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Abstract

In label-noise learning, estimating the transition matrix plays an important role
in building statistically consistent classifier. Current state-of-the-art consistent
estimator for the transition matrix has been developed under the newly proposed
sufficiently scattered assumption, through incorporating the minimum volume
constraint of the transition matrix T into label-noise learning. To compute the
volume of T , it heavily relies on the estimated noisy class posterior. However, the
estimation error of the noisy class posterior could usually be large as deep learning
methods tend to easily overfit the noisy labels. Then, directly minimizing the
volume of such obtained T could lead the transition matrix to be poorly estimated.
How to reduce the side-effects of the inaccurate noisy class posterior remains
unsolved. In this paper, we creatively propose to estimate the transition matrix
under a forward-backward cycle-consistency regularization, of which we have
greatly reduced the dependency of estimating the transition matrix T on the noisy
class posterior. Extensive experimental results consistently justify the effectiveness
of the proposed method, on reducing the estimation error of the transition matrix
and greatly boosting the classification performance.

1 Introduction

Deep learning based algorithms rely heavily on large-scale annotated training data. However, it is
often extremely costly and sometimes even infeasible to accurately annotate such massive dataset [13].
An usual way to address this issue is to collect large-scale training data using cheap methods, e.g., from
the crowd-sourcing platform [36] or online query search engine [3], which could inevitably yield label
noise. Training deep model with label noise can significantly degrade the performance [13, 1, 28].
Therefore, how to mitigate the side-effects of the label noise automatically becomes very important,
and it has drawn increasing attention recently.

Recent studies show that estimating the transition matrix plays an important role in building sta-
tistically consistent classifiers for label-noise learning, since the transition matrix can well model
the noise generation process. These methods guarantee that classifier learned from the noisy data
could approach to the optimal classifier defined on the clean risk asymptotically as the size of the
noisy training data increases [13]. The basic principle is that the clean class posterior P (Y|X = x)1

can be inferred by the noisy class posterior P (Ȳ|X = x) and the transition matrix T (x), where

*Equation contribution.
†Corresponding author.
1We define P (Y|X = x) = [P (Y = 1|X = x), . . . , P (Y = C|X = x)]⊤ where C represents the number

of classes.
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Tij(x) = P (Ȳ = j|Y = i,X = x), i.e., P (Ȳ|X = x) = T (x)P (Y|X = x). This paper focuses
on the common class-dependent and instance-independent label noise, i.e., T (x) = T . Usually, the
transition matrix T is unidentifiable and hard to learn without additional assumptions [37, 5, 33].

In the literature, many methods try to estimate the transition matrix under the anchor point assumption,
which assumes that there exist some instances belonging to a specific class almost surely [33, 16, 22].
However, the anchor point assumption can not be always satisfied [24, 39]. Therefore, methods
aiming to develop statistically consistent classifiers without anchor points have been proposed [33, 13].
Among them, the state-of-the-art method (VolMinNet [13]) proposed by far the mildest sufficiently
scattered assumption, where the anchor point assumption is its special case [13]. They proved
that the optimal T is the one with minimum volume enclosing the noisy class posterior of training
examples. Hence, they proposed to incorporate the minimum volume constraint of T into label-noise
learning. To compute the volume of T , the existing method heavily relies on the estimated noisy
class posterior. However, the estimation error of the noisy class posterior could usually be large
as the deep learning methods tend to easily overfit the noisy labels, especially under the settings of
limited training samples [37]. This could lead the transition matrix to be poorly estimated when
minimizing the volume calculated by using the learned noisy class posteriors. Therefore, how to
reduce the side-effects of the inaccurate noisy class posterior has become a major concern for making
use of the sufficiently scattered assumption.

To address this issue, we propose a forward-backward cycle-consistency regularized algorithm to
estimate the transition matrix T , of which we could greatly reduce the dependency of estimating T
on using the noisy class posterior to calculate its volume, and further build a statistically consistent
classifier. Specifically, we show that minimizing the volume of the transition matrix T is equal to
maximizing the volume of corresponding clean class posterior. More importantly, maximizing the
volume of the clean class posterior could avoid the side-effects of the inaccurate noisy class posterior
probability on estimating T .

To be more specific, we will further exploit the equation P (Ȳ|X = x) = TP (Y|X = x),
where P (Ȳ|X = x) ∈ RC , T ∈ RC×C , P (Y|X = x) ∈ RC , and C is the number of classes.
Note that P (Ȳ|X = x) can be estimated by exploiting the noisy data. For simplicity, we re-
write the above equation as A = TB for the following derivation, where A and B represent
P (Ȳ|X = x) and P (Y|X = x), respectively. We adopt the commonly used determinant operation
to measure the volume of T , i.e., det(T ). As only the square matrix has determinant, we have
det(AA⊤)=det(TBB⊤T⊤)=det(TT⊤)det(BB⊤). As P (Ȳ|X = x), i.e., A, can be estimated by the
given noisy data, the determinant det(AA⊤) is constant. Then, minimizing det(T ) (or det(TT⊤))
equals maximizing det(BB⊤). Therefore, we can replace the minimum volume constraint of T by
the maximum volume constraint of the clean class posterior P (Y|X = x).

Maximizing the volume of the clean class posterior P (Y|X = x) can be achieved without directly
relying on the estimated noisy class posterior probability. Specifically, we project the C-dimensional
simplex, which has the largest volume, from the noisy class posterior space onto the clean class
posterior space by a diagonally dominant column stochastic matrix T ′ [13]. Let denote the projected
clean class posteriors as the backward clean class posteriors P ′(Y|X = x). They will make up the
largest volume in the sense that they correspond to the C-dimensional simplex in the noisy class
posterior space. Afterwards, we guide the clean class posterior P (Y|X = x) learned by the neural
network to match to P ′(Y|X = x). Therefore, the volume of the learned clean class posteriors could
be maximized to encourage the transition matrix T to converge to its optimal solution. Besides,
we further build the cycle-consistency regularization between the forward and backward transition
matrices T and T ′ to better learn the clean class posterior probability.

Our main contributions are summarized as follows: 1) We propose to estimate the transition matrix
T under a forward-backward cycle-consistency regularization, of which we could greatly reduce
the dependency of minimizing the volume of the transition matrix T on the estimated noisy class
posterior; 2) We show that such cycle-consistency regularization could help to minimize the volume
of the transition matrix T without directly exploiting the estimated noisy class posterior, which
encourages the estimated transition matrix T to converge to the optimal solution; 3) Experimental
results on four datasets (two synthetic and two real-world datasets) with different label-noise settings
consistently justify the effectiveness of the proposed method, on reducing the estimation error of the
transition matrix and greatly improving the classification performance.
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Figure 1: Overview of our method. We optimize the proposed method in an end-to-end manner with
three objectives simultaneously. The blue line represents the traditional forward transition matrix T
estimation, the green line means the backward transition matrix T ′ estimation. The red line means
the cycle-consistency regularization between the forward and backward transition matrices.

2 Estimating Transition Matrix for Label-Noise Learning

Problem Setting. Let D be the distribution of a pair of random variables (X,Y) ∈ (X × Y), where
X and Y denote the variable of instances and the corresponding labels, X ∈ Rd×N represents the
instance feature space, d is the feature dimension, N is the total number of instances, Y ∈ {1, · · · , C}
denotes the label space, and C is the size of the classes. However, in some real-world scenarios, it is
often expensive or even infeasible to accurately draw large-scale training data independently from the
clean distribution D.

Let D̄ be the distribution of a pair of random variables (X, Ȳ) ∈ (X×Y), where Ȳ denotes the variable
of noisy labels. In learning with noisy labels, we denote the training dataset as D̄ = {(xi, ȳi)}Ni=1
which is independently drawn from the noisy distribution D̄. The goal is to learn a robust classifier
by exploiting the noisy dataset D̄, which approximates well to the optimal classifier defined on the
clean data.

Transition Matrix plays an important role in building statistically consistent classifier through
the “loss correction” strategy. It explicitly models the label-noise generation process from clean
data distribution to the noisy data distribution, i.e., Tij(x) = P (Ȳ = j|Y = i,X = x), and
T (x) ∈ RC×C . It represents the probability that an instance x having the clean label Y = i is
mislabeled as the noisy label Ȳ = j. Intuitively, the clean class posterior probability P (Y|x) can
be inferred by the transition matrix Tij(x) and the noisy class posterior probability P (Ȳ|x), i.e.,
P (Ȳ|x) = T (x)P (Y|x). Note that, in the above equation, the noisy class posterior P (Ȳ|x) can
be estimated by the noisy data. The transition matrix T (x) is generally unidentifiable and very
hard to estimate without additional assumptions. In this paper, we focus on the widely studied
class-dependent and instance-independent label noise, i.e, T (x) = T , T ∈ RC×C .

Current state-of-the-art method (VolMinNet [13]) proposes to estimate the class-dependent transition
matrix T under the sufficiently scattered assumption, where the traditional anchor point assumption
is its special case. They proved that the optimal T is the one with minimum volume enclosing
the noisy class posterior of the training examples. However, in this work, we resort to address its
equivalence problem, i.e., maximizing the volume of corresponding clean class posterior probability,
which could reduce the side-effect of the estimation error of the noisy class posterior on estimating T .
Therefore, to maximize the volume of P (Y|X), we propose the forward-backward cycle-consistency
regularization, and further to consistently estimate T . Specifically, as shown in Fig 1, our proposed
method simultaneously optimize three objectives: the cross entropy loss between the given noisy
label ȳ and the estimated noisy class posterior; the cross entropy loss between the backward estimated
clean class posteriors and the predicted clean class posteriors by the neural network; the cycle-
consistency regularization to minimize the approximation error between P (Y|X) and T ′TP (Y|X).
The backward and cycle-consistency regularization help to minimize the volume of T indirectly
without exploiting the noisy class posterior, and further encourage the estimated T to converge to its
optimal solution.
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2.1 Forward Transition Matrix Estimation

Given the input instance x, the probability of observing a noisy label Ȳ can be inferred as,

P (Ȳ = j|x) =
C∑
i=1

P (Ȳ = j|Y = i, x)P (Y = i|x) =
C∑
i=1

P (Ȳ = j|Y = i)P (Y = i|x)

=

C∑
i=1

TijP (Y = i|x).

(1)

We can rearrange Eq. 1 as P (Ȳ|x) = TP (Y|x) under the class dependent and instance indepen-
dent assumption, where P (Ȳ|x) = [P (Ȳ = 1|x), ..., P (Ȳ = C|x)]⊤ and P (Y|x) = [P (Y =
1|x), ..., P (Y = C|x)]⊤ are the noisy class posterior probability and the clean class posterior proba-
bility, respectively. To learn the clean class posterior P (Y|X), we design a neural network f(x;w)
parameterized with w, which projects the input instance x onto C classes with a probability output.
The transition matrix T should be trainable diagonally dominant column stochastic matrix, i.e.,
T ∈ [0, 1]C×C ,

∑C
i=1 Tij = 1 and Tii > Tji for any i ̸= j. Naturally, we could use Tf(x;w)

to learn the noisy class posterior probability P (Ȳ|X). VolMinNet [13] shows us that, if Tf(x;w)
models P (Ȳ|X) perfectly and the transition matrix T has the minimum volume, T will converge
to the optimal transition matrix and the classifier f(x;w) will converge to the optimal P (Y|X). In
this paper, we introduce the cycle-consistency regularization to indirectly reduce the volume of T ,
without exploiting the estimated noisy class-posterior probability which usually has a large estimation
error [37].

Given the training dataset D̄ = {(xi, ȳi)}Ni=1, we optimize the empirical risk by jointly optimizing
the transition matrix T and the consistent classifier f(x;w) for label-noise learning. Specifically, we
minimize the approximation error between the inferred noisy class-posterior probability Tf(x;w)
and the given noisy label ȳ as follows,

min
w,T

L1(w, T ) = − 1

N

N∑
i=1

ȳi log(T · f(xi;w)), (2)

where N is the number of training examples. Note that, in Eq. 2, both the transition matrix T and
the output of classifier f(xi;w) are not given, which makes the transition matrix T unidentifiable
without any assumptions. To address this issue, VolMinNet [13] has been proposed by minimizing
the volume of the transition matrix. It has been proved that VolMinNet theoretically guarantees the
consistencies of both the transition matrix and the classifier.

2.2 Cycle-Consistency Regularization

When minimizing the volume of the transition matrix, VolMinNet exploits the estimated noisy class
posteriors to calculate the volume. Yao et al. [37] has discussed that the estimation error of the noisy
class posterior is usually large due to the randomness of label noise. This would lead the transition
matrix to be poorly estimated by VolMinNet when the noisy training sample is limited. We will
address this issue by proposing a cycle-consistency regularization method instead of minimizing the
volume of the transition matrix directly.

As discussed in the Introduction, minimizing the volume of the transition matrix is equivalent to
maximizing the volume of the clean class posterior. We show that we could directly use the noisy
labels to maximize the volume of the clean class posterior rather than using the estimated noisy
class posterior to calculate the volume of the transition matrix and then minimizing it. Intuitively,
we maximize the volume of the learned clean class posteriors by matching it with the projected
C-dimensional simplex in the noisy class posterior which also needs to estimate.

More specifically, we first transform the one-hot noisy label into the input noisy class posterior
probability by using the SoftMax function, denoting it as SoftMax(ȳi). Then, we use T ′ (an
approximation of the inverse of the transition matrix) to project it onto the clean class posterior
space. Since the true clean class posterior is unobservable, here we use the output of the designed
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neural network f(xi;w) as its approximation. Finally, we minimize the following cross-entropy loss
between T ′SoftMax(ȳi) and f(xi;w), to optimize the parameters of w and T ′ simultaneously,

min
w,T ′

L2(w, T ′) = − 1

N

N∑
i=1

f(xi;w) log(T ′ · SoftMax(ȳi)). (3)

Note that this objective will help maximize the volume of the learned clean class posterior as
T ′SoftMax(ȳi) has the largest volume in the sense that the noisy labels will make up the C-
dimensional simplex. Note also that T ′ should be initialized by and maintained as a diagonally
dominant column stochastic matrix, i.e., T ′ ∈ [0, 1]C×C ,

∑C
i=1 T

′
ij = 1 and T ′

ii > T ′
ji for any i ̸= j.

At present, we can obtain the transition matrices from both the forward and backward ways, i.e.,
T and T ′, by minimizing L1 and L2, respectively. Intuitively, we should also build an “indirect”
cycle-consistency through minimizing the difference between P (Y|X = x) and T ′(TP (Y|X = x)),
where “indirect” means that we would make use of the invertible relationship between these two
matrices T and T ′ indirectly through the original and circularly computed clean class-posterior.
Specifically, the cycle-consistency regularization can be expressed as,

min
w

L3(w;T, T ′) = − 1

N

N∑
i=1

f(xi;w) log(T ′(T · f(xi;w))). (4)

Note that, in Eq. 4, we just optimize the parameter w in the network classifier f(xi;w), while keep T
and T ′ be constant. This is because that our ultimate goal is to learn good clean class posteriors. If the
transition matrices are well learned, the estimated clean class posterior should satisfy this constraint.

Based on the above descriptions, the overall objective function can be expressed as,

L = L1(w, T ) + L2(w, T ′) + λL3(w;T, T ′), (5)

where λ is the trade-off hyper-parameter to balance the two transition matrix learning objectives with
the cycle-consistency regularization term. We optimize all the model parameters simultaneously in
an end-to-end manner.

2.3 Theoretical Analysis

In this section, we justify that the proposed method helps to minimize the volume of the transition
matrix T without directly relying on the learned noisy class posterior, which does not prevent the
estimated T from converging to its optimal solution.

As theoretically proved in VolMinNet [13], the optimal transition matrix T is the one with minimum
volume enclosing the noisy class posterior of the training examples under sufficiently scattered
assumption. VolMinNet thereby theoretically guarantees the consistencies of both the transition
matrix and the classifier by minimizing the volume of the transition matrix. Under the same sufficiently
scattered assumption, our proposed method also theoretically guarantees the consistencies of both
the transition matrix and the classifier because, in Introduction, we show that minimizing the volume
of the transition matrix is equal to maximizing the volume of the clean class posterior. Importantly,
our method could help reduce the side-effects of the estimation error of the noisy class-posterior
probability.

Specifically, our proposed framework as shown in Eq. 5, simultaneously optimize the forward and
backward transition matrices T and T ′. Especially during T ′ estimation, the input is the given one-hot
noisy label which corresponds to the simplex having the maximum volume. When they pass through
the diagonally dominant matrix T ′, the projected clean class-posterior probability should intuitively
has a large volume. Then, minimizing the cross entropy between the learned clean class posteriors
and the projected clean class posteriors could help to maximize the volume of the learned clean class
posteriors. Note that the cycle-consistency constraint on T and T ′ as illustrated in Eq. 4 further helps
to learn better clean class posterior as the projected clean class posterior is more accurate.

3 Experiments

In this section, we introduce the experiment setup, including datasets, noise types, and implementation
details. We compare our proposed method with the state-of-the-art algorithms on two synthetic and
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Table 1: Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 datasets. The mean
and standard deviation computed over five runs are presented. “Sym-xx%” means the noise rate is
xx% and noise type is “Symmetry”.

Method
Cifar-10 CIFAR-100

Sym-20% Sym-40% Sym-60% Sym-20% Sym-40% Sym-60%
CE (baseline) 84.58± 0.18 80.78± 0.38 68.31± 0.33 51.93 ±0.39 40.11± 0.86 25.81± 0.74

GCE [40] 89.31 ±0.07 86.61± 0.23 79.40± 0.41 66.07± 0.24 59.03± 0.21 45.68± 0.39
PeerLoss [17] 88.78 ±0.18 84.87± 0.15 75.28± 0.31 57.34± 0.34 43.39± 0.33 28.66± 0.67

Co-teaching [6] 85.76 ±0.26 83.12± 0.31 70.89± 1.06 56.83± 0.28 43.38± 0.51 28.04± 0.69
Co-teaching++ [38] 86.39±0.33 83.80±0.30 72.51±0.46 57.64±0.34 44.28±0.83 29.60±1.16

T-Revision [33] 88.01±0.16 84.52±0.11 71.53±0.82 62.66±0.53 55.25±0.36 39.94±1.28
VolMinNet [13] 89.69±0.19 85.46±0.19 73.55±0.78 64.70±0.60 56.25±0.45 41.06±0.45

DualT [37] 89.88±0.13 86.23±0.64 72.21±1.67 65.75±0.38 56.80±0.18 42.56±0.55
T-For (T ) 89.53±0.11 85.38±0.13 73.01±0.54 64.23±0.64 56.02±0.39 40.89±0.37

T-Back (T ′) 88.40±0.12 84.97±0.16 73.12±0.79 63.39±0.62 54.96±0.43 41.15±0.82
T + T

′
89.64±0.16 85.47±0.32 73.39±0.40 64.95±0.91 56.36±0.51 41.94±0.43

Ours 90.44±0.19 87.30±0.25 81.01±0.25 67.74±0.17 61.71±0.20 49.30±0.82

two real-world noisy datasets, followed by an ablation study to analyze the experimental results and
some useful hyper-parameters.

3.1 Experiment Setup

Datasets. Extensive experiments are conducted on two manually corrupted datasets with different
noisy types (i.e., CIFAR-10 [9], CIFAR-100 [9]) and two real-world noisy datasets ( i.e., Cloth-
ing1M [34] and Food-101N [10]), to demonstrate the effectiveness of the proposed method. Both
CIFAR-10 and CIFAR-100 contain 60K images of size 32 × 32, of which 50K images constitute the
training set and 10K images for testing set, while CIFAR-10 contains 10 classes, and CIFAR-100
contains 100 classes. Clothing1M is a real-world noisy dataset that contains 1M images with about
38.46% noisy labels for training and 10K images with clean labels for testing. Food-101N is also a
real-world noisy dataset which contains 310K images with about 19.66% noisy labels for training
and 55K images with clean labels for testing.

Noisy type. For CIFAR-10 and CIFAR-100, we manually corrupted the training set according to the
ground-truth transition matrices. Specifically, we conducted experiments using three commonly used
noisy types: (1) Symmetry flipping [20]; (2) Asymmetry flipping [12]; (3) Pair flipping [8];

3.2 Implementation Details

For fair comparisons, all our experiments are performed on NVIDIA GeForce RTX 3090, and
implemented on the same PyTorch platform. For CIFAR-10 and CIFAR-100, the backbone we
used is ResNet-34. We train the classification network f(xi;w), the transition matrices T and T ′ by
SGD strategy, with batchsize of 128, momentum 0.9, weight decay 10−3, and learning rate 10−2.
For CIFAR-10, the algorithm run 60 epochs and the learning rate is divided by 10 after the 30-th
epoch. For CIFAR-100, the algorithm run 80 epochs and the learning rate is divided by 10 after
30-th and 60-th epoch. For Clothing 1M and Food-101N, the backbone we used is ResNet-50 which
is pre-trained on ImageNet. We train the classification network f(xi;w), the transition matrices
T and T ′ also with SGD strategy, with batchsize of 32, momentum 0.9, weight decay 10−3, and
learning rate 2× 10−3. The algorithm run 80 epochs and the learning rate is divided by 10 every 30
epochs. Before training, we warm up on all noisy data with early stopping technique, where we have
trained 10, 10, 1 and 1 epochs on the CIFAR-10, CIFAR-100, Clothing 1M and Food 101N datasets,
respectively.

3.3 Comparison with state-of-the-art methods

We compare the proposed method with the following representative works: 1) CE, which trains the
classification network with the standard cross-entropy loss on the original noisy dataset; 2) GCE [40];
3) PeerLoss [17]; 4) Co-teaching [6]; 5) Co-teaching++ [38]; 6) T-Revision [33]; 7) Dual-T [37];
VolMinNet [13] which estimates the transition matrix under sufficiently scattered assumption.
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Table 2: Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 datasets. The mean
and standard deviation computed over five runs are presented. “Asym-xx%” means the noise rate is
xx% and noise type is “Asymmetry”.

Method
Cifar-10 CIFAR-100

Asym-20% Asym-40% Asym-60% Asym-20% Asym-40% Asym-60%
CE (baseline) 84.71±0.21 81.26±0.04 68.40±1.16 52.16±0.37 40.21±0.23 26.56±0.64

GCE [40] 89.54±0.21 85.95±0.40 79.55±0.51 65.66±0.73 57.34±0.35 45.46±0.16
PeerLoss [17] 88.98±0.15 85.61±0.59 77.03±0.49 57.51±0.05 43.95±0.35 30.02±0.39

Co-teaching [6] 85.90±0.38 83.09±0.44 71.69±0.50 57.21±0.37 43.76±0.46 30.18±0.71
Co-teaching++ [38] 87.13±0.07 84.86±0.36 73.50±0.47 58.79±0.35 45.26±0.41 32.02±1.22

T-Revision [33] 87.99±0.32 85.17±0.07 72.93±0.27 63.94±0.19 57.19±1.28 42.36±1.09
VolMinNet [13] 89.62±0.15 86.12±0.16 74.80±0.15 65.91±0.25 58.35±0.35 42.16±0.94

DualT [37] 89.36±0.44 86.59±0.30 78.89±0.99 65.76±0.56 56.90±0.39 44.61±1.20
T-For (T ) 89.46±0.21 85.74±0.11 74.54±0.12 65.30±0.01 56.31±0.42 42.21±0.58

T-Back (T ′) 89.97±0.14 85.81±0.31 73.40±0.81 64.56±0.34 55.09±0.55 41.73±0.73
T + T

′
89.62±0.24 86.25±0.03 74.80±0.21 65.52±0.28 57.10±0.20 42.72±0.29

Ours 90.55±0.03 87.29±0.05 82.58±0.24 68.34±0.24 62.64±0.49 50.29±0.24

Table 3: Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 datasets. The mean
and standard deviation computed over five runs are presented. “Pair-xx%” means the noise rate is
xx% and noise type is “Pair”.

Method
Cifar-10 CIFAR-100

Pair-20% Pair-40% Pair-45% Pair-20% Pair-40% Pair-45%
CE (baseline) 86.26±0.41 80.24±0.61 70.73±1.44 52.85±0.35 39.66±0.68 28.06±0.28

GCE [40] 89.77±0.17 84.11±0.15 77.54±0.81 65.37±0.29 50.91±0.64 42.38±0.12
PeerLoss [17] 90.11±0.03 85.52±0.40 76.75±2.98 60.48±0.08 44.55±0.29 39.51±0.19

Co-teaching [6] 86.81±0.31 82.29±0.23 74.34±0.74 59.54±0.14 44.97±0.49 39.59±0.58
Co-teaching++ [38] 87.44±0.33 83.59±0.33 73.96±0.35 63.98±0.55 46.76±0.73 42.60±0.72

T-Revision [33] 90.90±0.11 87.03±0.37 75.86±1.16 66.37±0.35 44.64±0.73 38.84±0.47
VolMinNet [13] 90.99±0.27 88.97±0.22 74.77±2.15 69.70±0.30 44.63±0.64 39.23±0.17

DualT [37] 90.18±0.39 88.81±0.07 77.22±2.08 70.07±0.22 53.15±0.48 42.58±0.54
T-For (T ) 90.25±0.40 88.40±0.35 74.08±1.88 69.27±0.14 44.65±0.37 39.10±0.26

T-Back (T ′) 90.03±0.12 87.09±0.93 73.26±0.89 68.61±0.19 44.41±0.31 38.86±0.44
T + T

′
90.67±0.27 89.35±0.49 78.62±1.40 69.50±0.53 44.79±0.65 39.16±0.58

Ours 91.67±0.27 91.36±0.13 91.08±0.08 71.63±0.39 70.87±0.14 69.18±1.30

Results on the synthetic noisy datasets. Tables 1, 2 and 3 report the experiment results under three
different synthetic noisy types on cifar10 and cifar100 datasets, respectively. Each table compares the
proposed method with 8 representative works on one synthetic noisy type. As illustrated in Eq. 5,
our overall objective contains three variants as described in the tables: 1) “T-For (T )” means that
we optimize the classifier just use L1(w, T ); 2) “T-Back (T ′)” means that we optimize the classifier
just use L2(w, T ′); 3) “T + T

′
” means that we optimize the classifier use L1(w, T ) + L2(w, T

′
); 4)

“Ours” means that we utilize the overall objective as shown in Eq. 5 to optimize the classifier.
Compared with the representative methods, the proposed method achieves the best performance on
both datasets with three synthetic noise types under three different noise ratios. The evaluation results
of the three tables can be summarized as follows:

• Compared with representative methods, the proposed method has significant improvements
over these methods, which specifically outperforms the baseline method "CE" and the
representative work VolMinNet [13] by a large margin of 16.80%and 7.24% on average.

• As the noise rate increases, the superiority of this method gradually emerges. As shown in
these three tables: for symmetric noise, the average advantage of our method over other
methods is 4.47%, 6.65% and 10.54% at noise rate of 20%, 40% and 60%, respectively;
For asymmetric noise, the average advantage of our method is 4.46%, 6.61% and 10.28%
at noise rate of 20%, 40% and 60%, respectively; For pair noise, the average advantage of
our method is 4.61%, 15.31% and 22.88% at noise rate of 20%, 40% and 45%, respectively.
This indicates that our method can handle difficult cases with high noise rates much better.
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Table 4: Classification accuracy (%) on the Clothing1M dataset. (*) indicates that the implementation
of the compared method is based on the authors’ code.

Methods CE (Baseline) GCE [40] SL [26] Co-teaching [6] JointOpt [23] LDMI [35]
Accuracy 68.94 69.75 71.02 69.21 72.16 72.46

Methods PTD-R-V [32] ERL [15] ForwardT [20] JoCor [27] CORES [5] CAL [41]
Accuracy 71.67 72.87 69.84 70.30 73.24 74.17

Methods MEIDTM [4] VolMinNet* [13] Ours DivideMix* [11] DivideMix+VolMinNet DivideMix+Ours
Accuracy 73.05 69.82 70.73 74.67 74.83 75.12

Table 5: Classification accuracy (%) on the Food-101N dataset. (*) indicates that the implementation
of the compared method is based on the authors’ code.

Methods CE (Baseline) CleanNetWH [10] CleanNetWS [10] DeepSelf [7] NoiseResist [14] VolMinNet* [13]
Accuracy 81.44 83.47 83.95 85.11 84.70 83.04

Methods DivideMix* [11] Ours DivideMix+T-For (T ) DivideMix+T-Back (T ′) DivideMix+VolMinNet DivideMix+Ours
Accuracy 84.39 83.71 85.07 84.83 85.07 86.11

• By comparing the four variants of our method, it clearly shows that integrating the backward
transition matrix and cycle-consistency regularization can greatly help to improve the
baseline performances step by step.

Results on the real-world datasets.. Tables 4 and 5 compare the proposed method with representative
works on Clothing1M and Food-101N datasets, respectively. We can clearly see that our methods
outperforms the baseline method “CE” and VolMinNet [13] by a margin of 1.79% and 0.91% on
Clothing1M dataset, and 2.27% and 0.67% on Food-101N dataset. What’s more, since the proposed
method can be used as a plug-and-play module, we integrate this module into the representative work
DivideMix [11], and denoted as “DivideMix+Ours”. To further illustrate its effectiveness, we also
combine DivideMix with VolMinNet as another baseline, denoted as “DivideMix+VolMinNet”. We
can clearly see that our method achieves superior performances over all these methods.

3.4 Ablation Study

As shown in Figure 2 (a) to (l), we also show the estimation error of the transition matrix T of our
method during the model training, with different noise types and different noise rates, on the CIFAR-
10 and CIFAR-100 datasets, to evaluate the estimated transition matrix T . The estimation error is
measured by the l1 norm between the ground-truth transition matrix and the estimated transition
matrix. It shows that the proposed method always outperforms previous algorithms on T estimation.
To explore the effect of hyper-parameter λ on model performance, we conducted experiments with
different λ under different noise types and noise rates on CIFAR-10 and cifar-100 datasets, as shown
in Figure 2 (m) to (p). Each experiment run five times. We summarize Figure 2 (m) to (p) as follows:
1) The smaller the T estimation error is, the higher the test accuracy will be; 2) When λ = 0.3, the
estimation error is the smallest and we get the best performances. Based on this observation, we set λ
as 0.3 in all our experiments.

4 Related Work

Based on the statistical consistency of the learned classifier, we roughly divide existing label-noise
learning methods into two categories: algorithms with statistically inconsistent classifiers (i.e.,
heuristic algorithms), and the algorithms with statistically consistent classifiers.

The statistically inconsistent algorithms usually explore some heuristics to reduce the side-effect
of the noisy labels. The representative works include: 1) the data cleaning methods which specially
design some strategies to select reliable examples [18, 5]; 2) the “label correction” methods which
aim to improve the label quality during model training [23, 21]; 3) the semi-supervised learning
methods which treat the unreliable examples as unlabeled data and then adopt some self-supervised
training technics for robust feature representation learning [11]; 4) some other classic machine
learning techniques [19, 20], such as soft label based methods [29], early stop tricks to avoid over-
fitting [2, 31]. Although these methods empirically work well without explicitly modeling the label
noise distribution, we can not theoretically guarantee the consistency of the learned classifiers [6].
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Figure 2: (a) to (l) compare the estimation error of T between our method and other transition
matrix based methods with different noise types and noise ratios on two datasets. (m) to (p) show
classification accuracy and T estimation error with various values of λ on two datasets.

The statistically consistent algorithms aim to learn consistent classifier with the noisy data, which
will asymptotically converge to the optimal classifier obtained on its corresponding clean risk[37].
These methods are primarily designed based on the “loss correction” strategy. Among them, the
transition matrix T (x) has been used to modify the loss function to build consistent classifiers.
Specifically, the anchor point assumption has been widely adopted to estimate the transition matrix [16,
33], and some methods directly assume that the anchor points have already been given. However, this
assumption sometimes could be too strong in real application. When no anchor point is given in the
dataset, these algorithms can not be guaranteed statistically consistent. Then, to remove this strong
dependence on anchor points, some methods propose the slack variable trick [25], which just use the
data points with high noisy class-posterior probabilities to estimate the transition matrix.

Afterwards, a series of assumptions [4, 32, 13] have been proposed to efficiently estimate the transition
matrix. For example, Dual-T estimator [37] introduces the intermediate class to factorize the original
transition matrix into the product of two easy-to-estimate transition matrices. ExtendedT [30]
proposed to extend the traditional transition matrix to be able to model mixed close-set and open-set
label noise. VolMinNet [13] try to consistently estimate the transition matrix under the sufficiently
scattered assumption, which empirically incorporates the minimum volume constraint of T into
the label-noise learning. However, these methods relies heavily on the estimated inaccurate noisy
class-posterior probability, which could lead the transition matrix to be poorly estimated.

5 Conclusion and Limitation

Estimating the transition matrix T plays an important role in building statistically consistent classifier
for label-noise learning. To address the bottleneck of how to reduce the side-effects of the large
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estimation error of the noisy class posterior on transition matrix estimation, this paper proposes to
estimate T under a forward-backward cycle-consistency regularization, of which we could greatly
reduce the dependency of estimating T on the estimated noisy class posterior. We also show that the
proposed method helps to minimize the volume of T without directly exploiting the estimated noisy
class posterior, which encourages the estimated transition matrix T to converge to its optimal solution.
Extensive experimental results consistently justify the effectiveness of the proposed method, from
both of the superior classification accuracy and the estimation error of the learned transition matrix.
Limitation. One major limitation in this study is that our method is constrained to work well under
the sufficiently scattered assumption. When this assumption is violated in some cases, the statistical
consistency of the estimated transition matrix and classifier would not be guaranteed. In the future,
we will make deep theoretical analysis on the backward transition matrix and estimated clean class
posterior probability.
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