
Appendices
GenerSpeech: Towards Style Transfer for Generalizable

Out-Of-Domain Text-to-Speech

A Details of Models

In this section, we describe details in the phoneme encoder, generalizable content adaptor, multi-level
style adaptor, flow-based post-net and the models.

A.1 Model Configurations

We list the model hyper-parameters of GenerSpeech in Table 5.

Hyperparameter GenerSpeech

Text Encoder

Phoneme Embedding 192
Encoder Layers 4
Encoder Hidden 256

Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024

Encoder Attention Heads 2
Encoder Dropout 0.1

Generalizable Content Adaptor

Style-Agnostic Pitch Predictor Conv1D Kernel 3
Style-Agnostic Pitch Predictor Conv1D Filter Size 256

Style-Agnostic Pitch Predictor Dropout 0.5
Probability of using MixStyle 0.2
Beta distribution parameter α 0.1

Multi-level Style Adaptor

Style-Specific Pitch Predictor Conv1D Kernel 3
Style-Specific Pitch Predictor Conv1D Filter Size 256

Style-Specific Pitch Predictor Dropout 0.5
Multi-level Style Adaptor Hidden 256
Local Style Encoder WN Layers 4

Local Style Encoder VQ Codebook Size 128
Local Style Encoder Conv Stack Layers 5

Style-to-Content Alignment Layers 2

Mel-Spectrogram Decoder

Decoder Layers 4
Decoder Hidden 256

Decoder Conv1D Kernel 9
Decoder Conv1D Filter Size 1024
Decoder Attention Headers 2

Decoder Dropout 0.1

Post-Net

WaveNet Layers 3
WaveNet Kernel 3

WaveNet Channel Size 192
Flow Steps 12

Shared Groups 3

Total Number of Parameters 51M

Table 5: Hyperparameters of GenerSpeech models.

A.2 Content and Style Adaptor

A.2.1 Global Style Encoder

As illustrated in Figure 3, the main body of the model consists of a CNN-based feature encoder, a
Transformer-based context network and a quantization module. The wav2vec 2.0 model builds context

15

Transformer

q qq

𝑳𝒔

CNN

… …

Average pooling

FC Layer FC Layer

𝑳𝒆

Masked Transformer

q

CNN

… …

𝑳𝒄𝒑𝒄

q q

Context
representations

Quantized
representations

Latent speech
representations

Raw waveform

Pre-training Fine-tuning

Figure 3: Illustration of the downstream global style encoder. The model architecture used in the
pre-training stage and finetuning stage are identical, except for the quantization modules and extra
output layers.

representations over continuous speech representations and self-attention captures dependencies over
the entire sequence of latent representations end-to-end. We finetune the parameters of the w2v-
encoder (around 94M). We add two fully connected layers on the top of the w2v-encoder to predict
the speaker and emotion global latent representations in parallel.

A.2.2 Pitch Prediction

The overall pitch prediction pipeline mainly follows previous non-autoregressive TTS models [37],
except that GenerSpeech adopts two pitch predictors to generate style-specific and style-agnostic pitch
spectrograms, respectively. As shown in Figure 3(b), the Style-Specific Pitch (SSP) predictor and
Style-Agnostic Pitch (SAP) predictor enjoy the same architecture. During training, we add the output
of the SSP predictor and SIP predictor to obtain the joint pitch spectrogram as illustrated in Figure 4.
We train them with ground-truth pitch spectrogram and the mean/variance of pitch contour and
optimize it with mean square error. We infer the style-specific and style-agnostic pitch spectrogram
separately and inverse the joint pitch spectrogram to pitch contour with inverse continuous wavelet
transform (iCWT).

Conv1D + ReLU

LN + Dropout

LN + Dropout

Conv1D + ReLU

Linear Layer

(a)

Style-Agnostic
Pitch Predictor

Style-Specific
Pitch Predictor

Pitch Contour

CWT iCWT

Pitch Spectrogram

+…

…

(b)

ActNorm

Inv 1x1 Conv1d

Squeeze/
Unsqueeze

Affine Coupling
Layer

𝑧~𝑁(0,1)

x N

(c)

Figure 4: (a) The common architecture of pitch predictor. (b) Details in pitch prediction. CWT and
iCWT denote continuous wavelet transform and inverse continuous wavelet transform respectively.
(c)The flow-based post-net gets a mel-spectrogram and squeezes it, following which it gets processed
through a number of flow blocks. Each flow block contains activation normalization layer, affine
coupling layer, and invertible 1x1 convolution layer.

A.3 Flow-based post-net

The flow-based models can overcome the over-smoothing problem and generate more realistic outputs.
To model rich details in ground-truth mel-spectrograms, we introduce a flow-based post-net with

16

strong condition inputs to refine the coarse-grained mel-spectrogram. As shown in Figure 4(c),
the flow-based post-net is composed of a family of flows that can perform forward and inverse
transformation in parallel. During training, the post-net efficiently transforms a mel-spectrogram into
the latent representation for maximum likelihood estimation. During inference, it transforms the prior
distribution into the mel-spectrogram distribution efficiently to parallelly generate the high-quality
sample.

B Pseudo-Code of Mix-Style Layer Normalization

Algorithm 1 provides a PyTorch-like pseudo-code.

Algorithm 1 PyTorch-like pseudo-code for Mix-Style Layer Normalization.

x: input features of shape (B, T, C)
global_embed: tha element-wise addition of the speaker and emotion embedding (B, 1, C)
p: probabillity to apply MixStyle
alpha: hyper-parameter for the Beta distribution
eps: a small value added before square root for numerical stability

if not in training mode:
return x

if random probability > p:
return x

B = x.size(0) # batch size

mu, sig = torch.mean(x, dim=-1, keepdim=True), torch.std(x, dim=-1, keepdim=True)
x_normed = (x - mu) / (sig + eps) # normalize input

lmda = Beta(alpha, alpha).sample((B, 1, 1)) # sample instance-wise convex weights
lmda = lmda.to(x.device)

Get Bias and Gain
mu1, sig1 = torch.split(self.affine_layer(global_embed), self.hidden_size, dim=-1)

MixStyle
perm = torch.randperm(B) # generate shuffling indices
mu2, sig2 = mu1[perm], sig1[perm] # shuffling

mu_mix = mu1 * lmda + mu2 * (1 - lmda) # generate mixed mean
sig_mix = sig1 * lmda + sig2 * (1 - lmda) # generate mixed standard deviation

Perform Scailing and Shifting
return x_normed * sig_mix + mu_mix # denormalize input using the mixed statistics

C Evaluation

C.1 Subjective Evaluation

For audio quality evaluation, we conduct the MOS (mean opinion score) tests and explicitly instruct
the raters to “(focus on examining the audio quality and naturalness, and ignore the differences of
style (timbre, emotion and prosody).)". The testers present and rate the samples, and each tester is
asked to evaluate the subjective naturalness on a 1-5 Likert scale.

For style similarity evaluation, we explicitly instruct the raters to “(focus on the similarity of the style
(timbre, emotion and prosody) to the reference, and ignore the differences of content, grammar, or
audio quality.)". In the SMOS (similarity mean opinion score) tests, we paired each synthesized
utterance with a ground truth utterance to evaluate how well the synthesized speech matches that
from the target speaker. Each pair is rated by one rater. In the AXY discrimination test, a human rater
is presented with three stimuli: a reference speech sample (A), and two competing samples (X and Y)
to evaluate. The rater is asked to rate whether the prosody of X or Y is closer to that of the reference
on a 7-point scale. The scale ranges from “X is much closer" to “Both are about the same distance"
to “Y is much closer", and can naturally be mapped on the integers from -3 to 3.

In the ablation study, we further conduct CMOS (comparative mean opinion score) and CSMOS
(comparative similarity mean opinion score) evaluations. Listeners are asked to compare pairs of
audio generated by systems A and B, indicate which of the two audio they prefer, and choose one of

17

the following scores: 0 indicating no difference, 1 indicating small difference, 2 indicating a large
difference, and 3 indicating a very large difference.

Our subjective evaluation tests are crowd-sourced and conducted by 25 native speakers via Amazon
Mechanical Turk. The screenshots of instructions for testers have been shown in Figure 5. We paid
$8 to participants hourly and totally spent about $750 on participant compensation. A small subset of
speech samples used in the test is available at https://GenerSpeech.github.io/.

(a) Screenshot of MOS testing.

(b) Screenshot of SMOS testing.

(c) Screenshot of CMOS testing.

(d) Screenshot of AXY discrimination and CSMOS testing.

Figure 5: Screenshots of subjective evaluations.

C.2 Objective Evaluation

Cosine similarity is an objective metric that measures speaker similarity among multi-speaker audio.
We compute the average cosine similarity between embeddings extracted from the synthesized and
ground truth embeddings to measure the speaker similarity performance objectively.

F0 Frame Error (FFE) combines voicing decision error and F0 error metrics to capture F0 information.

D Training Stabality

It is well known that vector quantization tends to suffer from index collapse [36], which limits the
expression ability of the proposed multi-level style encoder and hurts learning the style-to-content

18

https://GenerSpeech.github.io/

alignment. To improve training stability, we empirically find that a warm-up strategy is efficient:
1) we remove the vector quantization layer and use hard force alignment in place of the learned
style-to-content attention alignment in the first 20k steps. 2) after the first 20k steps, we add the
vector quantization layer as the prosody bottleneck and the soft style-to-content alignment layer for
later training.

E Fine-tuning

We fine-tune GenerSpeech using 1 NVIDIA 2080Ti GPU with the batch size of 64 sentences for
2000 steps, where the parameters of the whole model are optimized. The optimizer configuration and
loss functions stay consistent with those in the experimental setup.

F More Visualization of Mel-Spectrograms

We put more visualizations of mel-spectrograms towards parallel style transfer for out-of-domain
text-to-speech synthesis.

(a) Reference

(c) w/o frame-level (d) w/o word-level

(b) GenerSpeech

(e) w/o phoneme-level

Transition between words Poor Short-term modelingUnrealistic prosodic style

Figure 6: Visualizations of the ground-truth and generated mel-spectrograms in Parallel Style Transfer.
The corresponding text is “Chew leaves quickly, said rabbit.".

G Visualization of Attention Weights

We put some attention visualizations in Figure 8. We can see that GenerSpeech can create reasonable
alignments which are close to the diagonal in differential local-level style encoders, which helps the
high-fidelity stylization.

H Potential Negative Societal Impacts

GenerSpeech lowers the requirements for high-quality and expressive text-to-speech synthesis, which
may cause unemployment for people with related occupations such as broadcaster and radio host. In
addition, there is the potential for harm from non-consensual voice cloning or the generation of fake
media and the voices of the speakers in the recordings might be over-used than they expect.

19

(a) Reference (b) Reference (voc) (c) Mellotron

(d) FG-TransformerTTS (e) FastSpeech 2 (f) Meta-StyleSpeech

(g) STYLER (h) GenerSpeech

Figure 7: Visualizations of the ground-truth and generated mel-spectrograms in Parallel Style Transfer.
The corresponding text is “Please call Stella.".

Figure 8: Visualizations of the attention weights in parallel style transfer. The corresponding texts is
“Chew leaves quickly, said rabbit.".

Figure 9: Visualizations of the attention weights in non-parallel style transfer. The corresponding
texts of reference and generated speech samples are “Daisy creams with pink edges." and “Chew
leaves quickly, said rabbit.", respectively.

20

