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Abstract

Causal discovery for quantitative data has been extensively studied but less is known
for categorical data. We propose a novel causal model for categorical data based
on a new classification model, termed classification with optimal label permutation
(COLP). By design, COLP is a parsimonious classifier, which gives rise to a
provably identifiable causal model. A simple learning algorithm via comparing
likelihood functions of causal and anti-causal models suffices to learn the causal
direction. Through experiments with synthetic and real data, we demonstrate the
favorable performance of the proposed COLP-based causal model compared to
state-of-the-art methods. We also make available an accompanying R package
COLP, which contains the proposed causal discovery algorithm and a benchmark
dataset of categorical cause-effect pairs.

1 Introduction

Discovering causality from observational data has seen rapid development in recent years partly
because knowledge of causality is desired in many areas where controlled experimentation is very
difficult, infeasible, or expensive to carry out. Particularly, for continuous and count data, numerous
methods and theories have been developed [Shimizu et al., 2006, Hoyer et al., 2009, Zhang and
Hyvärinen, 2009, Mooij et al., 2010, Janzing et al., 2012, Chen et al., 2014, Sgouritsa et al., 2015,
Hernandez-Lobato et al., 2016, Marx and Vreeken, 2017, Blöbaum et al., 2018, Park and Park, 2019,
Choi et al., 2020, Tagasovska et al., 2020]. All of these methods, in essence, exploit the quantitative
nature of continuous and count data in discovering causality. Therefore, they are not applicable
to categorical data for which the values can only be interpreted qualitatively. For example, while
Y = g(X) + E may be a reasonable causal model for continuous data, the interpretation of such
model for categorical data, although possible [Peters et al., 2010, Suzuki et al., 2014] under certain
circumstances, is much less natural because the order of magnitude of the values of categorical data
is arbitrary and meaningless [Cai et al., 2018].

In general, causal discovery for categorical data is much less studied. What is known to date is that
the causal model X → Y can be identified if X and Y are ordinal [Ni and Mallick, 2022], if X
admits a hidden compact representation Y ′ = f(X) such that |Y ′| < |X| (| · | denotes the cardinality)
and X → Y ′ → Y [Cai et al., 2018, Qiao et al., 2021], if the exogenous variable E of the structural
causal model Y = f(X,E) has entropy that does not scale with the number of categories [Compton
et al., 2020, 2022], if P (X) and P (Y |X) are independent random variables [Liu and Chan, 2016], or
if the categorical variables X and Y are binary and they do not share the same marginal distribution
[Wei et al., 2018]. Note that causal discovery methods that focus on identifying Markov equivalence
classes [Spirtes et al., 2000, Lam et al., 2022] are not directly applicable to bivariate causal discovery
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problems as X → Y and Y → X are Markov equivalent. However, when additional variables are
available, they may be able to identify direct or indirect causal relationship between X and Y .

In this paper, we propose a novel causal model for categorical data based on classification with optimal
label permutation (COLP). COLP itself is a new classifier, which is more parsimonious than multino-
mial regression. COLP is inspired by ordinal regression, which has considerably lower model com-
plexity than multinomial regression. Unfortunately, by design, ordinal regression is only applicable to
categorical responses that admit a natural ordering, e.g., human satisfaction (low, medium, and high).
However, many categorical variables (e.g., choice of sports from {gymnastics, boxing, volleyball})
do not appear to have natural orderings but we argue that for the purposes of prediction, the response
Y may be ordered in a meaningful way depending on the predictor X . For instance, if one wants to
to predict a person’s choice of sports Y ∈ {gymnastics, boxing, volleyball} based on his/her height
X , it would make sense to order gymnastics < boxing < volleyball because on average volleyball
players are taller than boxers who in turn tend to be taller than gymnasts. On the other hand, if the
prediction of Y is based on the person’s strength, another ordering, volleyball < gymnastics < boxer,
may be more suitable. In either case, once the ordering has been figured out, an ordinal regression
can be applied to model and predict Y given X . Of course, determining the ordering of Y could be
subjective and tedious. The proposed COLP model is precisely designed to automatically find the best
category ordering in an objective way. As expected, its model complexity is between multinomial
regression and ordinal regression.

The main objective of this paper is causal discovery for categorical data. It turns out that the parsimony
of COLP is quite useful in that regard – while causal models based on multinomial regression are
non-identifiable, we prove that the proposed COLP-based causal models are identifiable under the
causal Markov and causal sufficient assumptions. Our experiments with synthetic and real data show
that the proposed method outperforms state-of-the-art alternative methods.

2 Proposed Method

We first introduce the classification model COLP in Section 2.1. COLP may be of interest by itself
as a new classifier but the focus of this paper is to build a causal model based on COLP, which is
presented in Section 2.2.

2.1 Classification with Optimal Label Permutation

Let Y ∈ {1, . . . , L} be a categorical response variable with L levels and let X = (X1, . . . , XS)
T be

a S-dimensional predictor vector. Note that if L = 2, ordinal logistic regression, nominal logistic
regression, and the proposed COLP are equivalent and hence hereafter we always assume L > 2.
Later, X will be dummy variables representing a categorical predictor with S levels but, for now, we
present COLP for a general set of predictors.

If Y is ordered, an ordinal regression is often used,

P (Y ≤ ℓ|X) = F (γℓ −XTβ), ℓ = 1, . . . , L, (1)

where F is some link function (e.g., standard normal or logistic CDF), γ1 < · · · < γL are a set of
thresholds, and β ∈ RS are ordinal regression coefficients. Equation (1) implies the conditional
probability distribution P (Y = ℓ|X) = F (γℓ − XTβ) − F (γℓ−1 − XTβ) for ℓ ∈ {1, . . . , L}
where γ0 = −∞, γ1 = 0 (for parameter identifiability), and γL = ∞. Therefore, effectively, the
model complexity (i.e., the number of parameters) of an ordinal regression is L− 2 + S.

If Y is nominal with no natural ordering, a multinomial (logistic) regression can be used instead,

P (Y = ℓ|X) =
eX

Tβℓ∑L
ℓ′=1 e

XTβℓ′
, ℓ = 1, . . . , L, (2)

where βℓ are category-specific regression coefficients and, for parameter identifiability, βL = 0. The
effective model complexity is (L− 1)× S, which is strictly greater than the model complexity of an
ordinal regression, L− 2+S for L > 2 and S > 1. Even though multinomial regression is obviously
also applicable to ordinal data by simply ignoring the ordering, ordinal regression is often preferred
over multinomial regression in this case because of parsimony.
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Here, we propose a new classification model, which is more parsimonious than multinomial regression
and is useful beyond ordinal categorical data. The general idea is to introduce a permutation
σ : {1, . . . , L} 7→ {1, . . . , L}, which orders the categories so that the ordinal regression is applicable.
Specifically, we propose the following probability model,

P (Y ≤ ℓ|X) = F (γσ(ℓ) −XTβ), ℓ = 1, . . . , L, (3)

which is similar to ordinal regression (1) but with an important additional parameter σ ∈ Σ where
Σ is the collection of all permutations of size L. Because any ordering σ and its reverse σ̃ (i.e.,
σ(i) < σ(j) if and only if σ̃(i) > σ̃(j)) would lead to equivalent ordinal regression models, for
parameter identifiability, we assume σ(1) < σ(2). Therefore, the effective size of σ is L− 2 because
once σ(3), . . . , σ(L) are fixed, σ(1) and σ(2) are fixed due to the contraint. Consequently, the overall
complexity of the proposed COLP model is L− 2 + S + L− 2 = 2L+ S − 4, which is less than
the complexity of a multinomial regression, (L − 1) × S, for L, S > 2. Similarly to the ordinal
regression, (3) implies the conditional probability mass function,

P (Y = ℓ|X) = F (γσ(ℓ) −XTβ)− F (γσ(ℓ)−1 −XTβ), ℓ = 1, . . . , L. (4)

As we mentioned in Section 1, although a categorical variable may not have a natural ordering, for
the purpose of modeling and prediction, they may be ordered in a meaningful way depending on the
predictors. The proposed COLP, by including ordering as a parameter, can automatically find the best
ordering in an objective manner. In addition, even for categorical variables that have natural orderings,
the proposed COLP may still be preferred over both ordinal regression and multinomial regression.
For instance, in one of later real data examples, Y = shelf placement ∈ {1, 2, 3} (counting from the
floor) and X = cereal manufacturer. To predict Y based on X , it makes more sense to use a less
natural ordering 1 < 3 < 2 for Y as shoppers are more likely to buy products on the middle shelf
than either the top or bottom. In fact, when we ran COLP on this data, 1 < 3 < 2 was identified as
the optimal ordering. Moreover, COLP and the multinomial regression had the same goodness of fit,
which was better than that of the ordinal regression. COLP had the best out-of-sample prediction,
followed by the ordinal regression, and the multinomial was the worst. For this example, COLP had
the right model complexity to achieve the best model fit as well as the best out-of-sample prediction.

2.2 COLP-Based Causal Discovery

Next, we build a causal model based on COLP. Let Y ∈ {1, . . . , L} and X ∈ {1, . . . , S} with
L, S > 2. The COLP-based causal model considers two competing causal hypotheses,

M0 : X → Y vs M1 : Y → X

with (observational) probability mass functions,

PX→Y (X = s, Y = ℓ) = PX→Y (X = s)PX→Y (Y = ℓ|X = s),

PY→X(X = s, Y = ℓ) = PY→X(Y = ℓ)PY→X(X = s|Y = ℓ),

where PX→Y (X = s) and PY→X(Y = ℓ) are multinomial with probabilities ω = (ω1, . . . , ωS) and
ρ = (ρ1, . . . , ρL), and PX→Y (Y = ℓ|X = s) and PY→X(X = s|Y = ℓ) take similar forms as (4),

PX→Y (Y = ℓ|X = s) = F (γσ(ℓ) −XTβ)− F (γσ(ℓ)−1 −XTβ),

PY→X(X = s|Y = ℓ) = F (ηπ(s) − Y Tα)− F (ηπ(s)−1 − Y Tα),

where X ∈ {0, 1}S and Y ∈ {0, 1}L are dummy variable representation of X and Y , and σ ∈ Σ
and π ∈ Π are permutations of {1, . . . , L} and {1, . . . , S}. In summary, causal model M0 : X → Y
is parameterized by (ω,β,γ, σ) with γ = (γ2, . . . , γL−1) and β ∈ RS whereas M1 : Y → X is
parameterized by (ρ,α,η, π) with η = (η2, . . . , ηS−1) and α ∈ RL.

Like regression, the proposed COLP-based casual model (complexity = 2L + 2S − 5) is more
parsimonious than a saturated bivariate multinomial model (complexity = S × L − 1). In fact, a
multinomial causal model where PX→Y (Y = ℓ|X = s) is multinomial regression has the same
complexity as the saturated model. Therefore, a multinomial causal model is essentially just a
reparameterization of a joint multinomial distribution, which of course can be factorized in both
causal and anti-causal directions, and hence is not identifiable. Now, the question is: can the
parsimonious COLP-based casual model break the symmetry? The answer is yes, which will be
formally established in the next section.
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Figure 1: Illustration of causal identifiability of COLP-based causal model. The set of joint dis-
tributions P (X,Y ) that can be represented by the COLP-based causal model is a subset of those
represented by the saturated multinomial model (this relation is indicated by ellipses). A specific
COLP-based causal model M0 : X → Y is given by ω = (0.25, 0.25, 0.5), γ = 1,β = (1,−1, 1)T ,
σ(1) = 1, σ(2) = 3, and σ(3) = 2. These parameter values determine the conditional probability
P (Y |X) and the marginal probability P (X), which in turn define the joint probability P (X,Y ).
Although it is easy to find P (X|Y ) and P (Y ) for the anti-causal model M1 : Y → X from the joint
probability P (X,Y ), M1 is no longer in the class of COLP-based causal models. Hence, if causal
models are constrained to be COLP-based, the correct causal direction X → Y can be identified.

2.3 Identifiability

Before stating our main identifiability theorem, we first provide intuition as to why multinomial
regression-based causal models are non-identifiable whereas the proposed COLP-based causal models
are identifiable. As mentioned in Section 2.2, multinomial regression-based causal models are simply
reparameterization of a saturated bivariate multinomial model whereas COLP-based causal models
are more parsimonious. We represent such relation as a Venn diagram in Figure 1. For a given
COLP-based causal model (represented by the dot in the inner ellipse), say M0 : X → Y with
X,Y ∈ {1, 2, 3}, its conditional probability P (Y |X) and marginal probability P (X) (represented
by the probability tables at the bottom left corner) are determined by its specific parameter values, say
ω = (0.25, 0.25, 0.5), γ = 1,β = (1,−1, 1)T , σ(1) = 1, σ(2) = 3, and σ(3) = 2. The conditional
and marginal probability distributions define the joint distribution P (X,Y ) represented by the dot
and the probability table at the top left corner. Now consider a causal model with a reversed direction
M1 : Y → X . Since the joint distribution P (X,Y ) can always factorize into P (Y ) and P (X|Y )
(represented by the probability tables at the top right corner), it is obvious that M0 ≡ M1 under such
factorization. But M1, represented by the dot in the outer ellipse, does not belong to the class of
COLP-based causal models anymore. In summary, when constrained to COLP-based causal models,
this particular example of M0 does not have an equivalent model. The identifiability theorem below
shows that this is true in general.

Theorem 1 If there is no unmeasured confounder, the link function F (·) is a fixed real analytic
function1, and F ′(·) is nowhere zero, then for almost all (ω,β,γ, σ), there does not exist (ρ,α,η, π)
such that M0 ≡ M1, i.e., PX→Y (X = s, Y = ℓ) = PY→X(X = s, Y = ℓ) for all (s, l) ∈
{1, . . . , S} × {1, . . . , L}.

All proofs are provided in the Supplementary Material. No unmeasured confounder is a common
assumption in prior causal discovery work for categorical data [Peters et al., 2010, Suzuki et al., 2014,
Liu and Chan, 2016, Cai et al., 2018, Compton et al., 2020]. The requirements on the link function
F (·) are quite mild; well-known link functions such as probit and logistic satisfy them.

1A real function is said to be analytic if it is infinitely differentiable and matches its Taylor series in a
neighborhood of every point.
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Algorithm 1 Greedy Search: MLE of COLP

Input: data (x1, y1), . . . , (xn, yn), initial parameters ω,β,γ, σ
Compute M(σ) = maxω,β,γ

∏n
i=1 PX→Y (X = xi, Y = yi|ω,β,γ, σ)

Set M⋆ = M(σ)
repeat

Initialize Improvement = false
for all permutation σ′ reachable from σ do

Compute M(σ′)
if M(σ′) > M⋆ then

Set σ = σ′ and M⋆ = M(σ′)
Set Improvement = true

end if
end for

until Improvement is false
Output: maximized likelihood M⋆

Next, we show that asymptotically we can correctly identify the true causal model.

Theorem 2 If M0 : X → Y is the true data generating model, the likelihood of M0 is asymptotically
greater than that of the anti-causal model M1 : Y → X .

Theorems 1 and 2 suggest a simple causal discovery algorithm based on maximum likelihood
estimation (MLE). For a dataset with n observations, (x1, y1), . . . , (xn, yn), we conclude M0 : X →
Y if

max
ω,β,γ,σ

n∏
i=1

PX→Y (X = xi, Y = yi|ω,β,γ, σ) > max
ρ,α,η,π

n∏
i=1

PY→X(X = xi, Y = yi|ρ,α,η, π),

and conclude M1 : Y → X otherwise. The MLE can be carried out in two steps. In the first step,
for every σ ∈ Σ, we maximize the likelihood over ω,β,γ through the standard MLE of ordinal
regression by treating σ(y1), . . . , σ(yn) as ordered labels, M(σ) = maxω,β,γ

∏n
i=1 PX→Y (X =

xi, Y = yi|ω,β,γ, σ). Then in the second step, we pick the largest M(σ) among all σ ∈ Σ. This
exhaustive search over all permutations is feasible when the number of categories is small. For
categorical data with a moderately large number of categories, an iterative greedy search algorithm
(Algorithm 1) can be used instead. At each iteration, we compute the MLE of ordinal regression
for all the permutations that can be reached from the current permutation by switching the order of
two elements. We replace the current permutation by the permutation with the largest increase in
likelihood and stop the algorithm when the likelihood can no longer be improved.

3 Experiments

3.1 Synthetic Data

We first assessed the performance of the proposed COLP-based causal discovery method with three
sets of synthetic data. For comparison, we considered a recent categorical discovery method based on
hidden compact representation (HCR, [Cai et al., 2018]).

3.1.1 Scenario 1: Small Number of Categories

We generated data with the number of categories L = S = 5 and varying sample size n =
50, 100, . . . , 1000. The true parameters were set as ω = (1/5, 1/5, 1/5, 1/5, 1/5), β ∼ N(0, I5),
σ(ℓ) = ℓ,∀ℓ, and γ chosen to have balanced class size for each variable. Both the exhaustive (COLP-
Exhaustive) and greedy (COLP-Greedy) versions of the COLP-based causal discovery algorithm were
applied. The results based on 500 repeat simulations are summarized in Figure 2a. COLP-Exhaustive
and COLP-Greedy had virtually the same accuracy in identifying the correct causal directions, both
of which increased with the sample size, which empirically verified Theorems 1 and 2, and uniformly
outperformed HCR. We also computed the Kendall’s Tau between the estimated category ordering
and the true ordering. Kendall’s Tau close to 1 indicates a good estimation. The average Kendall’s
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(a) Scenario 1
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(b) Scenario 2

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

A
cc

ur
ac

y

(c) Scenario 3

Figure 2: Synthetic Data. Average accuracy of causal identification for COLP-Exhausitve, COLP-
Greedy, and HCR across different sample sizes and scenarios based on 500 repeat simulations.
Standard errors are represented by the error bars. The accuracy curves of COLP-Exhaustive in (a)
and (c) are slightly shifted to the right for visualization.

200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size

K
en

da
ll'

s 
Ta

u

Scenario 1
Scenario 2
Scenario 3

Figure 3: Synthetic Data. Average Kendall’s Tau of ordering estimation for COLP-Greedy, across
different sample sizes and scenarios based on 500 repeat simulations. Standard errors are represented
by the error bars.

Tau of COLP-Greedy is reported in Figure 3. As sample size increased, the ordering estimation
improved as expected.

In the Supplementary Material, we present two additional results under this scenario: (i) we performed
an ablation study to demonstrate the importance of learning the category ordering, and (ii) we
investigated how estimation of causal direction and label permutation vary as the number of categories
increases.

3.1.2 Scenario 2: Larger Number of Categories

We now increased the number of categories to L = S = 10 while keeping all the other simulation
parameters the same. We did not apply COLP-Exhaustive in this scenario. As shown in Figure 2b,
COLP-Greedy outperformed HCR across all sample sizes and the margins were wider than those in
Scenario 1. The ordering estimation had the similar increasing trend in Kendall’s Tau as sample size
increased as in Scenario 1 (Figure 3).

3.1.3 Scenario 3: Hidden Confounders

While our identifiability theory assumes no unmeasured confounders, we empirically tested the
sensitivity of our method to the presence of confounders. We generated trivariate categorical data
(X,Y, Z) from the following true causal graph with all the simulation parameters kept the same as in
Scenario 1,
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We applied COLP and HCR to (X,Y ) only (i.e., Z became a hidden confounder). As shown in
Figures 2c and 3, COLP had the best performance and the estimation of causal directions and category
orderings approached perfect recovery as sample size increased even in the presence of confounders.

3.2 Real Data

We further evaluated the proposed COLP-based causal discovery method with four sets of public real
categorical data: (i) Pittsburgh Bridges dataset, (ii) Abalone dataset, (iii) Tübingen Cause-Effect Pairs,
and (iv) a newly-created Categorical Cause-Effect Pairs. For comparison, we considered HCR as
before and an additional competing method, entropic causal inference (ECI, Compton et al. [2020]).
For variables with more than six categories, only the greedy search was applied for COLP-based
causal discovery. For variables with fewer categories, both exhaustive and greedy algorithms were
applied, which generally produced the same results; therefore, we do not differentiate between the
two implementations when reporting the results below for simplicity.

3.2.1 Pittsburgh Bridges Dataset

This dataset [Reich and Fenves, 1989] is available from the UCI Machine Learning Repository
and was used in previous causal discovery work [Cai et al., 2018]. It has 108 observations and the
following 4 true cause-effect pairs: Erected (Crafts, Emerging, Mature, Modern) → Span (Short,
Medium, Long), Material (Steel, Iron, Wood) → Span (Short, Medium, Long), Material → Lanes
(1, 2, 4, 6), and Purpose (Aqueduct, Highway, Rail, Walk) → Type (Wood, Suspen, Simple-T, Arch,
Cantilev, CONT-T). In addition to HCR and ECI, we also applied Markov equivalence class-based
causal discovery algorithm, GRaSP [Lam et al., 2022], to all the variables.

The results are presented in Table 1. COLP was able to correctly identify all 4 cause-effect pairs
whereas HCR missed 1 pair, ECI missed 2 pairs, and GRaSP correctly identified two direct causal
links and two indirect causal links (i.e., directed paths with the correct directions). The effect variables
of the first three pairs, Span and Lanes, have natural orderings, namely, Short < Medium < Long and
1 < 2 < 4 < 6. The optimal orderings identified by COLP perfectly matched them (note that COLP
does not take the natural ordering as an input). The effect variable, Type, of the last pair does not
have an obvious natural ordering. The optimal ordering was estimated to be Simple-T < Cantilev
< CONT-T < Arch < Wood < Suspen and the COLP regression coefficients under X → Y were
estimated to be β̂Aqueduct = 2.90, β̂Highway = 1.03, β̂Rail = −1.63, and β̂Walk = 13.66. This
ordering seems sensible considering that the predictor/cause was Purpose. For example, {Simple-T,
Cantilev, CONT-T} bridges are more likely to be used for rail roads whereas {Arch, Wood, Suspen}
bridges are more likely to be used for walking. Therefore, their ordering is consistent with the signs
of β̂Rail (negative) and β̂Walk (positive).

Table 1: Pittsburgh Bridges Dataset. Correctly (incorrectly) identified causal direction is marked by
✓(✗). For GRaSP, ⃝ means a directed path was identified.

Cause (X) Effect (Y) COLP HCR ECI GRaSP
Erected Span ✓ ✓ ✗ ⃝
Material Span ✓ ✓ ✓ ✓
Material Lanes ✓ ✓ ✗ ⃝
Purpose Type ✓ ✗ ✓ ✓

3.2.2 Abalone Dataset

This dataset [Nash et al., 1994] is available from the UCI Machine Learning Repository and was used
in previous research [Cai et al., 2018]. It has 4177 observations and the following 3 true cause-effect
pairs: Sex (male, female, infant) → Length, Sex → Diameter, and Sex → Height. We discretized
Length, Diameter, and Height into 5 categories at their 20%,40%,60%, and 80% quantiles. As in
Section 3.2.1, we compared COLP with HCR, ECI, and GRaSP.
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The results are reported in Table 2. COLP and ECI were able to correctly identify all 3 cause-effect
pairs whereas HCR missed 1 pair, and GRaSP correctly identified one direct causal relationship and
one indirect causal relationship, and failed to determine the causal direction of one pair. Because all
the effect variables were obtained by discretization at quantiles, they had natural orderings. Again, in
all cases, the optimal orderings identified by COLP perfectly matched them.

Table 2: Abalone Dataset. Correctly (incorrectly) identified causal direction is marked by ✓(✗). For
GRaSP, ⃝ means a directed path was identified.

Cause (X) Effect (Y) COLP HCR ECI GRaSP

Sex
Length ✓ ✓ ✓ ⃝
Diameter ✓ ✓ ✓ ✗
Height ✓ ✗ ✓ ✓

3.2.3 Tübingen Cause-Effect Pairs

This is a well-known causal benchmark dataset [Mooij et al., 2016] (version: 12/20/2017). We picked
pair 52, 53, 54, 55, and 105 for testing, which were rarely used in prior work because at least one
of the variables in each pair is multivariate. We applied K-means to each multivariate variable with
K = 5 and used the cluster labels as a categorical variable, and discretized each univariate variable at
5 evenly spaced quantiles.

The results are shown in Table 3. COLP was able to correctly identify all 5 cause-effect pairs whereas
HCR missed 1 pair and ECI missed 2 pairs. The effect variables of Pairs 53 and 105 have natural
orderings, which matched the optimal orderings identified by COLP.

Table 3: Tübingen Cause-Effect Pairs. Correctly (incorrectly) identified causal direction is marked by
✓(✗).

Pair Cause (X) Effect (Y) COLP HCR ECI

52

 air temperature
pressure at surface
sea level pressure
relative humidity

 at day 50

 air temperature
pressure at surface
sea level pressure
relative humidity

 at day 51 ✓ ✓ ✓

53

( wind speed
global radiation

temperature

)
ozone concentration ✓ ✓ ✗

54

( displacement
horsepower

weight

) (
mpg

acceleration

)
✓ ✓ ✓

55 temperature at 16 locations ozone concentration at 16 locations ✓ ✗ ✓
105 grey values of 9 pixels light intensity ✓ ✓ ✗

3.2.4 Categorical Cause-Effect Pairs

The Tübingen Cause-Effect Pairs data are largely continuous and may not be the best benchmarks for
categorical causal discovery. Hence, we created a categorical causal discovery benchmark dataset
using a similar approach as in Mooij et al. [2016]. Specifically, we searched for appropriate datasets
in R packages MASS and datasets for which the pairwise causal relationships should be obvious
from the context (e.g., treatment assignment causes treatment effect), and at least one of the variables
in each pair is categorical. For non-categorical variable, we discretized it at 5 evenly spaced quantiles.
The resulting dataset contains 33 categorical cause-effect pairs and is available in the R package
COLP.

The results are shown in Table 4. Overall, COLP, HCR, and ECI were able to correctly identify 70%,
61%, and 52% causal-effect pairs, respectively. In terms of the ordering estimation, some results
were interesting. For example, as mentioned in Section 2.1, for the "MASS::UScereal" data, the
ordering of Y = shelf placement ∈ {1, 2, 3} was estimated to be 1 < 3 < 2, which matches the
fact that middle shelf is the most popular, followed by the top shelf, and the bottom shelf is the
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least popular. In fact, under the correct causal direction X → Y , COLP was better than ordinal
and multinomial regressions in terms of both goodness of fit (via within-sample prediction) and
out-of-sample prediction (via leave-one-out cross-validation).

Table 4: Categorical Cause-Effect Pairs. Correctly (incorrectly) identified causal direction is marked
by ✓(✗).

Source Data Cause (X) Effect (Y) COLP HCR ECI
MASS anorexia Treat Prewt-Postwt ✓ ✗ ✓
MASS painters School Composition ✗ ✓ ✗
MASS painters School Drawing ✗ ✓ ✓
MASS painters School Colour ✓ ✓ ✗
MASS painters School Expression ✓ ✓ ✗
MASS birthwt race low ✓ ✗ ✗
MASS bacteria trt y ✓ ✓ ✗
MASS survey Sex Clap ✓ ✗ ✓
MASS survey Sex Fold ✓ ✗ ✓
MASS oats B Y ✓ ✓ ✗
MASS oats V Y ✓ ✓ ✓
MASS oats N Y ✗ ✓ ✓
MASS crabs sp*sex FL ✗ ✗ ✗
MASS crabs sp*sex RW ✓ ✗ ✓
MASS crabs sp*sex CL ✓ ✗ ✓
MASS crabs sp*sex CW ✓ ✗ ✓
MASS crabs sp*sex BD ✓ ✓ ✓
MASS fgl type RI ✗ ✓ ✓
MASS immer Var Y1 ✓ ✓ ✗
MASS immer Var Y2 ✓ ✗ ✓
MASS immer Loc Y1 ✓ ✓ ✗
MASS immer Loc Y2 ✗ ✗ ✗
MASS minn38 sex phs ✗ ✗ ✓
MASS minn38 fol hs ✓ ✓ ✗
MASS minn38 fol phs ✗ ✓ ✗
MASS UScereal mfr shelf ✓ ✓ ✗
MASS UScereal mfr vitamins ✓ ✓ ✗
datasets chickwts feed weight ✗ ✓ ✗
datasets InsectSprays spray count ✓ ✓ ✓
datasets npk N*P*K yield ✓ ✓ ✓
datasets PlantGrowth group weight ✗ ✗ ✗
datasets ToothGrowth supp*dose len ✓ ✓ ✓
datasets warpbreaks wool*tension breaks ✓ ✗ ✓

4 Conclusion

There are a few limitations of the current work. First, our identifiability theory assumes no un-
measured confounders. Although our empirical studies suggested that the proposed method was
relatively robust to the presence of confounders, it would be interesting to theoretically investigate the
identifiability under this scenario. Second, we have focused on bivariate causal discovery. Extending
it to multivariate cases would broaden the applicability of the proposed method. Third, the categorical
cause-effect pairs dataset can be expanded by surveying more publicly available data.
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