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Abstract

LiDAR point clouds, which are usually scanned by rotating LiDAR sensors contin-
uously, capture precise geometry of the surrounding environment and are crucial to
many autonomous detection and navigation tasks. Though many 3D deep architec-
tures have been developed, efficient collection and annotation of large amounts of
point clouds remain one major challenge in the analytics and understanding of point
cloud data. This paper presents PolarMix, a point cloud augmentation technique
that is simple and generic but can mitigate the data constraint effectively across dif-
ferent perception tasks and scenarios. PolarMix enriches point cloud distributions
and preserves point cloud fidelity via two cross-scan augmentation strategies that
cut, edit, and mix point clouds along the scanning direction. The first is scene-level
swapping which exchanges point cloud sectors of two LiDAR scans that are cut
along the azimuth axis. The second is instance-level rotation and paste which crops
point instances from one LiDAR scan, rotates them by multiple angles (to create
multiple copies), and paste the rotated point instances into other scans. Extensive
experiments show that PolarMix achieves superior performance consistently across
different perception tasks and scenarios. In addition, it can work as a plug-and-play
for various 3D deep architectures and also performs well for unsupervised domain
adaptation. Code is available at https://github.com/xiaoaoran/polarmix

1 Introduction

In the past decade, LiDAR sensors have been increasingly employed in various perception related
applications such as autonomous driving. They provide accurate and robust depth sensing of the
surrounding environments which is crucial for scene understanding for autonomous navigation indoors
and outdoors. With the recent advance of deep neural networks (DNNs), point cloud understanding
has achieved significant progress in various perception tasks such as semantic segmentation [47,
16, 41, 53, 26, 27] and object detection [23, 48, 9]. On the other hand, training reliable DNN
models requires large amount of well-annotated training data, whereas collecting and annotating large
amounts of point clouds is often laborious, time-consuming, and has poor scalability across tasks and
domains. This has become one major constraint in LiDAR point cloud analytics and understanding.

Data augmentation (DA) [37, 3], which aims to expand the distribution of the training data by modi-
fying and creating new training samples, has been widely studied for 2D images and demonstrated
great potential in training robust DNN models with limited training images. However, most existing
DA methods do not work well for LiDAR point clouds, a very meaningful but largely neglected task.
Specifically, most existing DA methods perform global augmentation such as randomly scaling, flip-
ping, and rotation which cannot augment local structures or model relationships across neighbouring
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Figure 1: A LiDAR sensor rotates and scans environments by the azimuth in XY plane, and the
captured points (as shown in a bird’s-eye view in (a)) bear LiDAR-specific properties including
partial visibility (i.e., only object sides facing the LiDAR sensor have points captured) and density
variation along the depth as illustrated in close-up views in (b). PolarMix mixes points across LiDAR
scans along the scanning direction which enriches point distribution while preserving data fidelity
effectively. For a sample LiDAR scan in (c), (d) shows one of its augmentations with PolarMix where
points in orange color are cropped and copies from another LiDAR scan.

point cloud scans. Recently, several studies [50, 49, 13] explore local augmentation that creates new
training samples via cut and mix of 2D images. However, the local augmentation does not work well
for point clouds as it does not consider the unique scanning mechanism of LiDAR sensors (e.g., via
continuous 360-degree sweeping) and specific properties of the captured point data.

This work focuses on effective and efficient data augmentation for better learning from limited
LiDAR point cloud data. To this end, we design PolarMix, a simple yet generic DA technique
that can effectively work across different perception tasks and datasets. PolarMix achieves these
unique features by capturing the essential properties of LiDAR point clouds, namely, partial visibility
and density variation that are closely associated with the sweeping mechanism of LiDAR sensors.
Specifically, objects in LiDAR scans are incomplete where only object sides facing the LiDAR sensor
are scanned with points as illustrated in Fig. 1(a). In addition, point density varies with point depth as
illustrated in Fig. 1(b). Effective data augmentation needs to cater for these LiDAR-specific features
to ensure the fidelity and usefulness of the augmented point clouds in network training.

Inspired by the above observations, PolarMix crops, edits, and mixes points along the LiDAR scanning
direction (i.e., the azimuth in the 3D polar system in Fig. 1(a)) to enrich point cloud distributions
while maintaining its fidelity. It consists of two cross-scan augmentation approaches. The first is
scene-level swapping which exchanges point cloud sectors of two circular LiDAR scans that are cut
along the azimuth axis as illustrated in Fig. 2(a). The second is instance-level rotation and paste
which cuts point cloud instances from one LiDAR scan, rotates them along the scanning direction
multiple times (to create multiple copies), and pastes the rotated instances into another LiDAR scan
as illustrated in Fig. 2(b). For the sample LiDAR scan in Fig. 1(c), Fig. 1 (d) shows one of its
augmentation where point cloud sectors and instances are mixed in with high fidelity. Extensive
evaluations show that the PolarMix augmented point clouds improve the network training consistently
across various tasks and benchmarks, more details to be described in experiment part.

The contribution of this paper can be summarized in three aspects. First, we introduce PolarMix, a
simple yet effective point cloud augmentation technique that can enrich point cloud distributions while
maintaining point cloud fidelity concurrently. Second, PolarMix is generally applicable and can work
for different network architectures, perception tasks (e.g., object detection, semantic segmentation,
etc.), and datasets/domains with consistent performance gains. Third, PolarMix is easy to use and
can be incorporated as a plug and play by most existing point cloud networks. It also works well for
unsupervised domain adaptation with state-of-the-art performance.
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2 Related Works

Data augmentation for 2D images. Data augmentation has been widely studied across different
2D computer vision tasks such as image classification [15, 40], object detection [32], and semantic
segmentation [4]. It plays an important role in effective and efficient deep network training since
collecting and annotating training images is often laborious and time-consuming. One typical
DA approach is global augmentation that aims to learn certain transformation invariance in image
recognition tasks [33, 13], e.g., random cropping [22, 38, 39], random scaling[38, 39], random
erasing [52], color jittering [39], etc. Another typical DA approach is local augmentation which
performs various mix operations to generate new training data. For example, mixup [50, 43] generates
new data via convex combinations of the input pixels/feature embeddings and the output labels.
CutMix [49] pastes rectangular crops from other images instead of mixing the whole images. Recently,
several studies [51, 5, 10, 13] introduce the object concept into the cut and mix operations: [51]
extends mixup and cutmix into object detection; [5, 10, 13] cut instances from one image and paste
them into another for training better instance segmentation networks.

Data augmentation for 3D point clouds. Data augmentation of point clouds has also attracted
increasing attention in recent years. Similar to 2D computer vision tasks, one direct approach is
to adopt global augmentation in 3D space such as random scaling, rotation, and translation, which
can be directly incorporated for expanding 3D objects [45, 2], indoor point clouds [8], and outdoor
point clouds [1, 12, 30]. Several studies also explored to augment local structures of point clouds:
PointAugment [25] introduces an auto-augmentation network for shape-wise transformation and point-
wise displacement; PatchAugment [36] exploits data augmentation in local areas; PointWOLF [21]
applies weighted transformations in local neighbourhoods for enhancing the diversity of 3D objects.
However, the aforementioned works focus on object-level augmentation which are not suitable for
scene-level point clouds such as those in autonomous driving.

Recently, several studies explored the idea of mixing for augmenting point clouds. For example,
PointMixUp [6] interpolates 3D objects to create new samples for training. PointCutMix [24] replaces
subsets of point objects with that of other objects to enrich training data. However, both work focuses
on object-level augmentation only. Several studies [48, 11, 46, 29] also explore scene-level mix but
they are constrained with specific vision tasks. For example, GT-Aug [48, 11] cuts instances and
pastes them into other LiDAR scans for the object detection task (requiring 3D bounding boxes for
object cutting); Mix3D [29] concatenates points of two scenes as an out-of-context augmentation for
the specific task of semantic segmentation. As a comparison, the proposed PolarMix can perform
both object-level and scene-level augmentation. More importantly, its designs are perfectly aligned
with LiDAR-specific data properties including partial visibility and density variation with depth
which guarantees superior fidelity and effectiveness of the augmented point clouds. Furthermore,
PolarMix is generic and applicable to various computer vision tasks such as semantic segmentation
and object detection, more details to be discussed in the experiment part.

3 PolarMix

Problem statement. Let s ∈ RN×4 and y denote a LiDAR scan with N points and its labels,
respectively. Each point pi in s is a 1×4 vector with a 3D Cartesian coordinate relative to the scanner
(xi, yi, zi) and an intensity value of returning laser beam. The goal of PolarMix is to generate new
training samples (s̃, ỹ) by cutting and mixing across two training samples (sA, yA) and (sB , yB).
The generated training samples (s̃, ỹ) is used for network training with the original loss function.

The polar coordinates. We adopt a 3D polar coordinate system where the position of a point is
defined by three numbers (θ, r, ϕ): θ is the azimuth angle from x-axis to y-axis which defines the
rotation scanning angle of LiDAR sweeping; r denotes the depth which is the distance of the point to
the LiDAR sensor; ϕ is the inclination angle between the z-axis and the point vector (xi, yi, zi).

PolarMix for LiDAR data augmentation. We designed two point cloud augmentation approaches
in PolarMix including a scene-level swapping approach Sw() and an instance-level rotate-paste
approach Rp() for mixing LiDAR scans sA, sB and their labels yA, yB . The combination of the two
augmentation approaches in PolarMix can be defined as

s̃ = Sw(sA, sB |α, β)⊕Rp(sA, sB |C,Ω)
ỹ = Sw(yA, yB |α, β)⊕Rp(yA, yB |C,Ω)

(1)
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Figure 2: The proposed PolarMix consists of two data augmentation designs: (a) The scene-level
swapping exchanges sectors of LiDAR scans A and B that are cut with certain azimuth angles; (c)
The instance-level augmentation cuts point instances from scan B, rotates them about the z-axis by
multiple azimuth angles (for creating multiple copies of the cut point instances), and pastes the cut
and rotated instances into scan A; The augmentations of scan A by the two proposed augmentation
approaches are shown in (b).

where ⊕ denotes a concatenation operation. C and Ω represent class list and angle list for instance-
level rotation and paste, respectively.

The scene-level swapping Sw(sA, sB |α, β) aims to cut a point cloud sector from azimuth angle α to
azimuth angle β from a LiDAR scan sA, and switch it with the similarly cut point cloud sector from
another LiDAR scan sB . The swapping operation can be defined as follows

Sw(sA, sB |α, β) = ((1−Mα,β
A )⊙ sA)⊕ (Mα,β

B ⊙ sB)

Sw(yA, yB |α, β) = ((1−Mα,β
A )⊙ yA)⊕ (Mα,β

B ⊙ yB)
(2)

where Mα,β
A denotes a binary mask indicating the azimuth range [α, β] that is cut out from LiDAR

scan sA, and ⊙ is element-wise multiplication. The scene-level swapping thus exchanges two point
cloud sectors of the same size from two LiDAR scans in a bird’s-eye-view as illustrated in Fig. 2 (a)
since the maximum scanning area in the horizontal plane is a circle. Note the angles α, β should be
within the horizontal field-of-view of LiDAR sensor (e.g. within 360◦).

The instance-level augmentation Rp(sA, sB |C,Ω), as illustrated in Fig. 2 (c), crops point instances
of semantic classes C from LiDAR scan sB , rotates them about z-axis by multiple azimuth angles
Ω = {ω1, . . . , ωJ} to create multiple copies, and pastes all cropped and rotated point instances into
another scan sA. This augmentation operation can be defined by

Rp(sA, sB |C,Ω) = sA ⊕
∑
ω∈Ω

Rω(M
C
B ⊙ sB)

Rp(yA, yB |C,Ω) = yA ⊕
∑
ω∈Ω

(MC
B ⊙ yB)

(3)

where MC
B is a binary mask indicating which semantic classes of points instances to crop from

LiDAR scan B, and Rω represents the rotation matrix around the z-axis for an azimuth angle ω.

Using a polar coordinate system to augment LiDAR points has two desirable features. First, it allows
point cutting, rotating, and mixing to be perfectly aligned with the LiDAR scanning mechanism
which greatly helps to preserve LiDAR-specific data properties such as partial visibility and density
variation along the depth. Second, it simplifies the augmentation process with negligible computa-
tional overhead: The scene-level swapping involves point slicing and concatenating only while the
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Algorithm 1 PolarMix.

Input: Points and labels of two LiDAR scans: {sA, yA}, {sB , yB}; Class list and angle list for
instance-level rotate and paste: C,Ω; Azimuth range for scene-level swapping: α, β.

Output: A new LiDAR scan for training: {s̃, ỹ}.
1: s̃, ỹ = sA, yA # Initialization
2: if rand() ≤ δ1 then # Scene-level swapping
3: Calculate azimuth θ for points in s̃, sB as θ̃, θB

4: Delete points with labels in s̃, ỹ if α ≤ θ̃ ≤ β
5: Cut points with labels in sB , yB if α ≤ θB ≤ β
6: Update s̃, ỹ by concatenating with cut points and labels from Scan B
7: end if
8: if rand() ≤ δ2 then # Instance-level rotate-pasting
9: Copy points with labels from sB , yB according to C

10: for ωj in Ω do
11: Rotate copied points with Rωj

, duplicate their labels
12: Update s̃, ỹ by concatenating rotated points and labels
13: end for
14: end if

instance-level augmentation can be achieved by simple dot products followed by point concatenation.
Beyond that, PolarMix works in the input space which is naturally compatible with different network
architectures. Algorithm 1 summarizes the pipeline of the proposed PolarMix.

PolarMix for unsupervised domain adaptation. The proposed PolarMix can be directly applied
for unsupervised domain adaptation via self-training [54]. With LiDAR data from a labeled source
domain, a supervised network model can be trained and applied to predict pseudo labels for LiDAR
data from an unlabeled target domain. PolarMix can then cut and mix LiDAR scans between the
source domain (with ground-truth labels) and the target domain (with pseudo labels). Such augmented
LiDAR data mitigates the inter-domain discrepancy which facilitates unsupervised domain adaptation
effectively, more details to be described in the ensuing experiments.

4 Experiments

We evaluate how PolarMix benefits deep neural network training for LiDAR point cloud understanding.
In Section 4.1, we evaluate it over the semantic segmentation task across different deep architectures
and benchmarking datasets. In Section 4.2, we evaluate it over object detection, mainly to examine
its generalization capability across different computer vision tasks. In Section 4.3, we evaluate
how it facilitates unsupervised domain adaptation over multiple synthetic-to-real domain adaptation
benchmarks of LiDAR data. Finally, we provide an in-depth analysis of different components in
PolarMix in Section 4.4.

4.1 PolarMix helps learn better representations for semantic segmentation

We first study how PolarMix helps learn better representation for semantic segmentation. The
experiments were conducted over multiple deep architectures and public datasets.

4.1.1 Experimental Settings

Dataset. We evaluate PolarMix over three LiDAR datasets of driving scenes that have been widely
adopted for benchmarking in semantic segmentation. The first is SemanticKITTI [1] which is a
large-scale dataset collected in a city of Germany. It has 43,551 LiDAR scans with 64 beams with
point-wise annotations of 19 semantic classes. We follow the widely-adopted split and use sequences
00-07, 09-10 as the training set and sequence 08 for validation. The second is nuScenes-lidarseg [12]
dataset which has 40,000 scans captured in 1000 scenes of 20s duration. It is collected with a 32 beams
LiDAR sensor at 20Hz frequency with point-wise annotations of 16 semantic classes. We follow the
officially split of training data and validation data. The third is SemanticPOSS [30] which consists of
2,988 annotated point cloud scans of 14 semantic classes. We follow the official benchmark setting,
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Table 1: Semantic segmentation over the validation set of the dataset SemanticKITTI. The baseline
with either MinkNet or SPVCNN does not involve any data augmentation. CGA means conventional
global augmentation which includes random scaling and random rotation. The symbol † mean that
the related local data augmentation is on top of CGA, e.g., +CutMix† means that the network training
involves both CGA and CutMix. PolarMix achieves clearly the best semantic segmentation across
both deep networks.

Methods ca
r

bi
.c

le

m
t.c

le

tr
uc

k

ot
h-

v.

pe
rs

.

bi
.c

ls
t

m
t.c

ls
t

ro
ad

pa
rk

i.

si
de

w
.

ot
h-

g.

bu
ild

.

fe
nc

e

ve
ge

t.

tr
un

k

te
rr

a.

po
le

tr
af

.

mIoU

MinkNet [7] 95.9 3.7 44.9 53.2 42.1 53.7 68.9 0.0 92.8 43.0 80.0 1.8 90.5 60.0 87.4 64.5 73.3 62.1 43.7 55.9

+CGA 96.3 8.7 52.3 63.2 51.6 63.5 74.4 0.1 93.3 46.6 80.4 0.8 90.3 60.0 88.0 65.1 74.5 62.8 46.8 58.9(+3.0)
+CutMix† [49] 96.0 10.2 59.3 78.7 52.1 63.4 79.4 0.0 93.5 47.8 80.7 1.6 90.3 61.0 87.5 66.2 73.3 64.0 46.8 60.6(+5.7)
+CopyPaste† [13] 96.6 18.4 62.8 76.3 64.6 68.9 82.8 1.0 93.1 45.3 80.2 1.4 90.5 60.7 88.1 67.8 74.6 63.7 49.1 62.4(+6.5)
+Mix3D† [29] 96.3 29.6 61.8 68.5 55.4 72.7 77.7 1.0 94.3 52.9 81.7 0.9 89.1 55.5 88.3 69.3 74.6 65.2 50.3 62.4(+6.5)
+PolarMix†(ours) 96.3 51.2 75.6 63.4 63.9 71.9 85.6 4.9 93.6 45.8 81.4 1.4 91.0 62.8 88.4 68.5 75.0 64.6 49.9 65.0(+9.1)

SPVCNN [41] 94.9 9.1 55.8 66.5 33.7 61.8 75.9 0.2 93.1 45.3 79.6 0.4 91.4 62.7 87.5 66.2 72.9 62.8 42.7 58.0

+CGA 96.1 21.8 57.8 69.2 49.8 66.7 80.8 0.0 93.4 44.8 80.1 0.2 90.9 62.9 88.5 64.8 75.7 63.6 46.2 60.7(+2.7)
+CutMix† [49] 96.1 21.4 59.6 71.2 54.2 66.8 81.8 0.0 93.5 49.6 81.1 2.2 90.9 63.1 87.9 66.9 74.1 63.8 49.8 61.7(+3.7)
+CopyPaste† [13] 96.0 32.4 66.4 67.1 52.9 74.8 84.3 3.6 93.3 46.9 80.2 2.5 91.1 64.1 88.1 67.0 73.9 64.0 51.6 63.2(+5.2)
+Mix3D† [29] 96.5 35.9 65.0 66.6 60.2 75.3 83.3 0.0 93.8 49.0 81.1 1.4 90.6 60.0 89.2 70.2 76.4 64.8 50.5 63.7(+5.7)
+PolarMix†(ours) 96.5 53.9 79.7 68.5 64.9 75.6 87.8 7.5 93.5 47.3 81.2 1.1 91.2 63.8 88.2 68.2 74.2 64.5 49.4 66.2(+8.5)

i.e. sequence 03 for validation and the rest for training. For all semantic segmentation experiments,
we adopt mean intersection-over-union (mIoU) as the evaluation metric.

Architectures and implementation details. We evaluate PolarMix over four widely adopted
semantic segmentation networks: 1) MinkNet [7] which is a typical voxel-based sparse CNN; 2)
SPVCNN [41] which is a hybrid network with a sparse convolutional and a point-based sub-network;
3) RandLA-Net [16] which is a standard point-based network; and 4) Cylinder3D [53] which a state-
of-the-art cylindrical and asymmetrical 3D CNN. We adopt the default training hyper-parameters
in the open-source repositories234 for all four networks, and the only modification is the batch size
for SPVCNN and MinkNet (we change it to 8). We conducted experiments with a single Tesla
2080Ti GPU for MinkNet and SPVCNN and a Tesla V100 GPU for RandLA-Net and Cylinder3D.
Note training RandLA-Net and Cylinder3D takes relatively longer time, we therefore uniformly
sub-sampled the same 10% of SemanticKITTI for faster experiments with these two networks.

For augmentation with scene-level swapping, we randomly crop 180◦ sectors from 360◦ for [α, β] for
point swapping. For augmentation with instance-level rotate and paste, we take three rotation angles
for dataset SemanticKITTI (0◦, and another two rotation angles randomly picked from (0◦, 120◦]
and (120◦, 240◦]), and two rotation angles for datasets SemanticPOSS and nuScenes-lidarseg (0◦
and another rotation angle randomly chosen from either +90◦ or −90◦). We set δ1, δ2 as 0.5, 1,
respectively. We also examine hyper-parameters of PolarMix with details provided in the appendix.

4.1.2 Results

PolarMix improves semantic segmentation by large margins. Since data augmentation for LiDAR
semantic segmentation is a relatively under-explored task with few existing works, we selected the
highly-related mixing-based methods including Cut-Mix [49] and Copy-paste [13] in 2D vision and
the pioneering work Mix3D [29] in 3D vision as baseline augmentation methods, and compared the
proposed PolarMix with them. Tables 1 and 2 show experimental results across two networks MinkNet
and SPVCNN and three datasets SemanticKITTI, nuScenes-lidarseg, and SemanticPOSS. It can be
observed that the baseline with either MinkNet or SPVCNN (without involving any data augmentation
in network training) produces fair semantic segmentation for all three datasets. However, including
global augmentation with random scaling and rotation (i.e., +CGA in the two tables) improves
semantic segmentation consistently across the two networks and the three datasets. On top of
the global augmentation, further including local augmentation (i.e., +CutMix†, +CopyPaste†, and

2MinkNet and SPVCNN: https://github.com/mit-han-lab/spvnas
3RandLA-Net: https://github.com/QingyongHu/RandLA-Net
4Cylinder3D: https://github.com/xinge008/Cylinder3D
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Table 2: Semantic segmentation over the validation set of the datasets nuScenes-lidarseg and Seman-
ticPOSS. The baseline with either MinkNet or SPVCNN does not involve any data augmentation.
CGA means conventional global augmentation which includes random scaling and random rotation.
The symbol † mean that the related local data augmentation is on top of CGA, e.g., +CutMix† means
that the network training involves both CGA and CutMix. PolarMix achieves clearly the best semantic
segmentation across both deep networks.

DA
methods

MinkNet [7] SPVCNN [41]

nuScenes-lidarseg SemanticPOSS nuScenes-lidarseg SemanticPOSS

None 67.1 52.1 68.4 50.7
+CGA 70.2(+3.1) 55.1(+3.0) 69.1(+0.7) 55.3(+4.6)
+CutMix† [49] 70.4(+3.3) 56.0(+3.9) 71.7(+3.3) 54.7(+4.0)
+Copy-Paste† [13] 70.8(+3.7) 55.9(+2.8) 71.3(+2.9) 56.2(+5.5)
+Mix3D† [29] 70.1(+3.0) 55.3(+3.2) 70.5(+2.1) 54.4(+3.7)
+PolarMix†(Ours) 72.0(+4.9) 57.4(+5.3) 72.1(+3.7) 58.6(+7.9)
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Figure 3: PolarMix helps reduce annotated training data effectively. For both MinkNet and SPVCNN,
including PolarMix achieves similar segmentation accuracy by using around 75% annotated training
data only, hence helps save around 25% efforts in training data collection and annotation.

+Mix3D†) further improves the semantic segmentation in most cases. As a comparison, PolarMix
introduces the best performance gains consistently across the two baseline networks and the three
evaluated benchmarking datasets, demonstrating its great robustness and generalization capabilities
across different network architectures and datasets.

PolarMix improves data-efficiency. The proposed PolarMix works reliably with different amounts
of training data, and it also improves data efficiency by reducing training data and annotations
effectively. As shown in Fig. 3, the data augmentation with PolarMix consistently helps across
different proportions of training data of SemanticKITTI as well as two different segmentation
networks MinkNet and SPVCNN. In addition, including PolarMix can achieve similar segmentation
mIoU while using 75% of SemanticKITTI in network training (as compared with training with 100%
SemanticKITTI without using PolarMix) for both networks, hence saves 25% efforts in training data
collection and annotations.

PolarMix works across deep architectures. The proposed PolarMix can work across different
deep architectures beyond the voxel-based MinkNet and the sparse convolution network SPVCNN.
We evaluate this feature by experimenting with two new deep architectures including the point-
based network RandLA-Net [16] and the more recent 3D cylindrical convolutional architecture
of Cylinder3D [53]. We train the two networks with default settings as in the officially released
repositories. As shown in Table 3, incorporating PolarMix improves the segmentation performance
consistently by large margins for both strong baselines (trained with 10% of SemanticKITTI data).
This further verifies that PolarMix has superior generalization capability across different 3D deep
architectures.
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Table 3: Semantic segmentation results over the validation set of the SemanticKITTI dataset. We
subsample the same 10% of the dataset for training. PolarMix consistently works across different 3D
deep architectures.

Methods mIoU

RandLA-Net [16] 45.4
RandLA-Net [16]+PolarMix 50.5(+5.2)

Cylinder3D [53] 60.6
Cylinder3D [53]+PolarMix 62.5(+1.9)

4.2 PolarMix helps learn effective representations for object detection

Table 4: Object detection results on the validation set of nuScenes dataset. Incorporating PolarMix
into the network training consistently improves the object detection across three different deep
frameworks including PointPillar, Second, and CenterNet.

Methods Car Truck Bus Trailer CV Ped Motor Bicycle TC Barrier mAP NDS

PointPillar [23] 80.4 45.0 54.0 25.4 10.5 71.0 36.0 9.4 44.8 42.8 41.8 54.9
+PolarMix 80.9 50.1 59.2 33.7 13.6 69.3 37.0 6.4 44.7 42.0 43.7(+1.9) 55.7(+0.8)

Second [48] 80.8 49.8 60.5 27.3 14.4 78.0 41.8 20.8 61.0 53.4 48.8 58.6
+PolarMix 81.3 53.6 68.3 34.4 20.0 76.5 38.2 14.7 59.6 56.8 50.3(+1.5) 60.0(+1.2)

CenterNet[9] 81.0 51.6 62.3 27.9 14.9 79.5 56.0 41.2 59.0 54.9 52.8 59.6
+PolarMix 80.4 53.4 68.8 32.5 17.5 79.1 58.3 44.1 57.7 62.2 55.4(+2.6) 61.1(+1.5)

Setup. The proposed PolarMix works in the input space with independence of specific tasks. We
verify this property by evaluating it over object detection, another classical 3D understanding task
that aims to predict 3D bounding box and label for each interested object instance. We perform
experiments with dataset nuScenes [12] and three classical deep networks including PointPillar [23],
Second [48], and CenterNet[9]. For implementation, we adopted default training hyper-parameters
and optimizer in the OpenPCDet repository and training with two Tesla 2080Ti GPUs (11GB).
We used random flip along the X and Y axis, random rotation, and random scaling for basic data
augmentation. For a fair comparison, PolarMix is directly implemented on top of the baseline with
the same configurations. For evaluation metrics, we adopted the widely used mean Average Precision
(mAP) and nuScenes detection score (NDS).

Results. Table 4 shows experimental results. It can be observed that incorporating PolarMix improves
both mAP and NDS consistently across the three tested deep networks. This experiment shows that
the proposed PolarMix has superior generalization capability across different computer vision tasks,
largely due to its cut-edit-mix strategy which enriches the distribution of the training data in the input
space without changing LiDAR-specific data properties.

4.3 PolarMix helps reduce domain gap

Unsupervised domain adaptation (UDA) is an important research topic, aiming to solve the noticeable
performance drops of deep neural networks while training and testing across different domains,
as a result of the distribution bias (domain shift). UDA has been widely studied in both 2D vi-
sion [55, 56, 17, 18, 14, 19] and 3D vision [31, 20, 28, 46, 34, 35]. The proposed PolarMix can
be easily extended for UDA by mixing labelled source point data and unlabeled target point data.
We evaluate this nice feature by conducting experiments over two challenging synthetic-to-real
point cloud segmentation benchmarks including SynLiDAR → SemanticKITTI and SynLiDAR →
SemanticPOSS. SynLiDAR [46] is a synthetic LiDAR point cloud dataset that consists of 198k scans
as collected from virtual scenes. It shares 19 common point classes with the SemanticKITTI and
13 common point classes with the SemanticPOSS. In the experiments, we train networks with the
labelled SynLiDAR data (as the source data) and the unlabeled SemanticKITTI and SemanticPOSS
data (as the target data), and perform evaluations over the validation set of SemanticKITTI and
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Table 5: Experiments on unsupervised domain adaptation with SynLiDAR (as source) and Se-
manticKITTI and SemanticPOSS (as target). PolarMix achieves clearly the best semantic segmenta-
tion across both unsupervised domain adaptation setups.

Methods SynLiDAR → SemanticKITTI SynLiDAR → SemanticPOSS

Source Only 20.4 20.1
ADDA [42] 22.8 24.9
Ent-Min [44] 25.5 25.5
Self-training [56] 26.5 27.1
PCT [46] 28.9 29.6
PolarMix(Ours) 31.0 30.4

SemanticPOSS. We follow the existing benchmarks [46] and adopt MinkNet as the segmentation
model.

We adopt the self-training approach as described in section 3 for unsupervised domain adaptation.
Specifically, we first train a supervised model with the labelled source data and apply the supervised
model to predict pseudo labels for the unlabelled target data. We then apply PolarMix to cut and
mix between the labelled source data and the pseudo-labelled target data, and further train the model
with all augmented point data. As shown in Table 5, incorporating PolarMix achieves state-of-the-art
mIoUs for both SemanticKITTI and SemanticPOSS. The superior segmentation performance is
largely attributed to the cut-and-mix strategy in PolarMix which effectively mitigates the distribution
discrepancy across LiDAR scans of two different domains.

4.4 Ablation study

Table 6: Ablation study of PolarMix for semantic segmentation over SemanticKITTI dataset.
SPVCNN is trained on the sequence 00 and and tested on the validation set.

Methods mIoU

SPVCNN [41] (baseline) 48.9

w/ Scene-level swapping 50.8(+1.9)
w/ Intance-level pasting (simple-pasting) 50.9(+2.0)
w/ Intance-level pasting (rotate-pasting) 53.2(+4.3)
w/ PolarMix (complete) 54.8(+5.9)

We perform several ablation studies to examine the contribution of the two data augmentation
components in the proposed PolarMix. In the ablation studies, we train SPVCNN with the sequence
00 of SemanticKITTI and evaluate the trained models over the validation set of SemanticKITTI. We
adopt the same training configurations as described in Section 4.1 and Table 6 shows experimental
results. With the conventional global augmentation including random rotation and random scaling,
the trained SPVCNN model achieves a mIoU of 48.9%. On top of that, including the proposed
scene-level swapping alone improves the mIoU by 1.4%. In addition, including the basic version of
the proposed instance-level cut-and-mix (i.e., without multiple rotations to create multiple copies
of the cropped object instances) alone improves the mIoU by 2.0% while incorporating the full
instance-level cut-and-mix improves the mIoU by 4.3%. Finally, incorporating both augmentation
components (i.e., the full PolarMix) improves the mIoU by 5.9%, demonstrating the complementary
property of the two approaches in point data augmentation.

4.5 Discussion

We conducted experiments to examine whether mixing more than two LiDAR scans further improves
the segmentation performances. Specifically, we increased the mixed LiDAR scans and benchmarking
them without using PolarMix. The experiments were conducted with SPVCNN that is trained with
sequence 00 of SemanticKITTI. As Table 7 shows, mixing two scans produces clearly the best
performance. We examined the mixed data and found that mixing more scans introduces more
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#Scans no mixing (baseline) 2 3 4
mIoU 48.9 54.8 52.2 51.3

Table 7: Varying number of mixed scans. ’no mixing’ represents the vanilla training without
augmentation of PolarMix.

hardly distinguishable objects. The experimental results are consistent with other mixing-based
augmentation works [50, 49, 6, 29].

5 Conclusion

This paper presents PolarMix which is a data augmentation method for LiDAR point cloud learning.
It produces new point cloud data by mixing LiDAR scans for training networks. There are two
approaches that are designed based on LiDAR data properties in PolarMix. Specifically, the scene-
level swapping exchanges points within the same range of azimuth angles while the instance-level
rotating-pasting selects points of certain classes from one LiDAR scan and rotates for multiple copies
before pasting into another scan. Extensive experiments show the superiority of our method in
data augmentation for both semantic segmentation and object detection across a variety of deep
frameworks and public datasets. We also extended PolarMix into unsupervised domain adaptation
and achieved state-of-the-art performances in multiple synthetic-to-real LiDAR data segmentation
benchmarks. We hope that the idea of PolarMix can encourage future research to provide deeper
insights on data augmentation for deep point cloud learning.
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