñs
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≤ ñs

(
1

ñs
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In summary, the upper bound of the sensitivity is,

∆
(f)
2 = ∥f(D)− f(D′)∥2 ≤ ∥
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xj −
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j=1

x′
j∥2 ≤

√
2ñs,

E Descriptions about the Datasets

The AirDialog dataset [48] 9 consists of 402,038 dialogues. Each dialogue consists of more than two
utterances. We treat each utterance as a sample (i.e. sentence) in our sentence completion task. The
Airdialog dataset contains some personally identifiable information about users. It contains the users’
names of the dialog speakers, which enables us to conduct experiments to verify the performance
of privacy protection. Note that the dataset had been already published to the public. In this way,
We obtain the Europarl_v6 dataset from a machine translation benchmark 10, where we only use the
monolingual English dataset with 2,015,440 raw sentences. The Europarl_v6 does not contain the
personally identifiable information of the real user.

For the above datasets, we filter the short sentence with less than eight tokens. Then, the first four
tokens act as the prefix, and the rest of the tokens act as the output (ground-truth). We split each
datasets into a private set Dpri and a public set Dpub. For the AirDialog dataset, the private set
contains 0.95M/5K/50K samples for training/validation/testing, and the public set contains 40K/5K
for training/validation. For the Europarl_v6 dataset, the private set contains 1.72M/10K/50K samples
for training/validation/testing, and the public set contains 40K/5K for training/validation. The
vocabulary size for the two datasets is set to 50K. We replace the tokens out of the vocabulary with a
special token.

F Dataset Partitions and Experiments about the Protection on Users’ Secret
Phrases

To achieve the protection of users’ secret phrases mentioned in Sec. 5.3, we partition the original
dataset into teachers’ training data with the following principles: (1) the teacher number for each user
should be small; (2) the scales of the data for every teacher are roughly balanced.

There are 9131 users in AirDialog’s private training set. As shown in Tab. 6, after the above processing,
the number of users whose data are assigned to a single teacher is 8824; there are 263 users whose
data occurs in 2 teachers’ training data; there are 41 users whose data belong to 3 teachers; only 3
users’ data are accessed by more than 3 teachers. On average, the number of teachers for each user is
1.039.

The users’ secret phrases mentioned in Sec. 5.3 are often the phrases known by a few users (occurs in
a few users’ data). For a secret phrase s, the number of teachers accessing the phrase ñs is very small,

9The dataset comes from https://github.com/google/airdialogue
10The description can be found at https://www.statmt.org/europarl. The data come from

https://statmt.org/wmt11/training-monolingual.tgz
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# Users 8824 263 41 3
# Teachers for each user 1 2 3 > 3

Table 5: The statistical information of the teacher numbers for all users in the AirDialog’s private
training.

and therefore the protections provided by SeqPATE on those phrases are naturally strong (if many
users know s, the ñs is large and the protection is naturally weak). The secret phrases may be phone
number, address, name, or SSN number. In the AirDialog dataset, the description of each sample
contains the “user’s full name”. With that information, we can easily check the existence and count
the frequency of the “user’s full name” in each sample. So, we can easily evaluate the protections on
secret phrases by treating “user’s full name” as the secret phrase.

Methods εavg min ε max ε % ε ≤ average ε
NoisySGD+GC+D̃pub 3 0.12 731.58 52.8%
SeqPATE 3 2.85 25.64 95.4%
NoisySGD+GC+D̃pub 5 0.20 1219.31 52.8%
SeqPATE 5 4.75 42.78 95.4%

Table 6: The statistical information of ε on all the users’ secret phrases under the protection of
different algorithms. The first three columns show the average/minimal/maximal ε over all secret
phrases. The last column indicates the percentage of secret phrases whose ε is lower than the average
ε.

In the experiments about protections on users’ secret phrases, the ε of each phrase is different. In
NoisySGD+GC+D̃pub, the ε of the phrase s relies on the phrase frequency ns; in SeqPATE, the ε
of the phrase s relies on the teacher number ñs. Hence, the εavg reported in “DP (phrase)” of the
second Table in Sec. 6.2 means average ε over all secret phrases. There are 6705 secret phrases in
the AirDialog dataset. In the model training, we apply a same scale of noises to the algorithm and
then calculate the exact ε for all secret phrases. The rows 1 and 2 of Tab. 6 show the ε of the models
in rows 1 and 2 of the second Table in Sec. 6.2. If we fix the average εavg at 3, the ε of phrases on
NoisySGD+GC+D̃pub range from 0.12 to 731.58, and the ε of phrases on SeqPATE range from 2.85
to 25.64. The rows 3 and 4 of Tab. 6 show the ε of the models in rows 3 and 4 of the second Table in
Sec. 6.2. If we fix the average εavg at 5, the ε of phrases on NoisySGD+GC+D̃pub range from 0.20 to
1219, and the ε of phrases on SeqPATE range from 4.75 to 42.74.

From the Tab. 6, we can observe that 95.4% phrases have a lower ε (stronger protection) than
the average εavg (3 or 5). However, NoisySGD+GC+D̃pub can only ensure 52.8% phrases enjoy a
stronger protection than the average level. Hence, compared to NoisySGD+GC+D̃pub, SeqPATE can
provide strong protection on more secret phrases, even if we assign the same εavg to SeqPATE and
NoisySGD+GC+D̃pub.

G Details about the Experimental Setting

All the comparing methods use the same base model, the GPT-small, which has 12 stacked layers as
mentioned in the original paper [35]. The pre-trained GPT-2 model comes from the official website
11. We truncate the sentences with the maximal sentence length of 40. In the top-p strategy, the
threshold p is 0.95 (We have tried the threshold of 0.90 ∼ 1.0 and found p = 0.95 works well). The
threshold in active learning mentioned in Sec. 4.3 is 10 or 5 (We also need to tune the parameter).
The hyperparameter tuning is conducted on the validation set of the public pseudo data, so tuning
does not introduce additional privacy losses. For all our experiments, we adopt autodp [46] — an
open-source library that implements the analytical Gaussian mechanism for privacy accounting and
calibration. We use the TESLA V100 GPU devices with 32GB memory on a Slurm HPC cluster.

11github.com/openai/gpt-2
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H Analyses about the Number of Teacher Models

Tabs. 7 & 8 show the analyses about SeqPATE’s performance with different teacher numbers on our
two datasets. We evaluate the performance with the sample level protection (ε = 3).

AirDialog
PPL ↓ B-1 ↑ B-2 ↑ B-3 ↑ B-4 ↑

#teacher=1 19.28 8.59 2.35 0.86 0.28
#teacher=10 16.57 7.97 2.24 0.85 0.30
#teacher=200 10.96 12.81 5.13 2.89 1.34
#teacher=2k 8.00 15.14 8.30 5.09 3.24

Table 7: SeqPATE’s performance with different teacher numbers on the AirDialog dataset.

Europarl_v6
PPL ↓ B-1 ↑ B-2 ↑ B-3 ↑ B-4 ↑

#teacher=1 41.56 12.39 3.71 1.13 0.39
#teacher=10 38.94 12.89 3.75 1.21 0.44
#teacher=200 34.55 13.25 4.18 1.36 0.51
#teacher=2k 33.92 13.75 4.69 1.60 0.61

Table 8: SeqPATE’s performance with different teacher numbers on the Europarl_v6 dataset.

I The Computational Cost of SeqPATE

It seems that our model requires huge computational resources and a costly infrastructure to run.
However, our model can train and infer on a single GPU machine. In this section, we introduce some
simple strategies we used in our implementation and also introduce the total computational cost of
our model.

Memory usage and hard-disk space usage. Since our method uses a large number of teachers, the
naive implementation of loading all teachers into the memory for aggregation is impractical. However,
note that our algorithm only needs to access the teachers’ top-k predictions. Therefore, we train
teacher models sequentially. Once a teacher model is trained, we obtain its top-k predictions (k=200
at most in our experiments) on the public training data and save the results (i.e. k probabilities). Then,
we discard the teacher model. Finally, SeqPATE only needs the teacher’s supervision on a small
number of samples. In our experiments, training on 500∼1k teacher labeled samples is sufficient.
Overall, saving teachers’ inference results uses 8∼16GB. The memory usage is similar to that of a
GPT2 model because we do not load all teacher models into the memory and instead run inference
sequentially and merge teachers’ predictions offline.

Training time. While we have a large number of teachers, each teacher is trained on only a small
fraction of the entire dataset. Thus, the time it takes to train all teachers is roughly equal to the time of
training a single GPT2 model on the full dataset (of 1∼2M samples in our experiments). In practice,
the teachers’ training time of SeqPATE on AirDialog dataset is roughly 1 or 2 days; their training
time on Europarl_v6 dataset is 2 or 3 days. For both datasets, the student’s training time is range
from several minutes to half an hour. For the NoisySGD, the whole training takes 1 or 2 days. The
running time of the inference for all methods is similar, which takes around 10 minutes.

In summary, with the simple strategies, the teacher training and aggregation steps are not much more
expensive than training a GPT2 model. Compared to standard NLG model training, our algorithm
does not require special hardware or distributed learning.

J The Contribution of the Pseudo Public Dataset D̃pub

The following experiments verify the contribution of the pseudo-public dataset D̃pub to our task.
We conduct the experiments on the AirDialog dataset. The results in Tab. 9 shows that using
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D̃pub can prompt the performance a lot, where the promotion can be found in both SeqPATE and
NoisySGD+GC+D̃pub methods. SeqPATE relies highly on the pseudo data since the pseudo data
provide the input text in the student’s training.

Methods Dataset PPL ↓ B-1 ↑ B-2 ↑ B-3 ↑ B-4 ↑
NoisySGD+GC w/ D̃pub 11.17 13.21 5.90 3.15 1.54
NoisySGD+GC w/o D̃pub 12.05 12.94 5.97 2.96 1.36
SeqPATE w/ D̃pub 8.00 15.14 8.30 5.09 3.24
SeqPATE w/o D̃pub 16.12 10.86 3.92 2.13 0.96

Table 9: The comparisons between using and not using the pseudo dataset, D̃pub.

K The Illustration of a Running Example

Here, we will use an example to show our training processing. In this example, the prefix from the
public dataset Dpub is “I want to book". We feed the prefix to a pre-trained GPT-2 model to generate
a pseudo sentence “I want to book a flight from Tokyo to Hawaii". The pseudo sentence serves as an
example in the pseudo-public dataset D̃pub. We feed the pseudo sentence to the teacher models to
conduct the teachers’ inference; we also feed it to the student model to conduct the feed-forward of
the student’s training. Teacher models output the probability distributions on all words (10 words, in
total) of the sentence. Then, we aggregate all teachers’ probability distributions and add the calibrated
noises to the aggregated distributions. The student model also generates the corresponding probability
distributions on those words. We conduct the knowledge distillation with active learning and the
top-k or top-p filtering over the student’s probability distributions. For example, if the student model
can do well on the words (“I", “want", “book", “flight", and “Tokyo"), the student queries the teachers’
output distributions only on the rest of the words (“to", “from", “to", and “Hawaii"). The student is
supervised by the teachers’ outputs via the KL loss mentioned in Sec. 4.3. Besides, the student is
always supervised by the Lpseudo loss on the whole pseudo sentence (“I want to book a flight from
Tokyo to Hawaii"). Finally, the student model conducts back-propagation according to the above
losses.

L Limitation of This Paper

Even if our proposed method obtains remarkable performance, this work still has some limitations.
We will continue to focus on this topic and try to address those limitations in future work.

Firstly, compared to NoisySGD-based methods, our model is not good at handling “big ε” (the ε
is very large, e.g., ε = 50). As mentioned in Sec. 6.2, the phenomenon is reasonable since the
knowledge distillation in our method cannot completely transfer knowledge but a very large ε in
NoisySGD results in a very small noise. Note that researchers usually treat that ε ranging from 0.1
to 5 provides meaningful protections. Too large ε can hardly provide sufficient protections for the
data. ε > 5 says that an individual could be identified with the confidence of more than 99.33% [45].
Hence, this limitation is not a big issue for this paper.

Secondly, compared with other papers, our experiment processing may be complex since our default
setting is to use 2k teacher models. It means that we need to train 2k teacher models to conduct the
experiments. Fortunately, we design some strategies to enable all teacher models to train on a single
GPU within 3 days (according to App. I), ); thus the computational cost is not very high. In practice,
we can use a shell script to run the 2k teachers automatically so the operations in the experiment are
not so heavy to conduct.

Thirdly, we have not applied our method to other text generation applications, such as machine
translation and summarization. The privacy concern in those tasks is also an urgent need. We may try
to apply SeqPATE to some new applications in the future. Since the state-of-the-art models in those
applications may have some sophisticated components , we believe some further works are needed to
apply our model to other text generation tasks.
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M More Explanation of the Experiments on Users’ Secret Phrases

SeqPATE achieves strong privacy protections on users’ secret phrases by carefully partitioning the
private set according to users. Note that NoisySGD (DP-SGD) can also follow the similar idea and
partition the private set to training batches according to users, that is, we try to ensure a user’s data is
in one or a few batches. We call this method “batching users ”. We conducted experiments in this way
and reported the results in Table 13 (row 2 and 4). The experimental results show that our method on
protecting users’ secret phrases still outperforms the NoisySGD baselines with batching users.

PPL ↓ Bleu-3 ↑ Bleu-4 ↑
NoisySGD+GC+D̃pub 16.75 1.71 0.57
NoisySGD+GC+D̃pub (batching users) 13.42 3.25 1.45DP (phrase)

εavg = 3 SeqPATE 10.10 4.20 2.46
NoisySGD+GC+D̃pub 16.49 1.89 0.69
NoisySGD+GC+D̃pub (batching users) 10.56 4.60 2.87DP (phrase)

εavg = 5 SeqPATE 8.06 6.10 3.90
Table 10: The performance on AirDialog with the protections of users’ secret phrases (mentioned in
Sec. 5.3). This Table is the same as the table 2 in the paper body

We note that SeqPATE still has some advantages over NoisySGD (with batching users) in protecting
users’ secret phrases:

• The privacy loss of SeqPATE scales linear with the teacher number ñs for a user’s data as mentioned
in Sec. 5.3. The average ñs is 1.038 as mentioned in Appendix F. The privacy loss of NoisySGD
(with batching users) scales with the root of training steps (number of batches the model trained)
according to advanced composition [1]. Therefore, if the training phase consists of K epochs, a
user’s phrase contributes to the privacy loss for K times. Deep learning models usually require
many epochs for training. In this paper, the epoch number is usually 10 ∼ 20. In short, NoisySGD’s
privacy loss on phrases is at least 3 ∼ 4 times larger than its sample level privacy loss; SeqPATE’s
privacy loss on phrases is roughly equal to its sample level privacy loss.

• It would be difficult to adjust the batch size in NoisySGD to satisfy the requirements to batching
users, because (a) the performance of many deep learning models is sensitive to the batch size; (b)
the batch size cannot be too large due to the limitations of GPU memory.

N Empirical Comparisons and Analyses of SeqPATE Versus the Original
PATE

We claimed that the original PATE is hard to directly work on text generation tasks. Here, we provide
more detailed analyses about it and verify this claim with some experimental results and estimations.

Firstly, the original PATE is required to roll out all teachers to collect all teachers’ inference results.
At each step, the input word of all the teachers and the student comes from the previous output of the
teacher inference. It means that we need to online align all teachers’ inference and student training
at each step (conducting teacher inference and student training synchronously). Hence, we need to
either (1) load all teachers and the student to a single program, or (2) run teachers and the student
serially and merge teachers’ results at each step. Given that the teacher number is usually more
than 100 (2000 teachers obtain the best performance in our setting). We cannot load them into a
program due to the GPU or CPU memory. If we conduct the training serially, the computational cost
is extremely high so it is almost impossible to roll out the teachers.

Secondly, even if we do not consider the teachers’ rolling out, the performance of the original PATE
is also far from satisfactory. In the ablation study (Table 3 in the paper body), −All indicates that
SeqPATE gives up all proposed strategies except conducting knowledge distillation on the pseudo
data. −All underperforms our full model and the gap between −All and our full model is also quite
large (Bleu4 of −All drops from 3.24 to 1.69).

In summary, considering the performance and computational cost, the original PATE almost cannot
work in text generation. SeqPATE does make a great improvement to adapt PATE to the text
generation.
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O The Intuitive Effects of Protections on Users’ Secret Phrases

DP-based methods usually measure the strength of privacy protection via the factor ε and δ according
to the DP definition. As for the text generation application, we employ a more practical evaluation to
show what and how the DP-based methods protect the privacy.

We define a metric Rname to measure the average percentage of generating users’ names in the output
text. This metric indicates the degree of leaking users’ secret phrases (i.e. user name). A smaller
Rname indicates better protection.

Methods Rname ↓
Non-DP Pri-GPT 4.25%

NoisySGD+GC+D̃pub (batching users) 1.89%DP (sample)
ε = 3 SeqPATE 0.21%

Table 11: The average percentage of generating users’ names in the output texts. The corresponding
sample-level ε is 3.

Methods Rname ↓
Non-DP Pri-GPT 4.25%

NoisySGD+GC+D̃pub (batching users) 0.43%DP (phrase)
εavg = 3 SeqPATE 0.20%

Table 12: The average percentage of generating users’ names in the output texts. The corresponding
ε users’ on secret phrases is 3.

Table 11 shows the results on Pri-GPT and DP-based methods with the sample-level ε is 3. The
results show that our SeqPATE significantly avoids generating trained users’ names trained (avoids
95% of them). The Pri-GPT has no privacy protection and the percentage of generating users’ names
is high (4.25%), which demonstrates that information leakage is serious in the current pre-trained
models (Pri-GPT). Under the same level of protection (ε = 3), SeqPATE provides stronger protection
than NoisySGD. It verifies our claim (in Sec. 5.3) that SeqPATE is skilled at protecting users’ secret
phrase.

Table 12 shows the results on Pri-GPT and DP-based methods with ε of 3 in the users’ phrases. Under
the same ε of protections on users’ phrases, the gap between SeqPATE and NoisySGD is not so large
and SeqPATE is still better than NoisySGD. It shows the superiority of SeqPATE in protecting users’
phrases.

In summary, SeqPATE shows its superiority in protecting both samples and users’ phrases, and
SeqPATE avoids leaking information significantly.

P Experiments about Protecting the Privacy by Filtering with a Blacklist

Though the blacklist-based methods and DP-based methods are not comparable, we did add a new
experiment, where we create a blacklist with the user name, destinations, and some other sensitive
words/phrases (e.g. dates).

the blacklist-based method cannot theoretically measure the “degree or strength” of privacy protection,
so it is hard to compare DP-based methods with non-DP-based methods in the same (fair) level of
protection.

Pri-GPT-blacklist indicates applying the blacklist to the results of the GPT model trained on private
data. For each generated sentence, we replace the words in blacklist with a special token. Notice that,
although Pri-GPT-blacklist outperforms SeqPATE, the blacklist-based methods have the following
issues: (1) It only protects the privacy of the given types (i.e. user names, destinations, and dates);
(2) Even for the given types, it can only protects a part of sensitive information since the blacklist is
finite; (3) It cannot measure the strength of protection.
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PPL ↓ Bleu-3 ↑ Bleu-4 ↑
Pri-GPT-blacklist 6.84 11.40 8.13
NoisySGD+GC+D̃pub (batching users) 10.56 4.60 2.87DP (phrase)

εavg = 5 SeqPATE 8.06 6.10 3.90
Table 13: Comparison between DP-based method versus the private GPT with blacklist filtering

Good
Case

Input As of your requirements,

Ground Truth As of your requirements, there is only AA airline available.
Shall I go for further process to book ?

Pri-GPT As of your requirements, there is
a flight-1008 on UA airline, is it ok for you?

NoisySGD+GC+D̃pub As of your requirements, I contact you about this issue? Thank you.

SeqPATE As of your requirements, I have found that you are willing to
cancel your reservation. Please confirm your reservation booking.

Good
Case

Input Yes, I would like
Ground Truth Yes, I would like to prefer a connecting flight.
Pri-GPT Yes, I would like to travel from BOS to HOU.

NoisySGD+GC+D̃pub Yes, I would like to help you. If you need
any assistance please feel free to contact us.

SeqPATE Yes, I would like to attend a meeting with the team
to discuss a list of all the team members.

Bad
Case

Input I am Janet Miller.

Ground Truth I am Janet Miller. I want to change my existing reservation ,
as my father already done a reservation for m.

Pri-GPT I am Janet Miller.

NoisySGD+GC+D̃pub I am Janet Miller. do you want to travel?
If you are interested, please contact me. Thank you.

SeqPATE I am Janet Miller. I am a member of the International
Association of American Airline flight attendants.

Table 14: Case studies with two good cases and one bad case.

Q Case Study

We report two good cases and a bad case in Table 14. The input is a prefix with the first four tokens
of the sentence. Given the input, the three models generate the whole sentence. In the first case,
Pri-GPT generates the flight number, which may leak sensitive information. NoisySGD+GC+D̃pub

and SeqPATE success to hide the flight number. Compared to NoisySGD+GC+D̃pub, SeqPATE
is more similar to the ground-truth (both of them are talking about booking). In the second case,
Pri-GPT generates the locations, which is also quite sensitive. The outputs of NoisySGD+GC+D̃pub

and SeqPATE do not contain so much individual information.

In the last case, the input text contains the user’s name, which is a piece of sensitive information.
NoisySGD+GC+D̃pub avoids talking about the individual information. Pri-GPT does not continue to
generate, so it does not leak any information. However, SeqPATE generates the company name of the
flight, which is a sensitive phrase for individuals. We note that such a bad case is very rare in the
model outputs. DP-based methods aim to trade-off the privacy protection and the model performance.
Sometimes, SeqPATE generates informative, appropriate, but too detailed texts, where the details may
contain sensitive information. Nevertheless, most cases of SeqPATE achieve to generate sentences
with a high quality and enough privacy protection.
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