
Appendix

A Non-Linearity Definitions

The following activation functions are discussed or used in this work:

1. ReLU [Nair and Hinton, 2010]: max(x, 0)

2. Tanh (Hyperbolic tangent): (ex � e�x)/(ex + e�x)

3. Sigmoid: 1/(1 + e�x)

B Experimental Setup

All experiments are implemented in Pytorch [Paszke et al., 2019], using the RL codebase from Stable
Baselines3 [Raffin et al., 2021]. We conduct our main analysis on four continuous control tasks from
the OpenAI gym benchmark suits [Brockman et al., 2016] including HalfCheetah-v2, Walker-v2,
Ant-v2, and Swimmer-v2 environments, using PPO algorithm [Schulman et al., 2017].

All policy network configurations are chosen such that the network is fully-capable of learning the
task and achieves near state-of-the-art cumulative rewards on the particular task it is trained on.
Except where specified, network initialization and hyperparameters are set to the defaults of the
PPO implementation of Stable Baselines3. We train our policy networks on 2M samples (i.e. 2M
timesteps in the environment). Table 1 shows the range of the return per environment, across all
network configurations and random seeds. Return is measured as the mean trajectory cumulative
reward across the batch collected at each epoch.

Table 1: Performance Metrics
1M Step Return Average Max Min Std

HalfCheetah 3920.5 5035.7 2576.1 423.2
Walker 1605.9 4527.7 135.5 1305.6
Ant 1898.1 2609.8 1255.9 337.2
Swimmer 82.3 128.8 30.8 28.8

2M Step Return Average Max Min Std

HalfCheetah 4876.6 6679.4 3406.3 494.3
Walker 3618.4 6066.1 683.3 1610
Ant 2626.6 4543.5 1535.3 672
Swimmer 112.8 132.7 41.5 19.7

C Network Dimensions

In all experiments, the policy and value function network architectures used are MLPs with ReLU
activations in all hidden layers. Except where specified, the value function has N = 128 neurons
with layer widths 64, 64 while the policy network has 18 structures listed in Table 2.

Table 2: Network architectures
Neurons Layer Widths

N=32 32 16,16 8,8,8,8
N=64 64 32,32 16,16,16,16
N=128 128 64,64 32,32,32,32
N=48 48 24,24 16,16,16
N=96 96 48,48 32,32,32
N=192 192 96,96 64,64,64

14

D Initialization and Hyperparameters

The initialization of the policy network has a high impact on the training performance with PPO
[Andrychowicz et al., 2020]. To be able to focus on the evolution of linear regions disentangled
from properties such as trainability, which is outside the scope of this work, we use the default
initialization of PPO from Stable Baselines3. This initialization scheme is consistent with the best-
practice recommendations for on-policy RL [Andrychowicz et al., 2020], but it differs from that used
in Hanin and Rolnick [2019a]. In this initialization, for both the policy and value function networks,
weights of the hidden layers use orthogonal initialization with scaling

p
2, and the biases are set to

0. The weights of the policy network’s output layer are initialized with the scale of 0.01, and the
weights of the value function network’s output layer are initialized with the scale of 1. In Hanin and
Rolnick [2019a], networks are initialized with He normalization, and biases are drawn i.i.d from a
normal distribution centered at 0 with variance 10�6.

We mainly adopt the default hyperparameters of PPO from the implementation of Stable Baselines3
in all of our experiments on PPO. We present the details of the choices of hyperparameters in Table 3.

Table 3: Hyperparameters
Hyperparameter Value

Training steps 2 ⇥ 106

Learning rate 3 ⇥ 10�4

Number of epochs 125
Minibatch size 64
Discount (�) 0.99
GAE parameter (�) 0.95
Init. log stdev. -1.0
Clipping parameter (✏) 0.2
VF coeff. (c1) 0.5
Entropy coeff. (c2) 0.0
Hardware CPU

E Plots and Error Bars

Each policy network architecture is trained 5 times with 5 random seeds. All metric plots in this work
are shown as the mean and standard deviation across these seeds. For the state space visualization
of Figure 3, the sampling grid in input space is obtained by sampling a 300 ⇥ 300 grid with equally
distanced points on a window of size 40 ⇥ 200 where x 2 [�50, 150] and ẋ 2 [�20, 20]. Next, we
feed each point of the sampling grid into the policy network to compute its activation pattern. Then,
we group all points with the same activation pattern into a single linear region uniquely colored
according to its activation pattern. Note that the way of encoding a linear region of a point as
described in Section 4 guarantees that each region will be uniquely identified by an activation pattern.
We create a color map for regions based on their activation patterns. For the state space visualization
of Figure 21, we plot regions within a 2D plane that intersects the 17-dimensional input space of
HalfCheetah-v2. To obtain the 2D plane, we sample three random points from a trajectory (final
trajectory ⌧⇤ or random-action trajectory ⌧R) and find the plane that passes through these points. We
consider all the points within a square centered at the circumcenter of the three sampled points. The
square is scaled such that it is slightly bigger than the circle. In order to avoid missing small regions,
which are dominant in higher dimensional spaces, we do not use the subsampling method used for
the visualization of the 2D environment. Instead, we compute the exact locations of the boundaries
of the regions using our counting method describe in Section 4. Each region is then colored using a
randomly sampled color.

F Comparison of PPO and SAC

To shed light on the effect of the choice of RL algorithm, we repeat our experiments with the Soft
Actor Critic (SAC) algorithm [Haarnoja et al., 2018]. Similar to our main experimental setup for PPO,

15

we use the Stable-Baselines3 implementation of the SAC algorithm and conduct our experiments on
the four continuous control tasks of HalfCheetah-v2, Walker-v2, Ant-v2, and Swimmer-v2 from the
OpenAI gym benchmark suits. Again, we run each experiment with 5 different random seeds and
the results show the mean and the standard deviation across the random seeds. The policy network
architecture used is an MLP with ReLU activations in all hidden layers. To ensure full training
capacity, we choose more parameterized networks in this setup. The value function has two hidden
layers with 256 neurons in each layer, while the policy network has 12 structures as listed in Table 4.
We adopt the network initialization and hyperparameters of SAC from Stable-Baselines3 and train
our policy network on 1M samples. Table 5 shows the range of the random return per environment,
across all network configurations and random seeds. Return is measured as the mean trajectory return
of ten trajectories collected by running the deterministic policy without action noise once every 8000
steps. We present the details of the choices of hyperparameters in Table 6.

Figures 5-12 of this section, show the side-by-side comparison between the results of SAC trained on
HalfCheetah and results of PPO trained on HalfCheetah previously shown in Figure 4. We can see
that the observed region densities during training are quite different for SAC than they are for PPO,
early on in training. We hypothesize that the many transitions (and therefore corresponding high
densities) observed early on in training for SAC is due to a combination of (i) the entropy bonus for
SAC, which is then annealed away, and (ii) the different network initialization used for the baseline
SAC and PPO implementations.

Figures 13-20 of this section, show the same set of plots for all four environments, now grouped by
metric type to enable easier comparison between environments. As can be observed the results for
normalized region densities on the fixed final trajectory (Figure 13) are broadly consistent across
environments (tasks), with Swimmer being an exception.

Table 4: Policy network architectures in SAC experiments
Neurons Layer Widths

N=32 - 16,16 -
N=64 - 32,32 -
N=96 - - 32,32,32
N=128 128 64,64 32,32,32,32
N=192 192 96,96 64,64,64
N=256 256 128,128 64,64,64

Table 5: Performance Metrics of SAC experiments
500K Step Return Average Max Min Std

HalfCheetah 5752.8 8540.4 1573.8 1307.7
Walker 3746.2 4865.2 1207.2 812
Ant 1998.6 4982.4 �55 1110.9
Swimmer 48.2 75.1 �16.4 10.1

1M Step Return Average Max Min Std

HalfCheetah 6572.9 9436.1 1703.1 1540.6
Walker 4238.4 5131.5 1863 568.8
Ant 2501.6 5248.1 �115.5 1116.7
Swimmer 51.2 97.4 39.3 8.4

16

Table 6: Hyperparameters of SAC experiments
Hyperparameter Value

Training steps 1 ⇥ 106

Learning rate 3 ⇥ 10�4

Number of epochs 125
Batch size 256
Discount (�) 0.99
Soft update coefficient (⌧) 0.005
Entropy coeff. (initial) 0.1
Hardware CPU

0 20 40 60 80 100 120

Epoch

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

20000

30000

40000

50000

60000

70000

80000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(b) HalfCheetah - SAC

Figure 5: Evolution of the number of transitions over a fixed trajectory sampled from the final fully
trained policy (⌧⇤) during training HalfCheetah with SAC and PPO algorithms. Plots show the
mean and standard error across 5 random seeds. In the legend, [n1, ..., nd] corresponds to a network
architecture with depth d and ni neurons in each layer.

0 20 40 60 80 100 120

Epoch

0.008

0.010

0.012

0.014

0.016

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.008

0.010

0.012

0.014

0.016

0.018

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(b) HalfCheetah - SAC

Figure 6: Evolution of the normalized region density over a fixed trajectory sampled from the final
fully trained policy (⌧⇤) during training HalfCheetah with SAC and PPO algorithms.

17

0 20 40 60 80 100 120

Epoch

0

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0

20000

40000

60000

80000

100000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(b) HalfCheetah - SAC

Figure 7: Evolution of the number of transitions over trajectories sampled from the current snapshot
of the policy (⌧) during training HalfCheetah with SAC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(b) HalfCheetah - SAC

Figure 8: Evolution of the normalized region density over both a fixed trajectory sampled from the
final fully trained policy (⌧⇤) and current trajectories sampled from the current snapshot of the policy
(⌧) during training HalfCheetah with SAC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

30000

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0

10000

20000

30000

40000

T
ra

je
ct

or
y

le
n
gt

h

[32,32]

[64,64]

[96,96]

(b) HalfCheetah - SAC

Figure 9: Evolution of the length of trajectories sampled from the current snapshot of the policy (⌧)
during training HalfCheetah with SAC and PPO algorithms.

18

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[32,32]

[64,64]

[96,96]

(b) HalfCheetah - SAC

Figure 10: Evolution of the number of repeat visits to regions over trajectories sampled from the
current snapshot of the policy (⌧) during training HalfCheetah with SAC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(b) HalfCheetah - SAC

Figure 11: Evolution of the mean normalized region density over 100 random lines passing through
the origin during training HalfCheetah with SAC and PPO algorithms. For each policy network
configuration, we sample 100 random lines and compute the density of transitions as we sweep along
these lines. We then report the mean density observed over these 100 lines.

0 20 40 60 80 100 120

Epoch

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.005

0.010

0.015

0.020

0.025

0.030

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(b) HalfCheetah - SAC

Figure 12: Evolution of the mean normalized region density over 10 random-action trajectories (⌧R)
during training HalfCheetah with SAC and PPO algorithms. For each policy network configuration,
we sample 10 random-action trajectories and compute the density of transitions as we sweep along
these trajectories, and report the mean value of these trajectories.

19

0 20 40 60 80 100 120

Epoch

20000

30000

40000

50000

60000

70000

80000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

2000

4000

6000

8000

10000

12000

14000

16000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

0

1000

2000

3000

4000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(d) Swimmer - SAC

Figure 13: Evolution of the number of transitions over a fixed trajectory sampled from the final fully
trained policy (⌧⇤) during training different tasks with SAC.

0 20 40 60 80 100 120

Epoch

0.008

0.010

0.012

0.014

0.016

0.018

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0.010

0.015

0.020

0.025

0.030

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

0.010

0.015

0.020

0.025

0.030

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(d) Swimmer - SAC

Figure 14: Evolution of the normalized region density over a fixed trajectory sampled from the final
fully trained policy (⌧⇤) during training different tasks with SAC.

20

0 20 40 60 80 100 120

Epoch

0

20000

40000

60000

80000

100000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

30000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

0

10000

20000

30000

40000

50000

60000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

�5000

0

5000

10000

15000

20000

25000

30000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32,32]

[64,64]

[96,96]

(d) Swimmer - SAC

Figure 15: Evolution of the number of transitions over trajectories sampled from the current snapshot
of the policy (⌧) during training different tasks with SAC.

0 20 40 60 80 100 120

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0.00

0.01

0.02

0.03

0.04

0.05

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(d) Swimmer - SAC

Figure 16: Evolution of the normalized region density over both a fixed trajectory sampled from the
final fully trained policy (⌧⇤) and current trajectories sampled from the current snapshot of the policy
(⌧) during training different tasks with SAC.

21

0 20 40 60 80 100 120

Epoch

0

10000

20000

30000

40000

T
ra

je
ct

or
y

le
n
gt

h

[32,32]

[64,64]

[96,96]

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0

1000

2000

3000

4000

5000

6000

T
ra

je
ct

or
y

le
n
gt

h

[32,32]

[64,64]

[96,96]

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

�2000

0

2000

4000

6000

8000

10000

T
ra

je
ct

or
y

le
n
gt

h

[32,32]

[64,64]

[96,96]

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

�500

0

500

1000

1500

2000

2500

T
ra

je
ct

or
y

le
n
gt

h

[32,32]

[64,64]

[96,96]

(d) Swimmer - SAC

Figure 17: Evolution of the length of trajectories sampled from the current snapshot of the policy (⌧)
during training different tasks with SAC.

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[32,32]

[64,64]

[96,96]

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0

500

1000

1500

2000

2500

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[32,32]

[64,64]

[96,96]

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

�1000

0

1000

2000

3000

4000

5000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[32,32]

[64,64]

[96,96]

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

�5000

0

5000

10000

15000

20000

25000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[32,32]

[64,64]

[96,96]

(d) Swimmer - SAC

Figure 18: Evolution of the number of repeat visits to regions over trajectories sampled from the
current snapshot of the policy (⌧) during training different tasks with SAC.

22

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

1.4

1.5

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

0.8

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

1.0

1.2

1.4

1.6

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(d) Swimmer - SAC

Figure 19: Evolution of the mean normalized region density over 100 random lines passing through
the origin during training different tasks with SAC. For each policy network configuration, we sample
100 random lines and compute the density of transitions as we sweep along these lines. We then
report the mean density observed over these 100 lines.

23

0 20 40 60 80 100 120

Epoch

0.005

0.010

0.015

0.020

0.025

0.030

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(a) HalfCheetah - SAC

0 20 40 60 80 100 120

Epoch

0.005

0.010

0.015

0.020

0.025

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(b) Walker - SAC

0 20 40 60 80 100 120

Epoch

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(c) Ant - SAC

0 20 40 60 80 100 120

Epoch

0.08

0.10

0.12

0.14

0.16

R
eg

io
n

d
en

si
ty

[128]

[192]

[256]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[32,32,32,32]

[64,64,64,64]

(d) Swimmer - SAC

Figure 20: Evolution of the mean normalized region density over 10 random-action trajectories
(⌧R) during training different tasks with SAC. For each policy network configuration, we sample 10
random-action trajectories and compute the density of transitions as we sweep along these trajectories,
and report the mean value of these trajectories.

24

G Decision Regions viewed via Embedding Planes

To gain insights on what the linear regions may look like in our high dimensional setting, similar
to Novak et al. [2018] and Hanin and Rolnick [2019a], we visualize the linear regions over a
2-dimensional slice through the input space defined by three points sampled from a trajectory
emerged from the policy. Figure 21 shows the linear regions of a (32, 32) policy network trained on
HafCheetah in the 17-dimensional input space, over a 2-dimensional plane crossing three projection
points sampled from the final trajectory (⌧⇤) in the first row, and sampled from the random-action
trajectory (⌧R) in the second row. Comparing the visualizations of projected on points from ⌧⇤ and
⌧R (first and second row), we do not observe a significant difference between the granularity of
regions over points of these two trajectories. Moreover, surprisingly, our visualizations are more
consistent with the findings of Novak et al. [2018] with the projection points lying in regions of lower
density.

Epoch = 0 Epoch = 10 Epoch = 20 Epoch = 100

⌧⇤

epoch 0: 1365 regions epoch 10: 1290 regions epoch 20: 1545 regions epoch 100: 1467 regions

⌧R

epoch 0: 1708 regions epoch 10: 2078 regions epoch 20: 1961 regions epoch 100: 1394 regions

Figure 21: Linear regions that intersect a 2D plane through the input space for a network of depth
2 and width 32 trained on HalfCheetah-v2. Black dots indicate three points from the input space
on which the plane is defined. In the first row, the three points are randomly sampled from the final
trajectory ⌧⇤ whereas in the second row, the three points are randomly sampled from a random-action
trajectory ⌧R.

H Decision Regions for a Non-Cyclic Task: LunarLander

In this section, we aim to shed light on the possible effects of cyclic nature of locomotion
tasks on our previous PPO results. Therefore, we repeat our experiments by training PPO on
LunarLanderContinuous-v2 from OpenAI gym. Figure 22 shows the plots from this experiment.
The linear-region evolution behavior is in fact still similar with the only discrepancy being the
evolution pattern of observed density over current trajectories. For LunarLander, observed density
over current trajectories does not decrease during training while having the same range of values as
the density over fixed and random-action trajectories. This is due to the difference between the nature
of non-cyclic and cyclic tasks. For locomotion tasks, the length of the cyclic trajectories increases
during training, while for LunarLander, the trajectory length initially increases, then plateaus once
the agent converges.

25

0 20 40 60 80 100 120

Epoch

100

200

300

400

500

600

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) Transition count, fixed trajectory ⌧⇤

0 20 40 60 80 100 120

Epoch

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(b) Region density, fixed trajectory ⌧⇤

0 20 40 60 80 100 120

Epoch

0

250

500

750

1000

1250

1500

1750

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(c) Transition count, current trajectory ⌧

0 20 40 60 80 100 120

Epoch

0.2

0.4

0.6

0.8

1.0

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(d) Region density, ⌧⇤ and ⌧

0 20 40 60 80 100 120

Epoch

�10

0

10

20

30

40

50

60

70

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(e) Trajectory length, current trajectory ⌧

0 20 40 60 80 100 120

Epoch

0

100

200

300

400

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(f) Repeat visits to regions, current trajectory ⌧

0 20 40 60 80 100 120

Epoch

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[16,16,16]

[32,32,32]

[16,16,16,16]

[32,32,32,32]

(g) Density for random lines through the origin

0 20 40 60 80 100 120

Epoch

0.20

0.25

0.30

0.35

0.40

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[16,16,16]

[32,32,32]

[16,16,16,16]

[32,32,32,32]

(h) Density for random-action trajectories

Figure 22: LunarLander Results. Training is with PPO and the ranges indicate the standard error across 5
random seeds. In the legend [n1, ..., nd] describes a network architecture of depth d and ni neurons in each
layer. Summary results are grouped by network depth, d.

26

I Value Network Analysis

We also explore decision regions defined by the value-function network. We repeat our main
experiments on the value network of PPO agents. More particularly, we train a policy network with a
fixed network structure of (64, 64) with 18 different value network configurations on HalfCheetah
using the PPO algorithm. The value network configurations used here are the same as the ones
used for the policy network and are listed in Table 2, having N 2 {32, 48, 64, 96, 128, 192} neurons,
widths w 2 {8, 16, 32, 64}, and depths d 2 {1, 2, 3, 4}. These network configurations are chosen
such that the network is fully-capable of learning the task and achieves near state-of-the-art cumulative
reward on the particular task it is trained on. To compute the metrics, we now use the weights and
biases of the value function network, instead of the policy network. Figure 23 shows the resulting
plots. In comparing Figure 23 and Figure 4, we see that the evolution plots of the region densities are
remarkably similar in structure, for both fixed and current trajectories.

27

0 20 40 60 80 100 120

Epoch

5000

10000

15000

20000

25000

30000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) Transition count, fixed trajectory ⌧⇤

0 20 40 60 80 100 120

Epoch

0.002

0.004

0.006

0.008

0.010

0.012

0.014

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(b) Region density, fixed trajectory ⌧⇤

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(c) Transition count, current trajectory ⌧

0 20 40 60 80 100 120

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(d) Region density, ⌧⇤ and ⌧

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

30000

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(e) Trajectory length, current trajectory ⌧

0 20 40 60 80 100 120

Epoch

0

2500

5000

7500

10000

12500

15000

17500

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(f) Repeat visits to regions, current trajectory ⌧

0 20 40 60 80 100 120

Epoch

0.6

0.8

1.0

1.2

1.4

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[16,16,16,16]

[32,32,32,32]

(g) Density for random lines through the origin

0 20 40 60 80 100 120

Epoch

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[32,32,32]

[64,64,64]

[16,16,16,16]

[32,32,32,32]

(h) Density for random-action trajectories

Figure 23: Evolution of the number of transitions, linear region densities, and length of trajectories for the
value function, during training HalfCheetah with PPO. The ranges indicate the standard error across 5 random
seeds. [n1, ..., nd] in the legend corresponds to a network architecture with depth d and ni neurons in each layer.
Summary results are grouped by network depth, d.

28

J Behavior Cloning

We perform an additional experiment to study whether linear regions emerging from policies trained
with deep RL on non-IID data are different from those emerging from policies trained with BC on
IID data. For a direct comparison, we repeat our experiments by first collecting expert data from each
of the 18 network architectures previously trained with PPO on HalfCheetah. For each expert PPO
policy, we initialize a neural network policy with the same architecture and train it using BC on the
collected expert data. We then evaluate this new set of trained policies using the same evaluation
method.

For policy architecture A previously trained with PPO on HalfCheetah, we randomly pick one of the 5
experts (from the random seeds), and collect 500 episodes of expert data by letting the policy interact
with the environment. Actions are sampled from the stochastic policy. We then train a new policy
network with the same architect A using BC on the collected dataset. We repeat each experiment
with 5 random seeds. To ensure BC-trained policies are fully trained, we choose hyperparameters
such that the policy achieves similar average episodic return to its expert PPO-trained policy. We
present the details of the choices of hyperparameters in Table 7. We use the default initialization of
linear layers used by PyTorch where weights are He normal with gain=

p
5, and biases are IID normal

with variance 1/fan-in.

Table 7: Hyperparameters of BC experiments
Hyperparameter Value

Training epochs 125
Learning rate 10�3

Batch size 64
Optimizer SGD
Hardware CPU

Figures 24-31 of this section, show the side-by-side comparison between the results of BC trained
on HalfCheetah and results of PPO trained on HalfCheetah previously shown in Figure 4. We can
see that the observed region densities during training are much smaller for BC than they are for
PPO and that the general trend of increased density is not visible for BC. We hypothesize that these
differences are due to a combination of (i) different evolution of linear regions for networks trained
with RL and supervised learning due to the inherent difference in levels of information about the state
space available to each methodx (ii) the different network initializations used for the BC and PPO
implementations.

0 20 40 60 80 100 120

Epoch

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0

2000

4000

6000

8000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(b) HalfCheetah - BC

Figure 24: Evolution of the number of transitions over a fixed trajectory sampled from the final
fully trained policy (⌧⇤) during training HalfCheetah with BC and PPO algorithms. Plots show the
mean and standard error across 5 random seeds. In the legend, [n1, ..., nd] corresponds to a network
architecture with depth d and ni neurons in each layer.

29

0 20 40 60 80 100 120

Epoch

0.008

0.010

0.012

0.014

0.016

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(b) HalfCheetah - BC

Figure 25: Evolution of the normalized region density over a fixed trajectory sampled from the final
fully trained policy (⌧⇤) during training HalfCheetah with BC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

�2000

0

2000

4000

6000

8000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(b) HalfCheetah - BC

Figure 26: Evolution of the number of transitions over trajectories sampled from the current snapshot
of the policy (⌧) during training HalfCheetah with BC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(b) HalfCheetah - BC

Figure 27: Evolution of the normalized region density over both a fixed trajectory sampled from the
final fully trained policy (⌧⇤) and current trajectories sampled from the current snapshot of the policy
(⌧) during training HalfCheetah with BC and PPO algorithms.

30

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

30000

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

�500

0

500

1000

1500

2000

2500

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(b) HalfCheetah - BC

Figure 28: Evolution of the length of trajectories sampled from the current snapshot of the policy (⌧)
during training HalfCheetah with BC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

�2000

0

2000

4000

6000

8000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(b) HalfCheetah - BC

Figure 29: Evolution of the number of repeat visits to regions over trajectories sampled from the
current snapshot of the policy (⌧) during training HalfCheetah with BC and PPO algorithms.

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.7

0.8

0.9

1.0

1.1

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(b) HalfCheetah - BC

Figure 30: Evolution of the mean normalized region density over 100 random lines passing through
the origin during training HalfCheetah with BC and PPO algorithms. For each policy network
configuration, we sample 100 random lines and compute the density of transitions as we sweep along
these lines. We then report the mean density observed over these 100 lines.

31

0 20 40 60 80 100 120

Epoch

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(a) HalfCheetah - PPO

0 20 40 60 80 100 120

Epoch

0.006

0.008

0.010

0.012

0.014

0.016

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(b) HalfCheetah - BC

Figure 31: Evolution of the mean normalized region density over 10 random-action trajectories (⌧R)
during training HalfCheetah with BC and PPO algorithms. For each policy network configuration,
we sample 10 random-action trajectories and compute the density of transitions as we sweep along
these trajectories, and report the mean value of these trajectories.

32

K Additional Results

We previously provided the results for the HalfCheetah environment in Figure 4. Figures 32-39
of this section, show the same set of plots for the three remaining environments trained with PPO.
Plots are now grouped by metric type instead of environment, to enable easier comparison between
environments. Figure 40 shows the full set of results of Figures 4(a) and 4(c) for all policy network
architectures trained on HalfCheetah.

0 20 40 60 80 100 120

Epoch

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

2000

4000

6000

8000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(b) Walker

0 20 40 60 80 100 120

Epoch

5000

10000

15000

20000

25000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(c) Ant

0 20 40 60 80 100 120

Epoch

1000

2000

3000

4000

5000

6000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(d) Swimmer

Figure 32: Evolution of the number of transitions over a fixed trajectory sampled from the final fully
trained policy (⌧⇤) during training for different tasks. Plots show the mean and standard error across
5 random seeds. In the legend, [n1, ..., nd] corresponds to a network architecture with depth d and ni

neurons in each layer. These plots show a moderate and gradual increase in the number of transitions
over a fixed trajectory observed during training, with larger policy networks having more transitions.

33

0 20 40 60 80 100 120

Epoch

0.008

0.010

0.012

0.014

0.016

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(b) Walker

0 20 40 60 80 100 120

Epoch

0.015

0.020

0.025

0.030

0.035

0.040

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(c) Ant

0 20 40 60 80 100 120

Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
eg

io
n

d
en

si
ty

d=1

d=2

d=3

d=4

(d) Swimmer

Figure 33: Evolution of the normalized region density over a fixed trajectory sampled from the final
fully trained policy (⌧⇤) during training for different tasks. Plots show the mean and the standard
error over all networks with equal depth. Note that the vertical axes do not begin at zero. These
plots show a moderate and gradual increase in the density of transitions over a fixed trajectory during
training. We can also observe that deeper policy networks results in moderately denser regions in the
learned policies.

34

0 20 40 60 80 100 120

Epoch

0

10000

20000

30000

40000

50000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

0

2000

4000

6000

8000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(b) Walker

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(c) Ant

0 20 40 60 80 100 120

Epoch

0

1000

2000

3000

4000

5000

6000

7000

N
u
m

b
er

of
tr

an
si

ti
on

s

[16,16]

[32,32]

[64,64]

(d) Swimmer

Figure 34: Evolution of the number of transitions over trajectories sampled from the current snapshot
of the policy (⌧) during training for different tasks. These plots show an increase in the number of
transitions observed on trajectories sampled from current snapshots of the policy during training.

35

0 20 40 60 80 100 120

Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

0.02

0.04

0.06

0.08

0.10

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(b) Walker

0 20 40 60 80 100 120

Epoch

0.02

0.04

0.06

0.08

0.10

0.12

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(c) Ant

0 20 40 60 80 100 120

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
eg

io
n

d
en

si
ty

d=1-current

d=2-current

d=3-current

d=4-current

d=1-fixed

d=2-fixed

d=3-fixed

d=4-fixed

(d) Swimmer

Figure 35: Evolution of the normalized region density over both a fixed trajectory sampled from
the final fully trained policy (⌧⇤) and current trajectories sampled from the current snapshot of the
policy (⌧) during training for different tasks. These plots show that the density over fixed and current
trajectories converges to the same values over training, while it increases for former and decreases for
the latter. We speculate that the density is higher for current trajectories earlier during training due to
early exploration and the form of network initialization.

36

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

30000

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

0

1000

2000

3000

4000

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(b) Walker

0 20 40 60 80 100 120

Epoch

0

2000

4000

6000

8000

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(c) Ant

0 20 40 60 80 100 120

Epoch

0

100

200

300

400

500

T
ra

je
ct

or
y

le
n
gt

h

[16,16]

[32,32]

[64,64]

(d) Swimmer

Figure 36: Evolution of the length of trajectories sampled from the current snapshot of the policy (⌧)
during training for different tasks. These plots show that the length of the trajectories increase with
training.

37

0 20 40 60 80 100 120

Epoch

0

5000

10000

15000

20000

25000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

�500

0

500

1000

1500

2000

2500

3000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(b) Walker

0 20 40 60 80 100 120

Epoch

0

500

1000

1500

2000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(c) Ant

0 20 40 60 80 100 120

Epoch

0

1000

2000

3000

N
u
m

b
er

of
re

p
ea

t
vi

si
ts

to
re

gi
on

s

[16,16]

[32,32]

[64,64]

(d) Swimmer

Figure 37: Evolution of the number of repeat visits to regions over trajectories sampled from the
current snapshot of the policy (⌧) during training for different tasks. We can see that the number
of repeat visits generally increase with training because of the cyclic trajectories resulting from
locomotion-based tasks. We speculate that for HalfCheetah, repeat visits are high earlier during
training because of limited exploration.

38

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(b) Walker

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

1.4

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(c) Ant

0 20 40 60 80 100 120

Epoch

0.9

1.0

1.1

1.2

1.3

1.4

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(d) Swimmer

Figure 38: Evolution of the mean normalized region density over 100 random lines passing through
the origin during training for different tasks. For each policy network configuration, we sample 100
random lines and compute the density of transitions as we sweep along these lines. We then report
the mean density observed over these 100 lines. These plots show that the mean normalized density
starts close to 1 at initialization and remains roughly constant during training which is consistent with
the findings of Hanin and Rolnick [2019a]. Note that because the vertical axis does not begin at zero,
the variations around 1.0 is scaled.

39

0 20 40 60 80 100 120

Epoch

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(a) HalfCheetah

0 20 40 60 80 100 120

Epoch

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(b) Walker

0 20 40 60 80 100 120

Epoch

0.018

0.020

0.022

0.024

0.026

0.028

0.030

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(c) Ant

0 20 40 60 80 100 120

Epoch

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
eg

io
n

d
en

si
ty

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

(d) Swimmer

Figure 39: Evolution of the mean normalized region density over 10 random-action trajectories (⌧R)
during training for different tasks. For each policy network configuration, we sample 10 random-
action trajectories and compute the density of transitions as we sweep along these trajectories, and
report the mean value of these trajectories. These plots show that the observed normalized density
for random-action trajectories decreases slightly with training. When compared with the results of
Figure 35, we observe that the observed densities are marginally less than that of fixed and current
trajectories.

0 20 40 60 80 100 120

Epoch

10000

20000

30000

40000

50000

60000

70000

80000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

[48]

[96]

[192]

[24,24]

[48,48]

[96,96]

[16,16,16]

[32,32,32]

[64,64,64]

(a) Transition count, fixed trajectory ⌧⇤

0 20 40 60 80 100 120

Epoch

0

20000

40000

60000

80000

N
u
m

b
er

of
tr

an
si

ti
on

s

[32]

[64]

[128]

[16,16]

[32,32]

[64,64]

[8,8,8,8]

[16,16,16,16]

[32,32,32,32]

[48]

[96]

[192]

[24,24]

[48,48]

[96,96]

[16,16,16]

[32,32,32]

[64,64,64]

(b) Transition count, current trajectory ⌧

Figure 40: Evolution of the number of transitions over fixed and current trajectories during training
for all policy network architectures trained on HalfCheetah. This figure is included for the sake of
completeness.

40

	Introduction
	Related Work
	Piecewise Linear Regions
	Counting Linear Regions in RL Policies
	Experimental Results
	Evolution of the Density of Linear Regions during Training
	Impact of Policy Network Structure on Expressivity
	Additional Experiments
	RL Algorithm
	Environment
	Value Network Analysis
	Behavior Cloning

	Conclusions
	Non-Linearity Definitions
	Experimental Setup
	Network Dimensions
	Initialization and Hyperparameters
	Plots and Error Bars
	Comparison of PPO and SAC
	Decision Regions viewed via Embedding Planes
	Decision Regions for a Non-Cyclic Task: LunarLander
	Value Network Analysis
	Behavior Cloning
	Additional Results

