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A Graph terminology

A directed graph G = (V, T ) is an object consisting of a set of vertices V and a set of ordered pairs
of vertices T ⇢ V ⇥ V corresponding to directed edges in G. A path is a sequence of vertices
(Vi1 , . . . , Vin) with n � 2 such that Vik ! Vik+1 or Vik  Vik+1 and in a directed path Vik ! Vik+1

for all k. In graph G: the children CHG
j of Vj are all Vm such that Vj ! Vm, the parents PAG

j of Vj

are all Vm such that Vm ! Vj , the ancestors ANG
j of Vj are all Vm such that there exists a directed

path (Vm, . . . , Vj), and the descendants DEG
j of Vj are Vj and all Vm such that there exists a directed

path (Vj , . . . , Vm). The graph superscript will be omitted unless needed. A cycle is a path such that
Vi1 = Vin and a directed acyclic graph (DAG) is a directed graph with no directed cycles.

On a path (Vi1 , . . . , Vik , . . . , Vin), we say variable Vik is a collider if Vik�1 ! Vik and Vik  Vik+1 .
A subset Z 2 V \ {Vi1 , Vin} blocks the path if either (i) Z contains at least one non-collider vertex
on the path or (ii) the path contains a collider with no descendants in Z (this includes the collider
itself by the descendant definition). With this terminology, we say that on the disjoint variable sets
A, B, and Z, A is d-separated from B by Z iff every path between A and B is blocked by Z [45,
Def. 6.1]. This is denoted as A ??G B | Z. If A and B are not d-separated, and hence there exists an
unblocked path, we say that they are d-connected.
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B Full proofs

B.1 Characterization of the learned equivalence class

Our first result is not focused on in the main text but is nonetheless interesting in relation to related
works and creating a coherent multi-environment causal discovery framework. Specifically, it shows
that the MSS solution set is an equivalence class of DAGs. Our main results demonstrate when, how,
and under what conditions this equivalence class shrinks to only the true DAG.

Proposition B.1. Gmin
MEC is the  -MEC corresponding to (i.e., containing) the true (but unknown)

graph G⇤
and (unobserved) intervention targets {Ie}ne

e=1.

Proof. First we must introduce the  -MEC concept as introduced by Jaber et al. [29], which relies
on what we will call the pairwise augmented graph, in order to distinguish it from the augmented
CGM defined in Defn. 2.5. The following definition is rephrased from Jaber et al. [29, Def. 4] to
match our existing notation, and without latent variables as in the context of our setting.

Definition B.2 (Pairwise augmented graph). Let {(G,Pe
X)}e2E be a collection of CGMs over the

DAG G = (X, T ) from environments E . For a pair of environments e, e0 2 E , e 6= e0, construct an
auxiliary vertex Ee,e0 and an auxiliary set of edges

Te,e0 := {Ee,e0 ! Xj : Pe
X(Xj | PAG

j ) 6= Pe0

X(Xj | PAG
j )}.7

from Ee,e0 to each variable with a change in mechanism. The pairwise augmented graph is

Aug(G; {Pe
X}e2E) := (X [ {Ee,e0}e,e02E,e6=e0 , T [ {Te,e0}e,e02E,e6=e0)

For the remainder of the proof, we will refer to the augmented graph only with respect to this pairwise
augmented graph, not the augmented GCM. Note that the pairwise augmented graph differs from
the augmented CGM in that it adds vertices for all pairs of environments, but these vertices are
treated as parameters rather than as random variables; thus, in contrast to the augmented CGM whose
environmental variable is a (discrete) random variable with support over the environments, there is not
an explicit distribution over the entire pairwise augmented graph, rather only pairs of environments.
Using the pairwise augmented graph, Jaber et al. [29] provide the following result

Corollary B.3 (Jaber et al. [29]). Let G1 and G2 be two DAGs on X; let {Ie
1}e2E and {Ie

2}e2E be

two sets of (unobservable) intervention targets, which by definition respectively induce two sets of

(observable) interventional distributions {Pe
1,X}e2E and {Pe

2,X}e2E .
8

The pairs of graphs and inter-

vention targets (G1, {Ie
1}e2E) and (G2, {Ie

2}e2E) are  -Markov equivalent iff Aug(G1; {Pe
1,X}e2E)

and Aug(G2; {Pe
2,X}e2E) are in the same MEC, i.e., have the same skeleton and v-structures.

Now recall that by definition
Gmin

MEC := argmin
G2GMEC

MSS(G;P)

To show that Gmin
MEC is the  -MEC corresponding to (i.e., containing) the true (but unknown) graph

G⇤ and (unobserved) intervention targets {Ie}ne
e=1, we need to verify the two conditions of Cor. B.3

for the true DAG, which is contained in Gmin
MEC , and any other graph in this set. Specifically, under

the distribution shifts implied by {Ie}ne
e=1, we show that ()) the pairwise augmented graphs of

the true DAG G⇤ and any graph G 2 Gmin
MEC share the same skeleton and v-structure, and (() the

pairwise augmented graphs of the true DAG G⇤ and any graph G 62 Gmin
MEC differ either in skeleton or

v-structures.

()) To verify the forward direction, we verify that the skeleton and v-structures are shared.
7Note that in the graph definition in Jaber et al. [29], they start with the (unobservable) intervention targets,

which induce (observable) distribution shifts that define the pairwise augmented graph. We start from the
distribution shifts directly since we do not explicitly model the sets of possible intervention targets which could
have given rise to the observed distribution shifts.

8As with the pairwise augmented graph, we prefer to think about the observed distributions rather than
interventions. The fact that the  -MEC is defined over both graphs and interventions is because without
knowledge of a baseline environment, multiple (unobservable) interventions can induce the same observed
distributions.

16



• Skeleton: Since Gmin
MEC ✓ GMEC, by definition of the MEC all unaugmented DAGs in the set share

the same skeleton. For sake of contradiction, assume that some graph G contains an augmented
edge, which the true augmented causal DAG does not. Then, by definition of the augmented graph
(Defn. B.2), G has a variable with changing mechanism which does not change under the true
causal DAG, so G cannot be in the minimal set Gmin

MEC . Hence, all augmented DAGs in Gmin
MEC share

the same skeleton.

• v-structures: Since Gmin
MEC ✓ GMEC, by definition of the MEC all unaugmented DAGs in the set

share the same v-structures. Augmented DAGs form additional v-structures through edges from
the augmented variables Ee,e0 . In the case of a v-structure between two augmented variables,
Ee1,e2 ! Xi  Ee3,e4 , it is necessarily shared because of the shared skeleton condition and
orientation of edges out of augmented variables, by definition.Otherwise, under the true DAG
G⇤, let the augmented graph Aug(G⇤, {Pe

X}e2E) contain the v-structure Ee,e0 ! Xi  Xi and
Ee,e0 6! Xj . Thus the mechanism of Xj is invariant across environments e and e0. If we assume
that some other graph G with augmented graph Aug(G, {Pe

X}e2E) shares the same skeleton as the
augmented graph of G⇤ but does not contain this v-structure, then Aug(G, {Pe

X}e2E) must contain
the structure Ee,e0 ! Xi ! Xi. But then G0s mechanism Pe

X(Xj | PAG
j ) 6= Pe0

X(Xj | PAG
j )

would differ since under G we would condition on the true collider Xi (as specified in G⇤) and
unblock the path from E to Xj . By definition, Aug(G, {Pe

X}e2E) would then necessarily contain
the edge Ee,e0 ! Xj which is not contained in Aug(G⇤, {Pe

X}e2E), contradicting the shared
skeleton assumption.

(() For the sake of contradiction, assume there exists some DAG G 62 Gmin
MEC but which satisfies

the  -MEC equivalence conditions with G⇤, i.e., shares the skeleton and v-structures with the true
augmented graph. The graph G must be in the same MEC as G⇤ or else by definition differ in
skeleton or v-structures in the normal graph and hence also in the augmented graph. Since G is in the
MEC but G 62 Gmin

MEC , we know that MSS(G) > MSS(G⇤) and thus there must be some variable Xj

with changing mechanism across some pair of environments e, e0 2 E in graph G but not G⇤. But
this would immediately imply the existence of the edge Ee,e0 ! Xj in the augmented graph of G
but not in G⇤. This is a contradiction with the shared skeleton condition of the  -MEC and so no
graphs outside of Gmin

MEC can be in the  -MEC.

B.2 Identifiability rate of the true DAG

B.3 Proof of Lemma 4.3

Lemma 4.3. For any Xj 2 X and set Z ✓ X\{Xj}, the conditional distribution P(Xj | Z) changes

if and only if the following d-connectedness relationship holds:

Xj 6??GX[E E | Z .

Proof. ()) If P(Xj | Z) changes across environments E, then Xj 6?? E | Z. The global Markov
property of the CGM states that d-separation implies conditional independence, and thus by the
contra-positive the d-connectedness relationship follows.

(() d-connectedness implies conditional dependence by faithfulness, and thus a change across
environments.

B.4 Proof of Corollary 4.4

Corollary 4.4. For any variable Xj 2 X and set Z ✓ (PA
G
j [ CH

G
j ) in the augmented graph, the

conditional distribution P(Xj | Z) changes if and only if at least one of the following holds:

(i) E ! Xj [a direct cause].

(ii) 9WPA 2 PA
G
j \ Z such that WPA 6??GX[E E | Z [unblocked path to unconditioned parent].

(iii) 9WCH 2 CH
G
j \ Z such that WCH 6??GX[E E | Z \WCH [unblocked path to conditioned child].
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XjWE

(a) W is a parent.

XjW

W 0

E

(b) W is a child and collider.

XjWCE

W 0

(b) W is a child but not a collider.

Figure 6: Cases from the proof of Cor. 4.4. Case (a) iff case (ii). Case (b) induces two subcases either of which
occur iff case (iii).

Proof. By Lemma 4.3, P(Xj | Z) changes iff Xj 6?? GX[EE | Z (d-connection) and equivalently, iff
there is an unblocked path (E, . . . , Xj) in GX[E . We assume a generic path and through casework
establish that it is unblocked if and only if one of cases (i), (ii), or (iii) holds. The casework is
visualized in Figure 7.

Either (E, . . . , Xj) is just E ! Xj [case (i)] or there must exist W such that (E, . . . ,W,Xj) and
W is either (a) a collider or (b) not a collider.

(a) If W is a collider, it necessarily a child of Xj The collided path in unblocked iff W 6?? GX[EE |Z\
W and some descendant W 0 2 DEG

W of W is conditioned on. Thus W 0 2 Z ⇢ PAG
j [CHG

j . Without
loss of generality, assume W 0 is the closest descendant to W and hence the path (W, . . . ,W 0) is
unblocked by Z. W 0 cannot be a parent of Xj , else induce the cycle (Xj ,W, . . . ,W 0, Xj), and so
must be a child and case (iii) holds. Specifically, there exists W 0 such that W 0 6?? GX[EE | Z \W 0

and W 0 is a child in Z.

(b) If W is not a collider, by definition the path is unblocked iff W 6?? GX[EE | Z and W 62 Z. If W
is a parent of Xj (since they are adjacent), case (ii) holds. If W is a child of Xj , because E has an
outgoing edge there must exist some collider C on the path such that (E, . . . , C, . . . ,W,Xj) and the
subpath from W to C is directed into C. The condition W 6?? GX[EE | Z holds iff some descendant
W 0 of C is in Z. As before, W 0 cannot be a parent of Xj or else induce a cycle, and so it must be a
child and case (iii) holds.

B.5 Proof of Lemma 5.2

Lemma 5.2 (Identifiability of causal parents). Let G⇤
be the true DAG in the MEC GMEC and ⇢i the

probability that the causal mechanism of Xi is different across any two environments. Under Asms. 2.2

to 2.4 and 2.6, for any j 2 {1, . . . , d}, graph G 2 GMEC such that PA
G⇤

j 6= PA
G
j , and lower and

upper bounds on the shift probabilities ⇢LB
i  ⇢i  ⇢UB

i for all i, we have that

Pr[MSSj(G
⇤;P) < MSSj(G;P)] � 1�

�
1� (1� ⇢UB

j )min
i

⇢LB
i

�bnE/2c.

Proof. By Assumption 2.3, the distribution Pe
X in each environment e 2 {1, . . . , nE} is the result of

changing mechanisms from some underlying yet unknown distribution PX. Let �e,e0(Xj) denote
the event I[Pe

X(Xj | PAG⇤

j ) 6= Pe0

X(Xj | PAG⇤

j )] that the mechanism of variable Xj , with respect to
the true graph G⇤, changes across environments e and e0. Abbreviate ⇢e,e

0

j := Pr[�e,e0(Xj) = 1].

Since PAG⇤

j 6= PAG
j and G shares the same skeleton as G⇤, at least one edge must be oriented

incorrectly in G. In the conditioning set PAG
j according to the incorrect graph G, there thus

exists either an unconditioned true parent Z 2 PAG⇤

j \ PAG
j or a conditioned-upon true child

Z 2 CHG⇤

j \ PAG
j . By Cor. 4.4, we know that if Z is not d-separated from E in the augmented

graph, then the conditional P(Xj | PAG
j ) changes across E. This occurs at least if the mechanism of

Z directly changes, e.g. there is the edge E ! Z in the augmented graph.

Consider first the case of two environments. We know from Prop. 5.1 that MSSj(G⇤;P) cannot
be greater than MSSj(G;P), and will be less if the mechanism of Xj remains invariant while the
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mechanism of Z changes. By the assumption of independent changing mechanisms,

Pr[MSSj(G
⇤; {D1,D2}) = MSSj(G; {D1,D2})]

= 1� Pr[MSSj(G
⇤; {D1,D2}) < MSSj(G; {D1,D2})]

 1� Pr[�1,2(Xj) = 0,�1,2(Z) = 1]

= 1� Pr[�1,2(Xj) = 0] Pr[�1,2(Z) = 1]

= 1� (1� ⇢1,2j )⇢1,2Z

Given nE > 2 environments, it follows that

Pr[MSSj(G
⇤;P) = MSSj(G;P)]

= Pr

2

4
\

e,e0>e

MSSj(G
⇤, {De,De0}) = MSSj(G, {De,De0})

3

5

 Pr

2

4
\

e2{1,...,bE/2c}

MSSj(G
⇤, {D2e�1,D2e}) = MSSj(G, {D2e�1,D2e})

3

5

=
Y

e2{1,...,bE/2c}

Pr
⇥
MSSj(G

⇤, {D2e�1,D2e}) = MSSj(G, {D2e�1,D2e})
⇤


Y

e2{1,...,bE/2c}

⇣
1� (1� ⇢2e�1,2e

j )⇢2e�1,2e
Z

⌘


✓
1� min

e2{1,...,bE/2c}
(1� ⇢2e�1,2e

j )⇢2e�1,2e
Z

◆bnE/2c
.

Since Z is arbitrary, we construct an upper bound using the worst case, in which a variable frequently
or rarely changes.

1� min
e2{1,...,bE/2c}

(1� ⇢2e�1,2e
j )⇢2e�1,2e

Z  1� (1� max
e2{1,...,bE/2c}

⇢2e�1,2e
j ) min

e2{1,...,bE/2c}
⇢2e�1,2e
Z

 1� (1� max
e,e0 6=e

⇢e,e
0

j ) min
e,e0 6=e

⇢e,e
0

Z

and so to acquire the final bound with simplified notation, for any variable Xi denote the minima and
maxima of ⇢e,e

0

i across any two environments with ⇢LB
i and ⇢UB

i , respectively.

B.6 Proof of Theorem 5.3

Theorem 5.3 (Identifiability of the graph). Let G⇤
be the true DAG in the MEC GMEC and ⇢j the

probability that the causal mechanism of Xj is different across any two environments. Under

assumptions 2.2, 2.3, 2.4, and 2.6, and bounds ⇢LB
i  ⇢i  ⇢UB

i for all i, we have that

Pr[Gmin
MEC = {G⇤}] � 1� |GMEC|

⇣
1� (1�min

i
⇢UB
i )min

i
⇢LB
i

⌘bnE/2c
.
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Proof. Since Pr[Gmin
MEC = {G⇤}] = 1� Pr[Gmin

MEC 6= {G⇤}] and by Lemma 5.2,

Pr[Gmin
MEC 6= {G⇤}] = Pr

2

4
[

G2GMEC\{G⇤}

MSS(G⇤;P) = MSS(G;P)

3

5


X

G2GMEC

Pr [MSS(G⇤;P) = MSS(G,D)]


X

G2GMEC

Pr

2

4
X

j

MSSj(G
⇤;P) =

X

j

MSSj(G,D)

3

5

=
X

G2GMEC

Pr

2

4
X

j

MSSj(G
⇤;P) =

X

j

MSSj(G,D)

3

5

=
X

G2GMEC

Pr

2

4
\

j

MSSj(G
⇤;P) = MSSj(G,D)

3

5


X

G2GMEC

min
j

Pr [MSSj(G
⇤;P) = MSSj(G,D)]


X

G2GMEC

min
j

⇣
1� (1� ⇢UB

j )min
i

⇢LB
i

⌘bnE/2c


X

G2GMEC

✓
1� (1�min

j
⇢UB
j )min

i
⇢LB
i

◆bnE/2c

= |GMEC|
✓
1� (1�min

j
⇢UB
j )min

i
⇢LB
i

◆bnE/2c
.

C Details of assumptions and methods

C.1 Pseudo causal sufficiency and the Independent Causal Mechanisms (ICM) assumption

Huang et al. [28] introduced the idea of pseudo-causal sufficiency (Asm. 2.6) and provide a useful
discussion on its relation to results on soft interventions by Eberhardt and Scheines [10]. Guo et al.
[18] provide a useful formalization of multi-environment data, specifically through a plate-notation
representation. An environment e specifies parameters of the causal mechanisms in the CGM over
X; we can think of environments as encapsulating specific experimental settings, or broad contexts
such as climate or time [38]. Under the context of e, there is some distribution Pe

X and we observe a
dataset sampled i.i.d. The ICM assumption tells us that the parameters for each causal mechanism in
an environment are chosen or sampled independently, and thus in the augmented CGM the edges
from E appear independently.

Within each environment, i.e., when we condition on E, the environmental parameters are fixed; thus
we are in the typical i.i.d. setting and causal sufficiency is implied by the CGM. However, without
conditioning on E, the environmental parameters are not fixed and across two samples either all
remain the same (if the samples are in the same environment) or some change. This dependence
between samples through the parameters defined by E is the result of E being a confounder; thus
causal sufficiency cannot hold over X without conditioning on E. Because E is not necessarily a true
causal variable but rather an environment encoding a fixed set of unmeasured variables, Huang et al.
[28] call it a pseudo-confounder. It is worth noting that the second stage of the approach of Huang
et al. [28] relies on a novel kernel-based test, which computes a measure of mechanism dependence
across all samples. They correctly compare the test statistics rather than examine p-values because
the dependence between samples without controlling for environment would lead to a samll p-value
even if the mechanisms were independent.
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C.2 The p-values “soft" score

We provide further details on the p-value “soft" score. Recall the modified score definition to be

[MSSj(G;D) =
PnE

e=1,e0>e

h
1� p-value

⇣
Pe(Xj | PAG

j ) 6= Pe0(Xj | PAG
j )

⌘i
.

Using a test of equality of distribution, we calculate a test statistic; at a pre-specified level ↵, if the
test is well specified [53], the one-sided p-value is valid and corresponds to the probability under the
null hypothesis H0 : Pe(Xj | PAG

j ) = Pe0(Xj | PAG
j ) of a test statistic as large or larger than the

observed test statistic.

If a mechanism changes, a powerful test should yield a small p-value and thus a term close to 1 in the
summation, similar to the “hard" score. If a mechanism doesn’t change, since p-values are uniformly
distributed in [0, 1] under the null hypothesis, the term in the sum would be similarly uniformly
distributed. With enough variables and environments, the variance of the sum of random uniform
variables will decrease and the behavior of the score will be dominated by the p-values under the
alternatives. It must be noted that the p-values are not independent, as some will use data from the
same environments.

C.3 Comparison to other augmented graph methods

The reviewing process and conference brought to our attention multiple other relevant works that
merit more in-depth discussion. The idea of the augmented graph or CGM is not new: Mooij et al.
[38] and Huang et al. [28] both pool all data by incorporating a single environmental variable. As we
have demonstrated, however, with more environments this variable becomes more densely connected
and thus the size of the learned equivalence class increases.

In addition to the present work, two additional works have identified the utility in pooling only pairs
of environments. Jaber et al. [29] explicitly construct the pairwise augmented graph, adding a node
for each pair of environments, and then apply the constraint-based PC algorithm. As mentioned, this
is similar to what was done by Huang et al. [28] who only added one augmented variable. Similarly,
Squires et al. [57] use an existing score-based method on the pairwise augmented graph, which
penalizes the number of edges (i) between variables and (ii) from augmented nodes. These penalties
restrict the solution set to the (i) MEC and (ii) minimum shift set therein, respectively.

The estimands of both Jaber et al. [29] and Squires et al. [57] are equivalent to ours under an oracle
test. In practice, on finite samples, there are two points of disagreement. First, we require the MEC
as an input while both other methods learn it as part of their algorithm. Although this may appear
to be a downside of our approach and does require specifying a separate procedure to first learn the
MEC, it actually permits additional flexibility in that we may use any of the many existing methods
to learn the MEC. Notably, this allows us to pool all environments as in Huang et al. [28], Mooij et al.
[38] to learn the MEC, decreasing errors by increasing sample sizes of the conditional independence
tests over the samples sizes attained by only pairwise pooling. Second, we efficiently enumerate
over graphs in the MEC, while Jaber et al. [29] use PC orientation rules and Squires et al. [57] use a
consistent greedy search. Even when done efficiently, enumeration may be slower. Yet, it is possible
in finite samples for the other two approaches to rule out graphs in their procedures which would
otherwise have the fewest mechanism shifts. For example, a falsely detected mechanism shift may
incorrectly orient an edge, removing some DAGs from consideration which otherwise could have
fewer total shifts. Overall, ours and their approaches have demonstrated the benefits of pooling
only subsets of environments; in particular, we show the connection to the sparse mechanism shift
hypothesis and prove asymptotic identifiability.
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Figure 7: Nonparametric hypothesis tests perform well in nonlinear simulations, and soft scores succeed.
Notably, recall converges with increasing environments. KCI appears to best balance high recall and precision.

Figure 8: Pairwise approaches improve with more environments, unlike Pooled PC. Although the parametric
MC works surprisingly well across settings, the nonparametric MSS with KCI has superior precision and recall.

D Supporting experiments

D.1 F1 Scores

In the main text, we present the precision and recall separately as they are important metrics to
consider. Here, we also present the F1 score which equals their harmonic mean and conveniently
provides a single numeric summary. As before, Fig. 7 provides a simulated comparison of the MSS
estimator using various equality of distribution tests, while Fig. 8 provides a simulated comparison of
MSS to other approaches in the literature which we discuss heavily in the main body.

D.2 Additional simulations

D.2.1 MSS improves upon pooled PC across random graph models.

Previously in Fig. 4, we demonstrated that the MSS improves upon pooled PC under an oracle test
in simulation settings where DAGs were sampled according to the Erdős-Rènyi (ER) random DAG
model; in the ER model, each edge is sampled i.i.d. with a fixed probability. Here, we expand upon
that simulation by further comparing rates under the Barabasi-Alberts (Hub) scale-free random DAG
model; in the Hub model, vertices are sequentially added to the DAG and edges are connected to
previous vertices with probability proportional to their existing number of edges.
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Figure 9: Oracle MSS improves upon pooled PC across both random and hub random graph models.

Figure 10: Differences between oracle MSS and pooled PC on 5 environments are most pronounced
on smaller and sparse DAGs. For readability, the legend is omitted but we refer back to the same
legend in Fig. 4. Specifically, the orange line corresponds to the MSS while the blue line corresponds
to pooled PC. Only five environments are sampled, but differences would be exacerbated with
additional environments.

As seen in Fig. 9, we vary the same parameters as before but compare the two oracle methods across
both DAG models this time. First, note that at 1 environment the Hub model exhibits greater recall,
indicating that the observational MEC of the Hub graph has fewer unoriented edges than that of the
ER graph. Thus, the gap between the methods is lessened in a Hub model as compared to an ER
model. Otherwise, the qualitative trends between the two methods are almost identical across the two
random graph models. The MSS appears at least mildly robust to the graph structure.

D.2.2 Differences between oracle MSS and pooled PC are most pronounced on sparser and
smaller DAGs.

Although Fig. 4 highlighted the most important trends of oracle methods in certain fixed settings,
for completeness we examine rates of recall across additional fixed settings. As before, we sample
DAGs from an Erdős-Rènyi distribution and in five environments vary the DAG density, shift fraction,
and number of variables. The set of experimental results shown in Fig. 10 convey broader trends in
oracle recall rates as multiple variables change across row, column, and the x-axis. We do not vary
the number of environments as we can only visualize three variables through our plot and the trend
across environments is best understood from the theory. Differences in oracle recall rates are less
pronounced on graphs with more variables and when the density of edges is large. Note that we only
compare five environments here and that with more environments, differences will again be more
pronounced; with enough environments, pooled PC cannot learn more than the MEC.
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D.2.3 KCI-based approaches perform the best on bivariate CGMs.

We previously examined the empirical rates of recall and precision across various simulated settings,
highlighting when methods succeed and fail. Due to the size and complexity of those studied DAGs,
not all results are fully interpretable. We seek to further understand empirical performance through
the simple bivariate DAG, which contains no indirect effects and few possible interventions to analyze.
Specifically, on the DAG X1 ! X2, shifts can occur to either P(X1), P(X2|X1), neither mechanism,
or both mechanisms; the first two shifts are sparse and provide oracle identifiability of the true
DAG. Following the simulation setup described by eq. (6.1) on the DAG X1 ! X2, we simulate
data from one base environment and from one interventional environment subject to one of the four
possible shifts. Each environment has 500 samples. We compare the four different MSS methods
using parametric and nonlinear equality of distribution tests and conditional independence tests. We
also compare the pooled PC and MC approaches. Since only two environments are compared, we
conjecture MSS and pooled PC to be equivalent under an oracle test.

Figure 11: KCI-based tests perform well for causal identification in a bivariate CGM. 500 samples are drawn
from a base environment, and a second environment subject to one of four shifts given by the columns; the first
two columns are sparse shift settings where we have identifiability. The precision and recall are plotted for each
of the methods. It appears that the two KCI-based methods (MSS and pooled PC) achieve the best balance of
high power in both sparse shift settings while maintaining high precision in both non-sparse settings. Other
methods either have drastically lower recall or precision close to 0.5, indicating random guessing.

Figure 12: Test performance is dependent on the data generating process. In the same experimental setup
as in Fig. 11, we modify the simulation such that the noise is multiplicative. As we see, although the marginal
change in P(X1) can still be detected, the conditional distribution tests are not powerful enough for shifts in
P(X2|X1). However, notice that this means that the true graph is still identifiable when both mechanisms shift.
This is contrary to theory about the oracle, exactly because the finite sample tests are not powerful enough.

Results are shown in Fig. 11. For reference, an oracle method would have recall 1 in the first
two (sparse shift) columns and 0 in the other two columns. Although Fisher-Z has high precision
when P(X1) shifts, it has chance precision when P(X2|X1) shifts. The KCI methods maintain
high precision while the precision of other methods is comparable or noticeably lower. With
respect to recall, when neither or both mechanisms change and thus the DAG is not identifiable,
all methods correctly have low recall. However, when just the marginal P(X1) changes, the KCI
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methods dominate in recall whereas the linear MSS MS, and GAM approaches have lower recall,
implying they are less often able to detect a change in the reverse conditional P(X1 | X2). When
the mechanism P(X2 | X1) shifts, all methods have high recall. Notably, the linear MSS performs
much worse than MC. The only difference between them, however, is that MC explicitly counts
how many parameters change while the linear MSS simply tests if there is a change; this does come
at a slight cost in precision for MS though. In a small extension, we additionally run this experiment
under a multiplicative noise data generating process. Those results are seen in Fig. 12 and highlight
both that it is necessary to have access to a powerful hypothesis test and yet failing to reject the null
can promote sparsity and lead to identifiability under dense changes..

D.3 Application to real-world cytometry data

Although simulations with known ground truth provide useful reference points for comparing methods
and evaluating empirical performance, in practice we are interested in studying real data with no
known truth and additional challenges such as violated assumptions. To illustrate how one may apply
our method in practice, and to analyze empirical performance on real data, we conduct a case-study
application of MSS for causal discovery on a well-studied cytometry dataset [49].

D.3.1 Background

Sachs et al. [49] present a detailed study of the application of Bayesian discovery approaches to
learning a causal DAG among protein concentration levels in human immune system cells. In each
of 9 experimental environments subject to different perturbations, approximately 700-900 sample
measurements were collected; each sample is the concentration levels of 11 proteins from a cell. The
learned Sachs network is a proposed DAG among the variables, which the authors discuss and contrast
with a domain-expert network from the “biologist’s view”. This cytometry data has subsequently been
studied in further detail [8, 38, 47]. As is often pointed out, various assumptions may be violated,
including the acyclicity assumption, since protein networks contain strong feedback loops [38]. As
such, it is not necessarily useful to treat the Sachs network as a ground truth and there are numerous
relationships and orientations which should rightfully be questioned [38]. Results must be considered
in the context of domain-knowledge and various existing studies in the literature.

D.3.2 Experimental setup

In order to focus on learning edge orientations of undirected edges in the MEC, rather than learning the
MEC, we start from the Sachs network despite the potential caveats. The Sachs network from Sachs
et al. [49] is a DAG on the 11 variables with 17 edges. We compute the Sachs MEC which contains
all DAGs which are Markov equivalent to the Sachs network. The Sachs MEC has no directed edges,
and thus is simply the undirected skeleton of the graph in Fig. 5. Starting from the Sachs MEC
makes our results more interpretable in light of previous works and saves costly computation of
the MEC. In practice, we would advise starting from the pooled PC MEC; based on the number of
environments and observed density of changes, we would not expect this to orient any edges beyond
the observational MEC.

Starting from the Sachs MEC, we apply the MSS using the KCI test, which appears to perform the
best among plug-in estimators for MSS in our simulations. Since the feature distributions are heavily
skewed, we preprocess them by taking their natural logarithm [47]. Among all DAGs in the Sachs
MEC, the DAG with the uniquely minimal number of shifts exhibits approximately 8.9 shifts per
pair of environments; this is relatively high but satisfies the assumption of sparse shifts. Violations to
assumptions may lead to more shifts than expected.

D.3.3 Results and comparison to related works

The DAG which minimizes the MSS is the unique minimizer and is visualized in Fig. 5. An edge in
black is oriented in the same direction as in the Sachs network, while an edge in red is oriented in the
opposite direction. Overall, the majority of edges match the Sachs network. The edges which do not
match, however, reflect ambiguities and flawed assumptions. We list each edge which does not match
the Sachs network and discuss why this might be the case in light of existing work.
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• PIP2! PIP3: As illustrated in Sachs et al. [49], these two proteins are actually cyclically related
through bi-directed edges in the accepted “biologist’s view”. Indeed, PIP2! PIP3 was similarly
recovered by an analysis of Ramsey and Andrews [47], detailed in their Figure 11.

• Mek! Raf: that this edge does not match the Sachs network is discussed heavily by Mooij et al.
[38] who point to it as a fundamental flaw of the Sachs network. The Mek! Raf edge is indeed
found by many other methods [8, 38, 47].

• The PKA, PKC, P38 triangle: although there is not a detailed discussion of these variables in
other studies, there is strong ambiguity in the edge directions among approaches. Notably, Mooij
et al. [38] similarly find strong evidence in their approach for the edge P38! PKC while Ramsey
and Andrews [47] and Eaton and Murphy [8] find evidence for PKA! PKC. However, all other
approaches agree that the edge P38! PKA is incorrect. Although we do not explore further, it is
worth noting that the 3rd minimal MSS DAG (not shown) is the same as the one shown, except it
contains the presumed correct edge PKA! P38.

As an additional note, we see in Fig. 5 that the edge Mek! Erk is correctly recovered. Sachs et al.
[49] similarly recover this well-known connection and point to it as strong evidence of success. In
contrast, neither Eaton and Murphy [8], Ramsey and Andrews [47], nor Mooij et al. [38] recover the
edge with their methods. Indeed, Ramsey and Andrews [47] specifically discuss how their approach
incorrectly missed this edge, potentially the result of signal being lost when all the data is pooled.
Pooled PC would face a similar issue, exacerbated by additional environments, while the pairwise
comparisons of the MSS help to avoid this issue.

26


	Introduction
	Problem setting and notation
	Related work on causal discovery from multiple environments
	Leveraging sparse mechanism changes for causal discovery
	Causal discovery via the Mechanism Shift Score (MSS)
	Structure learning experiments
	Discussion
	Appendices
	 Appendices
	Graph terminology
	Full proofs
	Characterization of the learned equivalence class
	Identifiability rate of the true DAG
	Proof of Lemma 4.3
	Proof of Corollary 4.4
	Proof of Lemma 5.2
	Proof of Theorem 5.3

	Details of assumptions and methods
	Pseudo causal sufficiency and the Independent Causal Mechanisms (ICM) assumption
	The p-values ``soft" score
	Comparison to other augmented graph methods

	Supporting experiments
	F1 Scores
	Additional simulations
	MSS improves upon pooled PC across random graph models.
	Differences between oracle MSS and pooled PC are most pronounced on sparser and smaller DAGs.
	KCI-based approaches perform the best on bivariate CGMs.

	Application to real-world cytometry data
	Background
	Experimental setup
	Results and comparison to related works




