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Abstract

Contextual linear bandits is a rich and theoretically important model that has many
practical applications. Recently, this setup gained a lot of interest in applications
over wireless where communication constraints can be a performance bottleneck,
especially when the contexts come from a large d-dimensional space. In this paper,
we consider a distributed memoryless contextual linear bandit learning problem,
where the agents who observe the contexts and take actions are geographically
separated from the learner who performs the learning while not seeing the contexts.
We assume that contexts are generated from a distribution and propose a method
that uses ⇡ 5d bits per context for the case of unknown context distribution and
0 bits per context if the context distribution is known, while achieving nearly the
same regret bound as if the contexts were directly observable. The former bound
improves upon existing bounds by a log(T ) factor, where T is the length of the
horizon, while the latter achieves information theoretical tightness.

1 Introduction

Contextual linear bandits offer a sequential decision-making framework that combines fundamental
theoretical importance with significant practical popularity [8], as it offers a tractable way to capture
side information (context), as well as a potentially infinite set of decisions (actions). The most promi-
nent application is in recommendation systems [30], but it has also been used in applications such
as virtual support agents [39], clinical trials [12], transportation systems [9], wireless optimization
[26, 25], health [10], robotics [31] and online education [34].

In this paper, we develop algorithms that support the deployment of contextual linear bandits in
distributed settings. In particular, we consider the case where a central learner wishes to solve a
contextual linear bandit problem with the help of transient agents. That is, we assume that the agents
do not keep memory of past actions and may not be present for the whole duration of learning;
learning in our setup can happen thanks to the persistent presence of the central learner. We view the
central learner as a “knowledge repository”, that accumulates knowledge from the experience of the
transient agents and makes it available to next agents. The central learner, through the information it
keeps, could help passing by devices decide how to perform an action, for example: passing by drones
decide how to perform a manoeuver; agricultural robots decide what amounts of substances such as
pesticids to release; and passing by mobile devices decide which local restaurants to recommend.

The main challenge we try to address in this paper is the efficient communication of the context the
agents experience. More specifically, in our setup, each time an agent joins, she receives from the
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central learner information on the system, such as current estimates of the system parameters; she
observes her current context, selects and plays an action and collects the corresponding reward. Note
that although the distributed agent knows her context, the action she plays and the observed reward,
the central learner does not - and needs this information to update its estimate of the system parameters.
The context in particular can be communication heavy - in the examples we mentioned before, for
drones the context could be their navigation capabilities, physical attributes, and enviromental factors
such as wind speed; for agricultural robots, it could be images that indicate state of plants and sensor
measurements such as of soil consistency; for restaurant recommendations, it could be the personal
dietary preferences and restrictions, budget, and emotional state. Moreover, because of geographical
separation, the central learner may not have any other way to learn the context beyond communication.
Unlike the reward, that is usually a single scalar value, the context can be a vector of a large dimension
d from an infinite alphabet, and thus, communicating the context efficiently is heavily nontrivial.

The technical question we ask is, how many bits do we need to convey per context to solve the linear
bandit problem without downgrading the performance as compared to the non-distributed setting?

In this paper, we design algorithms that support this goal. We note that our algorithms optimize
the uplink communication (from the agents to the central learner), and assume unlimited (cost-free)
downlink communication. This is a standard assumption in wireless [7, 33, 21] for several reasons:
uplink wireless links tend to be much more bandwidth restricted, since several users may be sharing
the same channel; uplink communication may also be battery-powered and thus more expensive to
sustain; in our particular case, the agents may have less incentive to communicate (provide their
feedback) than the central learner (who needs to learn). Having said that, we note that our algorithms
(in Sections 3 and 4) make frugal use of the downlink channels, only using them to transmit system
parameters.

Below we summarize our main contributions:
1. We show the surprising result that, if the central learner knows the distribution of the contexts,
we do not need to communicate the context at all - the agent does not need to send any information
on the actual context she observes and the action she plays. It is sufficient for the agent to just send
1 bit to convey quantized information on her observed reward and nothing else. But for this very
limited communication, the central learner can learn a policy that achieves the same order of regret as
if full information about the context and reward is received. This result holds for nearly all context
distributions and it is the best we can hope for - zero bits of communication for the context.
2. If the central learner has no knowledge of the context distribution, we show that ⇡ 5d bits per
context (where d is the context dimension) is sufficient to achieve the same order regret as knowing
the context in full precision. Note that previous algorithms, that rely on constructing 1/T -net for the
set of feature vectors, use O(d log T ) bits per context to achieve the same order regret, where T is
the length of the horizon [24], and require time complexity of O(T d) which is exponential in d.

Related Work and Distinction. Contextual linear bandits is a rich and important model that has
attracted significant interest both in theory and applications [8, 24]. Popular algorithms for this
setup include LinUCB [1, 37] and cotextual Thompson sampling [2]. Under Assumption 1, these
algorithms achieve a regret of Õ(d

p
T ), where d is the dimension of an unknown system parameter

and T is the time horizon, while the best known lower bound for this setup is ⌦(d
p
T ) [37]. These

algorithms assume perfect knowledge of the contexts and rewards. Within this space, our work
focuses on operation under communications constraints in a distributed setting.

There is large body of work focusing on distributed linear contextual bandits settings, but mainly
within the framework of federated learning, where batched algorithms have been proposed for
communication efficiency [43, 41, 6, 5, 23] that aggregate together observations and parameter
learning across a large number of iterations. This is possible because in federated learning, the agents
themselves wish to learn the system parameters, remain active playing multiple actions throughout the
learning process, and exchange information with the goal of speeding up their learning [43, 41]. In
contrast, in our setup batched algorithms cannot reduce the communication cost because each agent
only plays a single action; this may be because agents are transient, but also because they may not be
interested in learning - this may not be a task that the agents wish to consistently perform - and thus
do not wish to devote resources to it. For example, an agent may wish to try a restaurant in a special
occasion, but would not be interested in sampling multiple restaurants/learning recommendation
system parameters. In other words, we consider a scenario where the user benefits from receiving
an action (or policy) from the central learner, e.g., a recommendation. In response, the user gives
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feedback to the central learner in terms of (compressed) context/reward. The compression operations
benefit the user by helping reduce her communication cost. In principle, the user is not required
to respond. But the central learner will be able to learn whenever there is a feedback; creating an
incentive for the user to respond could be an interesting future topic. Our setup supports a different
(and complementary) set of applications than the federated learning framework, and requires a new
set of algorithms that operate without requiring agents to keep memory of past actions.1

There is a long line of research on compression for machine learning and distributed optimization,
e.g., compression for distributed gradient descent [40, 3, 32, 18], and distributed inference [19].
However, such schemes are not optimized for active learning applications. Our compression schemes
can be seen as quantization schemes for contexts and rewards tailored to active learning applications.

Our work also differs from traditional vector compression schemes [15] that aim to reconstruct the
data potentially with some distortion (achieve rate-distortion trade-offs). In our case, we do not aim
to reconstruct the data, but instead to distinguish the best arm for each context. Indeed, using 0 bits,
as we do in Section 3, we cannot reconstruct a meaningful estimate of the context.

To the best of our knowledge, our framework has not been examined before for linear contextual
bandits. Work in the literature has examined compression for distributed memoryless MABs [21],
but only for rewards (scalar values) and not the contexts (large vectors), and thus these techniques
also do not extend to our case.

Paper organization. Section 2 reviews our notation and problem formulation; Section 3 provides
and analyzes our algorithm for known and Section 4 for unknown context distributions.

2 Notation and Problem Formulation

Notation. We use the following notation throughout the paper. For a vector X we use Xi or (X)i to
denote the i-th element of the vector X; similarly for a matrix V , we use Vij or (V )ij to denote the
element at row i, and column j. We use kV k2 to denote the matrix spectral norm. For a function
f , we denote its domain and range by dom(f), ran(f) respectively. When dom(f) ✓ R, we use
f(X) for a vector X 2 Rd to denote f(X) := [f(X1), ..., f(Xd)], i.e., the function f is applied
element-wise; for example we use X2 to denote the element-wise square of X . We denote the inverse
of a function f by f�1; if f is not one-to-one, with abuse of notation we use f�1 to denote a function
that satisfies f(f�1(x)) = x8x 2 ran(f) (this is justified due to the axiom of choice [22]). For a
matrix V , we use V �1 to denote its inverse; if V is singular, we use V �1 to denote its pseudo-inverse.
We use [N ] for N 2 N to denote {1, ..., N}, and {Xa}a2A to denote the set {(a,Xa)|a 2 A}. We
say that y = O(f(x)) if there is x0 and a constant C such that y  Cf(x) 8x > x0; we also use
Õ(f(x)) to omit log factors.

Contextual Linear Bandits. We consider a contextual linear bandits problem over a horizon of
length T [8], where at each iteration t = 1, ..., T , an agent, taking into account the context, chooses
an action at 2 A and receives a reward rt. For each action a 2 A, the agent has access to a
corresponding feature vector Xt,a 2 Rd. The set of all such vectors {Xt,a}a2A is the context at
time t, and the agent can use it to decide which action at to play. We assume that the context is
generated from a distribution, i.e., given a, Xt,a is generated from a distribution Pa. As a specific
example, we could have that a 2 Rd and Xt,a is generated from a Gaussian distribution with
zero mean and covariance matrix ||a||2I , where I is the identity matrix, i.e., Pa = N (0, ||a||2I).
The selection of at may depend not only on the current context {Xt,a}a2A but also on the history
Ht , {{X1,a}a2A, a1, r1, ..., {Xt�1,a}a2A, at�1, rt�1}, namely, all previously selected actions,
observed contexts and rewards. Once an action is selected, the reward is generated according to

rt = hXt,at , ✓?i+ ⌘t, (1)

where h., .i denotes the dot product, ✓? is an unknown (but fixed) parameter vector in Rd, and
⌘t is noise. We assume that the noise follows an unknown distribution with E[⌘t|Ft] = 0 and
E[exp(�⌘t)|Ft]  exp(�2/2)8� 2 R, where Ft = �({X1,a}a2A, a1, r1, ..., {Xt,a}a2A, at) is the
filtration [13] of historic information up to time t, and �(X) is the �-algebra generated by X [13].

1Our techniques could be adapted to additionally improve the communication efficiency of batched algorithms,
but this is not the focus of our work.
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The objective is to minimize the regret RT over a horizon of length T , where

RT =
TX

t=1

max
a2A
hXt,a, ✓?i � hXt,at , ✓?i. (2)

The best performing algorithms for this problem, such as LinUCB and contextual Thompson sampling,
achieve a worst case regret of Õ(d

p
T ) [29, 28, 1, 2]. The best known lower bound is ⌦(d

p
T ) [37].

In the rest of this paper, we make the following assumptions that are standard in the literature [24].
Assumption 1. We consider contextual linear bandits that satisfy:
(1.) kXt,ak2  1, 8t 2 [T ], a 2 A. (2.) k✓?k2  1. (3.) rt 2 [0, 1], 8t 2 [T ].

The boundedness assumption on rt can be relaxed using [21], which only requires approximately 3.5
bits on average to send rt, even if it is unbounded.

Memoryless Distributed Contextual Linear Bandits. We consider a distributed setting that consists
of a central learner communicating with geographically separated agents. For example, the agents
are drones that interact with a traffic policeman (central learner) as they fly by. We assume that the
agents do not keep memory of past actions and may not be present for the whole duration of learning;
learning in our setup can happen thanks to the persistent presence of the central learner.

At each time t, t = 1 . . . T , a distributed agent joins the system; she receives from the central learner
information on the system, such as the current estimate of the parameter vector ✓? or the history
Ht; she observes the current context {Xt,a}a2A, selects and plays an action at and collects the
corresponding reward rt. Note that although the distributed agent knows the context {Xt,a}a2A, the
action at and the observed reward rt, the central learner does not. The central learner may need this
information to update its estimate of the system parameters, such as the unknown parameter vector
✓⇤, and the history Ht+1. However, we assume that the agent is restricted to utilize a communication-
constrained channel and thus may not be able to send the full information to the central learner.

The main question we ask in this paper is: can we design a compression scheme, where the agent
sends to the central learner only one message using Bt bits (for as small as possible a value of Bt) that
enables the central learner to learn equally well (experience the same order of regret) as if there were
no communication constraints? With no communication constraints the agent could send unquantized
the full information {{Xt,a}a2A, at, rt}. Instead, the agent transmits a message that could be a
function of all locally available information at the agent. For example, it could be a function of
(Ht, {Xt,at}a2A, at, rt), if the agent had received Ht from the central learner. It could also be a
function of just (Xt,at , rt), which could be sufficient if the central learner employs an algorithm such
as LinUCB [1, 37]. In summary, we set the following goal.

Goal. Design contextual linear bandit schemes for the memoryless distributed setting that achieve
the best known regret of O(d

p
T log(T )), while communicating a small number of bits Bt.

We only impose communication constraints on the uplink communication (from the agents to the
central learner) and assume no cost downlink communication (see discussion in Secttion 1).

Stochastic Quantizer (SQ) [16]. Our proposed algorithms use stochastic quantization, that we next
review. We define SQ`, ` 2 N to be a quantizer, that uses log(`+1) bits, consisting of an encoder and
decoder described as following. The encoder ⇠` takes a value x 2 [0, `] and outputs an integer value

⇠` =

⇢
bxc with probability dxe � x
dxe with probability x� bxc. (3)

The output ⇠` is represented with log(` + 1) bits. The decoder D` takes as input the binary repre-
sentation of ⇠`(x) and outputs the real value ⇠`(x). The composition of the encoder ⇠`, the binary
mapping, and decoder D` is denoted by SQ`. We notice that since the decoder only inverts the binary
mapping operation, we have that SQ` = ⇠`. When SQ` is applied at the agents side, the agent encodes
its data, x, as ⇠`(x), then sends the corresponding binary mapping to the central learner that applies
D` to get SQ`(x). With slightly abuse of notation, this operation is described in the paper, by saying
that the agent sends SQ` to the central learner.

The quantizer SQ` is a form of dithering [16] and it has the following properties

E[SQ`(x)|x] = bxc(dxe � x) + dxe(x� bxc) = x(dxe � bxc) = x, and |SQ`(x)� x|  1.
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In particular, it conveys an unbiased estimate of the input with a difference that is bounded by 1

almost surely. We also define a generalization of SQ` denoted by SQ[a,b]
` where the input x of the

encoder is in [a, b] instead of [0, `]. The encoder first shifts and scales x using x̃ = `
b�a (x � a) to

make it lie in [0, `], then feeds x̃ to the encoder in (3). This operation is inverted at the decoder. It is
easy to see that SQ[a,b]

` satisfies

E[SQ[a,b]
` (x)|x] = x, |SQ[a,b]

` (x)� x|  b� a

`
.

3 Contextual Linear Bandits with Known Context Distribution

In this section, we show that if the central learner knows the distributions for the vectors Xt,a, then
the agent does not need to convey the specific realization of the vector Xt,a she observes at all - it is
sufficient to just send 1 bit to convey some information on the observed reward and nothing else. But
for this very limited communication, the central learner can experience the same order regret, as when
receiving in full precision all the information that the agents have, namely, RT = O(d

p
T log T ).

Algorithm 1, that we describe in this section, provides a method to achieve this. Algorithm 1 is clearly
optimal, as we cannot hope to use less than zero bits for the vector Xt,a.
Remark 1. Knowledge of the distribution of Xt,a is possible in practice, since many times the
context may be capturing well studied statistics (e.g., male or female, age, weight, income, race,
dietary restrictions, emotional state, etc) - the advent of large data has made and will continue to make
such distributions available. Similarly, actions may be finite (eg., restaurants to visit) or well described
(e.g., released amounts of substances), and thus the distribution of Xt,a could be derived. When the
distribution is approximately known, we provide later in this section a bound on the misspefication
performance penalty in terms of regret.

Main Idea. The intuition behind Algorithm 1 is that it reduces the multi-context linear bandit problem
to a single context problem. In particular, it calls as a subroutine an algorithm we term ⇤, that serves
as a placeholder for any current (or future) bandit algorithm that achieves regret O(d

p
T log T ) for

the case of a single context (for example, LinUCB [1, 37]). The central learner uses ⇤ to convey to
the agents the information they need to select a good action. Our aim is to parametrize the single
context problem appropriately, so that, by solving it we also solve our original problem.

Recall that in a single context problem, at each iteration t, any standard linear bandit algorithm ⇤
selects a feature vector (an action) xt from a set of allowable actions X , and observes a reward

rt = hxt, ✓
0
?i+ ⌘t, (4)

where ✓0? is an uknown parameter and ⌘t is noise that satisfies the same assumptions as in (1). The
objective of ⇤ is to minimize the standard linear regret RT (⇤) over a horizon of length T , namely

RT (⇤) =
PT

t=1 maxx2X hx, ✓0?i � hxt, ✓0?i. (5)
Our reduction proceeds as follows. We assume that ⇤ operates over the same horizon of length T and
is parametrized by an unknown parameter ✓0?. We will design the action set X that we provide to ⇤
using our knowledge of the distributions Pa

2 as we will describe later in (7). During each iteration,
the central learner asks ⇤ to select an action xt 2 X and then provides to ⇤ a reward for this action
(our design ensures that this reward satisfies (4) with ✓0? = ✓?). ⇤ operates with this information,
oblivious to what else the central learner does. Yet, the action xt is never actually played: the central
learner uses the selected action xt to create an updated estimate of the parameter vector ✓̂t, as we
will describe later, and only sends this parameter vector estimate to the distributed agent. The agent
observes her context, selects what action to play, and sends back her observed quantized reward to
the central learner. This is the reward that the central learner provides to ⇤. We design the set X and
the agent operation to satisfy that: (4) holds; and RT �RT (⇤) is small, where RT is the regret for
our original multi-context problem and RT (⇤) the regret of ⇤. We next try to provide some intuition
on how we achieve this.

We first describe how we construct the set X . Let ⇥ be the set of all values that ✓? could possibly
take. For each possible parameter vector value ✓ 2 ⇥ the central learner considers the quantity

X?(✓) = E{xa:xa⇠Pa}[arg max
x2{xa:a2A}

hx, ✓i] (6)

2Recall that given a, Xt,a is generated from distribution Pa, see Section 2.
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where xa is the random variable that follows the distribution Pa. Ties in (6) can be broken uniformly
at random. In fact any pre-selected choice function would work as long as the same function is also
used in step 12 of Algorithm 1. Note that the function X? : Rd ! Rd can be computed offline before
the learning starts, see Example 1. We then use

X = {X?(✓)|✓ 2 ⇥}. (7)

Intuitively, for each value of ✓, we optimistically assume that the distributed agent may select the best
possible realization Xt,a for this ✓ (that has the expectation in (6)), and receive the associated reward;
accordingly, we restrict the action space X of ⇤ to only contain the expectation of these “best” Xt,a.
The vector xt 2 X may not actually be the vector corresponding to the action the agent selects; it is
only used to convey to the agent an estimate of the unknown parameter ✓̂t that satisfies xt = X?(✓̂t).
Although the central learner does not control which action the agent plays, this is influenced by ✓̂t;
we show in App. A that Xt,at is an unbiased estimate of xt, and the generated reward follows the
linear model in (4) with ✓0? = ✓?. In Theorem 1, we prove that

argmax
x2X
hx, ✓?i = X?(✓?). (8)

Hence, if ⇤ converges to selecting the best action for the single context problem, we will have
that ✓̂t converges to ✓? if the maximizer in (8) is unique. If there are multiple values for ✓ with
X?(✓) = X?(✓?), we show in the proof of Theorem 1 that they all lead to the same expected reward
for the original multi-context problem.

Example 1. Consider the case where d = 1, A = {1, 2}, Xt,a 2 {�1, 1} 8a 2 A, ⇥ = {�1, 1},
✓? = 1 and Xt,1 takes the value �1 with probability p and 1 otherwise, while Xt,2 takes the values
�1 with probability q and 1 otherwise. Then, we have that

argmax
Xt,a

hXt,a, 1i =
⇢

1 with probability 1� pq
�1 with probability pq, (9)

where we use the fact that if argmaxXt,ahXt,a, 1i 6= 1, it must be the case that both Xt,1 and
Xt,2 are �1. Thus, X?(1) = E[argmaxXt,ahXt,a, 1i] = 1 � 2pq, and similarly X?(�1) =
�1 + 2(1 � p)(1 � q), and hence, X = {1 � 2pq,�1 + 2(1 � p)(1 � q)}. If ⇤ decides to pick
xt = 1 � 2pq, we have that ✓̂t = 1, otherwise ✓̂t = �1. This estimate ✓̂t is then conveyed to the
agent to help her pick the action.

Algorithm Operation. The pseudo-code is provided in Algorithm 1.
• First, the central learner calculates the function

X?(✓) = E{xa:xa⇠Pa}[arg max
x2{xa:a2A}

hx, ✓i], (10)

and creates the action set X = {X?(✓)|✓ 2 ⇥} that algorithm ⇤ is going to use.
• At each time t, based on past history, ⇤ decides on a next action xt 2 X . The central learner uses
xt to calculate the new update ✓̂t = X�1(xt), where X�1 is the inverse of X? (see Section 2).
• The agent receives ✓̂t from the central learner, observes her context, plays an action at =
argmaxa2AhXt,a, ✓̂ti, and observes the reward rt. She then quantizes the reward using a stochastic
quantizer SQ1 (see Section 2), and communicates the outcome using one bit to the central learner.
• The central learner provides the quantized reward as input to ⇤. Note that ⇤ is oblivious to what
actions are actually played; it treats the received reward as corresponding to the action xt it had
decided.

The following theorem proves that Algorithm 1 achieves a regret RT (⇤) + O(
p
T log T ), where

RT (⇤) is the regret of ⇤ in (5). Hence, if ⇤ satisfies the best known regret bound of O(d
p
T log T ),

e.g., LinUCB, Algorithm 1 achieves a regret of O(d
p
T log T ). The theorem holds under the mild

set of assumptions that we stated in Section 2.
Theorem 1. Algorithm 1 uses 1 bit per reward and 0 bits per context. Under Assumption 1, it
achieves a regret RT = RT (⇤) +O(

p
T log T ) with probability at least 1� 1

T .

Proof outline. The complete proof is available in App. A. We next provide a short outline. From
the definition of X? in (10), we notice the following. Recall that the distributed agent receives ✓̂t
from the central learner, and pulls the best action for this ✓̂t, i.e., at = argmaxa2AhXt,a, ✓̂ti. We
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Algorithm 1 Communication efficient for contextual linear bandits with known distribution
1: Input: an algorithm ⇤ for one context case, underlying set of actions X , and time horizon T .
2: Initialize: X?(✓) = E{xa:xa⇠Pa}[argmaxx2{xa:a2A}hx, ✓i],X = {X?(✓)|✓ 2 ⇥} , r̂0 = 0.
3: Let X�1 be an inverse of X?.
4: for t = 1 : T do
5: Central learner:
6: Receive r̂t�1 and provide it to ⇤.
7: ⇤, using the history (x1, r̂1, ..., xt�1, r̂t�1), selects xt.
8: Send ✓̂t = X�1(xt) to agent.
9: Agent:

10: Receive ✓̂t from the central learner.
11: Observe context realization {Xt,a}a2A.
12: Pull arm at = argmaxa2AhXt,a, ✓̂ti and receive reward rt.
13: Send r̂t = SQ1(rt) to the central learner using 1-bit.

show that conditioned on xt, the associated vector Xt,at is an unbiased estimate of xt with a small
variance. Given this, we prove that r̂t satisfies (6), and thus the rewards observed by ⇤ are generated
according to a linear bandit model with unknown parameter that is the same as ✓?.

We next decompose the difference RT � RT (⇤) to two terms: ⌃T =PT
t=1hargmaxXt,ahXt,a, ✓?i, ✓?i � hxt, ✓?i and ⌃0

T =
PT

t=1hargmaxXt,ahXt,a, ✓̂ti, ✓?i �
maxx2X hx, ✓?i. To bound the first term, we show that the unbiasdness property together
with Assumption 1 implies that ⌃T is a martingale with bounded difference. This im-
plies that |⌃T | = O(

p
T log T ) with high probability. To bound ⌃0

T , we first show that
argmaxx2X hx, ✓?i = X?(✓?) (we note that this is why the algorithm converges to ✓̂t that is equal
to, or results in the same expected reward as, ✓?). Then, following a similar approach, we can show
that ⌃0

T is a martingale with bounded difference which implies that |⌃0
T | = O(

p
T log T ) with high

probability. ⇤
Downlink Communication. The downlink cost of our scheme is O(d) (see App. A for discussion).

Operation Complexity. The main complexity that our algorithm adds beyond the complexity of
⇤, is the computation of the function X?. The time-complexity of X⇤(✓) depends on the context
distribution. While computing X⇤(✓) can be computationally expensive in worst-case scenarios, it
can be computed/approximated efficiently for many practical distributions even in a closed form. We
give the following examples:

• For d = 1, ✓ > 0, we have that X?(✓) is the expectation of the maximum of multiple random
variables, i.e., X?(✓) = Exa⇠Pa [maxa2A xa], which can be computed/approximated efficiently if
the distributions Pa are given in a closed form.

• If {Pa}a2A are continuous distributions, then X⇤(✓), ✓ 6= 0 can be expressed as

X⇤(✓) =
X

a2A

Z

xa⇠Pa

xaExa0⇠Pa0 ,a02A/{a}[I[hxa0 , ✓i < hxa, ✓i8a0 6= a]|xa]dPa. (11)

For many distributions, the previous expression can be computed/approximated efficiently. For
instance, consider the case where d � 1, xa are independent, identically distributed d-dimensional
Gaussian vectors with mean µ and covariance matrix ⌃ = UTDU , where D is a diagonal matrix
and U is upper triangular. The expectation in (11) is equal to (Q( hxa�µ,✓i

k
p
DU✓k2

))|A|�1, where Q(c) =
1p
2⇡

R1
c exp(� 1

2x
2)dx. Hence, X⇤(✓) can be approximated efficiently in that case.

• For discrete distributions, X⇤(✓) can be computed efficiently depending on the number of mass
points of the distribution and if the distribution has structures/properties to simplify the expression.

Imperfect Knowledge of Distributions. Since we only use the distributions to calculate X?,
imperfect knowledge of distribution only affects us in the degree that it affects the calculation of X?.
Suppose that we have an estimate X̃? of X? that satisfies

sup
✓2⇥
kX?(✓)� X̃?(✓)k2  ✏. (12)
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Using Theorem 1 we prove in App. A the following corollary.

Corollary 1. Suppose we are given X̃? that satisfies (12). Then, there exists an algorithm ⇤ for
which Algorithm 1 achieves RT = Õ(d

p
T + ✏T

p
d) with probability at least 1� 1

T .

Privacy. Our result may be useful for applications beyond communication efficiency; indeed, the
context may contain private information (e.g., personal preferences, financial information, etc); use
of our algorithm enables to not share this private information at all with the central learner, without
impeding the learning process. Surprisingly, work in [48], motivated from privacy considerations, has
shown that if an agent adds a small amount of zero mean noise to the true context before sending it to
the central learner, this can severely affect the regret in some cases - and yet our algorithm essentially
enables to “guess” the context with no regret penalty if the distributions are known. Although adding
a zero mean noise to the observed feature vector conveys an unbiased estimate of the observation, the
difference between this and our case is technical and mainly due to the fact that the unbiasdness is
required to hold conditioned on the central learner observation (noisy context).

Note that we do not make formal privacy claims in this paper, but simply observe that our approach
could potentially be leveraged for privacy purposes. It is true that the reward can reveal some
information about the context, e.g., if all the actions result in small reward for context and large
reward for another context. However, privatizing the reward (which implies a private context in our
case) is much easier than privatizing the context and there are many proposed optimal algorithms with
little to no regret loss, e.g., see [20, 38, 44, 35]. This is not the case when privatizing the context. In
fact it was shown in [42] that privatizing the context can lead to linear regret and relaxed definitions
of privacy are proposed to avoid this.

4 Contextual Linear Bandits with Unknown Context Distribution

We now consider the case where the learner does not know the context distributions, and thus
Algorithm 1 that uses zero bits for the context cannot be applied. In this case, related literature
conjectures a lower bound of ⌦(d) [46, 47] – which is discouraging since it is probably impossible to
establish an algorithm with communication logarithmically depending on d. Additionally, in practice
we use 32d bits to convey full precision values - thus this conjecture indicates that in practice we may
not be able to achieve order improvements in terms of bits communicated, without performance loss.

In this section, we provide Algorithm 2 that uses ⇡ 5d bits per context and achieves (optimal) regret
RT = O(d

p
T log T ). We believe Algorithm 2 is interesting for two reasons:

1. In theory, we need an infinite number of bits to convey full precision values- we prove that a
constant number of bits per dimension per context is sufficient. Previously best-known algorithms,
which rely on constructing 1/T -net for the set of feature vectors, use O(d log T ) bits per context,
which goes to infinity as T goes to infinity. Moreover, these algorithms require exponential complexity
[24] while ours is computationally efficient.
2. In practice, especially for large values of d, reducing the number of bits conveyed from 32d to⇡ 5d
is quite significant - this is a reduction by a factor of six, which implies six times less communication.

Main Idea. The intuition behind Algorithm 2 is the following. The central learner is going to use
an estimate of the d⇥ d least-squares matrix Vt =

Pt
i=1 Xi,aiX

T
i,ai

to update her estimates for the
parameter vector ✓?. Thus, when quantizing the vector Xt,a, we want to make sure that not only this
vector is conveyed with sufficient accuracy, but also that the central learner can calculate the matrix
Vt accurately. In particular, we would like the central learner to be able to calculate an unbiased
estimator for each entry of Xt,a and each entry of the matrix Vt. Our algorithm achieves this by
quantizing the feature vectors Xt,at , and also the diagonal (only the diagonal) entries of the least
squares matrix Vt. We prove that by doing so, with only ⇡ 5d bits we can provide an unbiased
estimate and guarantee an O( 1p

d
) quantization error for each entry in the matrix almost surely.

Quantization Scheme. We here describe the proposed quantization scheme.
• To quantize Xt,at : Let m , d

p
de. We first send the sign of each coordinate of Xt,at using d bits,

namely, we send the vector st = Xt,at/|Xt,at |. To quantize the magnitude |Xt,at |, we scale each
coordinate of |Xt,at | by m and quantize it using a Stochastic Quantizer (SQ)3 with m+ 1 levels in

3As described in (3) in Section 2, SQ maps value x to an integer value, namely bxc with probability dxe � x

and dxe with probability x� bxc.
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the interval [0,m]. Let Xt , SQm(m|Xt,at |) denote the resulting SQ outputs, we note that Xt takes
non-negative integer values and lies in a norm-1 ball of radius 2d (this holds since the original vector
lies in a norm-2 ball of radius 1 and the error in each coordinate is at most 1/m). That is, it holds that
Xt 2 Q = {x 2 Nd|kxk1  2d}. We then use any enumeration h : Q! [|Q|] of this set to encode
Xt using log(|Q|) bits.
• To quantize Xt,atX

T
t,at

: Let X2
t,at

denote a vector that collects the diagonal entries of Xt,atX
T
t,at

.
Let X̂t , stXt/m be the estimate of Xt,at that the central learner retrieves. Note that X̂2

t is not
an unbiased estimate of X2

t,at
; however, (X2

t,at
� X̂2

t )i  3/m for all coordinates i (proved in
App. B). Our scheme simply conveys the difference X2

t,at
� X̂2

t with 1 bit per coordinate using a
SQ[�3/m,3/m]

1 quantizer.

The central learner and distributed agent operations are presented in Algorithm 2.

Example 2. Consider the case where d = 5. Then each coordinate of |Xt,at | is scaled by 3 and
quantized using SQ3 to one of the values 0, 1, 2, 3 to get Xt. The function h then maps the values for
Xt that satisfy the kXtk1  10 to a unique value (a code) in the set [|Q|]. For instance the value 3.1
is not given a code, where 1 is the vector of all ones. However, note that for |Xt,at | to be mapped to
3.1, we must have 3|(Xt,at)i| � 2 for all coordinates i, which cannot happen since it implies that
kXt,atk2 � 2

p
5/6 > 1 which contradicts Assumption 1.

Algorithm 2 Communication efficient for contextual linear bandits with unknown distribution
1: Input: underlying set of actions A, and time horizon T .
2: ✓̂0 = 0, Ṽ0 = 0, u0 = 0,m = d

p
de.

3: Let h be an enumeration of the set Q = {x 2 Nd|kxk1  2d}.
4: for t = 1 : T do
5: Agent:
6: Receive ✓̂t�1 from the central learner.
7: Observe context realization {Xt,a}a2A.
8: Pull arm at = argmaxa2AhXt,a, ✓̂t�1i and receive reward rt.
9: Compute the signs st = Xt,at/|Xt,at | of Xt,at .

10: Let Xt = SQm(m|Xt,at |).
11: e2t = SQ[�3/m,3/m]

1 (X2
t,at
� X̂2

t ), where X̂t = stXt/m.
12: Send to the central learner h(Xt), st, and e2t using log2(|Q|), d, and d bits, respectively.
13: Send r̂t = SQ1(rt) using 1-bit.
14: Central learner:
15: Receive Xt, st, e2t , and r̂t from the distributed agent.
16: X̂t = stXt/m, X̂(D)

t = X̂2
t + e2t .

17: ut  ut�1 + r̂tX̂t.
18: Ṽt  Ṽt�1 + X̂tX̂T

t � diag(X̂tX̂T
t ) + diag(X̂(D)

t ).
19: ✓̂t  Ṽ �1

t ut.
20: Send ✓̂t to the next agent.

Algorithm Performance. Theorem 2, stated next, holds under Assumption 1 in Section 2 and some
additional regulatory assumptions on the distributions Pa provided in Assumption 2.
Assumption 2. There exist constants c, c0 such that for any sequence ✓1, ..., ✓T , where ✓t depends
only on Ht, with probability at least 1� c0

T , it holds that
Pt

i=1 Xi,aiX
T
i,ai
� ct

d I 8t 2 [T ], (13)

where at = argmaxa2AhXt,a, ✓ti, and I is the identity matrix.

We note that several common assumptions in the literature imply (13), for example, bounded
eigenvalues for the covariance matrix of Xt,at [11, 27, 17]. Such assumptions hold for a wide range
of distributions, including subgaussian distribitions with bounded density [36].

Challenge in relaxing assumption 2 (diversity assumption). The main challenge in relaxing the
diversity assumption for LinUCB (or Thompson sampling) based algorithms is that the regret of those
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algorithms is bounded as Õ(
p
Tk✓̂T � ✓⇤kVT ). Without quantization, the quantity k✓̂T � ✓⇤kVT

grows slowly and is nearly a constant; however, without the diversity assumption, the quantization
error can make k✓̂T � ✓⇤k2VT

to grow as
p
T in the worst case. This is due to the fact that sub-optimal

arms do not have large number of pulls, hence, we do not have good estimate of ✓? on those direction;
on the other hand, the quantization errors in estimating VT is accumulated in all directions. As a
result, the regret bound increases by a factor of T 1/4. We leave it as a future work to either relax the
diversity assumption (which is required in our paper only in the case of unknown context distribution)
or else show that removing it will unavoidably increase the regret order.
Theorem 2. Algorithm 2 satisfies that for all t: Xt 2 Q; and Bt  1 + log2(2d+ 1) + 5.03d bits.
Under assumptions 1, 2, it achieves a regret RT = O(d

p
T log T ) with probability at least 1� 1

T .

Proof Outline. To bound the number of bits Bt, we first bound the size of Q by formulating a
standard counting problem: we find the number of non-negative integer solutions for a linear equation.
To bound the regret RT , we start by proving that our quantization scheme guarantees some desirable
properties, namely, unbiasedness and O( 1p

d
) quantization error for each vector coordinate. We then

upper bound the regret in terms of k✓̂t � ✓?k2 and show that this difference can be decomposed as

k✓̂t � ✓?k2 = kV �1
t k2(k

Pt
i=1 Eik2 + (1 + |⌘i|)k

Pt
i=1 eik2 + k

Pt
i=1 ⌘̂iXi,aik2, (14)

where Et captures the error in estimating the matrix Xt,atX
T
t,at

, et is the error in estimating Xt,at , and
⌘0t is a noise that satisfies the same properties as ⌘t. Using Assumption 2, we prove that V �1

t grows as
O(dt ) with high probability, and from the unbiasdness and boundedness of all error quantities we show

that they grow as O(
p
t log t) with high probability. This implies that k✓̂t � ✓?k2 = O(d

q
log t
t ),

and hence, RT = O(d
p
T log T ). The complete proof is provided in App. B. ⇤

Algorithm Complexity. If we do not count the quantization operations, it is easy to see that the
complexity of the rest of the algorithm is dominated by the complexity of computing V �1

t which can
be done in O(d2.373) [4]. For the quantization, we note that each coordinate of Xt can be computed
in Õ(1) time4. Moreover, the computation of h(x) for x 2 Q can be done in constant time with
high probability using hash tables, where h is the enumeration function in Step 3. Hence, the added
computational complexity is almost linear in d. Although a hash table for h can consume ⌦(25d)
memory, by sacrificing a constant factor in the number of bits, we can find enumeration functions
that can be stored efficiently. As an example, consider the scheme in [14] that can find an one-to-one
function h : Q ! N+ which can be stored and computed efficiently, but only gives guarantees in
expectation that E[log(h(x))] = O(d) for all x 2 Q.

Downlink Communication Cost. Although we assume no-cost downlink communication, as was
also the case for Algorithm 1, the downlink in Algorithm 2 is only used to send the updated parameter
vector ✓̂t to the agents. If desired, these estimates can be quantized using the same method as for
Xt,at , which (following a similar proof to that of Theorem 2) can be shown to not affect the order of
the regret while reducing the downlink communication to ⇡ 5d bits per iteration.

Offloading To Agents. For applications where the agents wish to computationally help the central
learner, the central learner may simply aggregate information to keep track of ut, Ṽt and broadcast
these values to the agents; the estimate ✓̂t can be calculated at each agent. Moving the computational
load to the agents does not affect the regret order or the number of bits communicated on the uplink.
Remark 2. Under the regulatory assumptions in [17], the regret bound can be improved by a factor
of

p
log(K)/d, where K = |A| is the number of actions. However, this does not improve the regret

in the worst case as the worst case number of actions is O(Cd), C > 1 [24].

Societal Impact. Results in this work can be used in decision making systems which can potentially
lead to biased decisions against racial, sex, or minority groups if used without care.
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4Multiplication by
p
d can take O(log d) time.
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