
Appendices
This supplementary material complements the main paper. It is organized as follows:

1. Appendix A describes the broader impact of our work.
2. Appendix B points out the limitations of existing flatness-based analysis of WA and shows

how our analysis solves these limitations.
3. Appendix C details all the proofs of the propositions and lemmas found in our work.

• Appendices C.1 and C.2 derive the bias-variance-covariance-locality decomposition
for WA (Proposition 1).

• Appendix C.3 establishes the link between bias and correlation shift (Proposition 2).
• Appendix C.4 establishes the link between variance and diversity shift (Proposition 3).
• Appendix C.5 compares WA with one of its member (Lemma 3).

4. Appendix D empirically compares WA to functional ensembling ENS.
5. Appendix E presents some additional diversity results on OfficeHome and PACS.
6. Appendix F ablates the importance of the number of training runs.
7. Appendix G describes our experiments on DomainBed and our per-domain results.
8. Appendix H empirically confirms a limitation of WA approaches expected from our theoret-

ical analysis: they do not tackle correlation shift on ColoredMNIST.
9. Appendix I suggests DiWA’s potential when some target data is available for training [86].

A Broader impact statement

We believe our paper can have several positive impacts. First, our theoretical analysis enables
practitioners to know when averaging strategies succeed (under diversity shift, where variance
dominates) or break down (under correlation shift, where bias dominates). This is key to understand
when several models can be combined into a production system, or if the focus should be put on the
training objective and/or the data. Second, it sets a new state of the art for OOD generalization under
diversity shift without relying on a specific objective, architecture or task prior. It could be useful
in medicine [1, 2] or to tackle fairness issues related to under-representation [57, 87, 88]. Finally,
DIWA has no additional inference cost; in contrast, functional ensembling needs one forward per
member. Thus, DiWA removes the carbon footprint overhead of ensembling strategies at test-time.

Yet, our paper may also have some negative impacts. First, it requires independent training of several
models. It may motivate practitioners to learn even more networks and average them afterwards.
Note that in Section 5, we restricted ourselves to combining only the runs obtained from the standard
ERM grid search from DomainBed [12]. Second, our model is fully deep learning based with the
corresponding risks, e.g., adversarial attacks and lack of interpretability. Finally, we do not control
its possible use to surveillance or weapon systems.

B Limitations of the flatness-based analysis in OOD

Theorem 1 (Equation 21 from [14], simplified version of their Theorem 1). Consider a set of N
covers {⇥k}Nk=1 s.t. the parameter space ⇥ ⇢ [N

k
⇥k where diam(⇥) , sup

✓,✓02⇥k✓ � ✓0k2, N ,⌃
(diam(⇥)/�)d

⌥
and d is the dimension of ⇥. Then, 8✓ 2 ⇥ with probability at least 1� �:

ET (✓) 
1

2
Div(pS , pT ) + ES(✓)

 1

2
Div(pS , pT ) + E�

dS
(✓) + max

k

s
(vk[ln(nS/vk) + 1] + ln(N/�))

2nS

,

(5)

where:
• ET (✓) , E(x,y)⇠pT (X,Y )[`(f✓(x); y)] is the expected risk on the target domain,
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• Div(pS , pT ) , 2 sup
A
|pS(A)� pT (A)| is a divergence between the source and target

marginal distributions pS and pT : it measures diversity shift.

• ES(✓) , E(x,y)⇠pS(X,Y )[`(f✓(x); y)] is the expected risk on the source domain,

• E�

dS
(✓) , maxk�k� EdS (✓ +�) (where EdS (✓ +�) , E(x,y)2dS

[`(f✓+�(x); y)]) is the
robust empirical loss on source training dataset dS from S of size nS ,

• vk is a VC dimension of each ⇥k.

Previous understanding of WA’s success in OOD relied on this upper-bound, where E�

dS
(✓) involves

the solution’s flatness. This is usually empirically analyzed by the trace of the Hessian [89, 90, 91]:
indeed, with a second-order Taylor approximation around the local minima ✓ and h the Hessian’s
maximum eigenvalue, E�

dS
(✓) ⇡ EdS (✓) + h⇥ �2.

In the following subsections, we show that this inequality does not fully explain the exceptional
performance of WA on DomainBed [12]. Moreover, we illustrate that our bias-variance-covariance-
locality addresses these limitations.

B.1 Flatness does not act on distribution shifts

The flatness-based analysis is not specific to OOD. Indeed, the upper-bound in Equation (5) sums
up two noninteracting terms: a domain divergence Div(pS , pT ) that grows in OOD and E�

dS
(✓) that

measures the IID flatness. The flatness term can indeed be reduced empirically with WA: yet, it does
not tackle the domain gap. In fact, Equation (5) states that additional flatness reduces the upper bound
of the error similarly no matter the strength of the distribution shift, thus as well OOD than IID. In
contrast, our analysis shows that variance (which grows with diversity shift, see Section 2.4.2) is
tackled for large M : our error is controlled even under large diversity shift. This is consistent with
our experiments in Table 1. Our analysis also explains why WA cannot tackle correlation shift (where
bias dominates, see Appendix H), a limitation [14] does not illustrate.

B.2 SAM leads to flatter minimas but worse OOD performance

The flatness-based analysis does not explain why WA outperforms other flatness-based methods in
OOD. We consider Sharpness-Aware Minimizer (SAM) [30], another popular method to find flat
minima based on minimax optimization: it minimizes the maximum loss around a neighborhood of
the current weights ✓. In Figure 6, we compare the flatness (i.e., the Hessian trace computed with the
package in [91]) and accuracy of ERM, MA [29] (a WA strategy) and SAM [30] when trained on
the “Clipart”, “Product” and “Photo” domains from OfficeHome [50]: they are tested OOD on the
fourth domain “Art”. Analyzing the second and the third rows of Figures 6a and 6b, we observe that
SAM indeed finds flat minimas (at least comparable to MA), both in training (IID) and test (OOD).
However, this is not reflected in the OOD accuracies in Figure 6c, where MA outperforms SAM. As
reported in Table 3, similar experiments across more datasets lead to the same conclusions in [14]. In
conclusion, flatness is not sufficient to explain why WA works so well in OOD, because SAM has
similar flatness but worse OOD results. In contrast, we highlight in this paper that WA succeeds in
OOD by reducing the impact of variance thanks to its similarity with prediction ensembling [15] (see
Lemma 1), a privileged link that SAM does not benefit from.

Table 3: Accuracy (") on DomainBed for SWAD, taken from Table 4 in [14]
PACS VLCS OfficeHome TerraInc DomainNet Avg. ( �)

ERM 85.5 ± 0.2 77.5 ± 0.4 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
SWAD [14] + ERM 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9(+3.6)

SAM [30] 85.8 ± 0.2 79.4 ± 0.1 69.6 ± 0.1 43.3 ± 0.7 44.3 ± 0.0 64.5
SWAD [14] + SAM [30] 87.1 ± 0.2 78.5 ± 0.2 69.9 ± 0.1 45.3 ± 0.9 46.5 ± 0.1 65.5(+1.0)
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(a) Hessian trace (#) in train. (b) Hessian trace (#) in test OOD. (c) Accuracy (") in test OOD.

Figure 6: MA [29] (a WA strategy) and SAM [30] similarly improve flatness. When combined, they
further improve flatness. Yet, MA outperforms SAM and beats MA + SAM in OOD accuracy on
domain “Art” from OfficeHome.

Table 4: Accuracy (") impact of including SAM on domain “Art” from OfficeHome.
Algorithm Weight selection ERM SAM [30]

No DiWA N/A 62.9 ± 1.3 63.5 ± 0.5
DiWA Restricted: M  20 66.7 ± 0.1 65.4 ± 0.1
DiWA Uniform: M = 20 67.3 ± 0.3 66.7 ± 0.2
DiWA† Uniform: M = 60 67.7 67.4

B.3 WA and SAM are not complementary in OOD when variance dominates

Figure 7: Prediction diversity in
ratio-error [46] (") on domain
“Art” from OfficeHome. Check-
points along a SAM run are less
diverse than along an ERM run.

We investigate a similar inconsistency when combining these
two flatness-based methods. As argued in [31], we confirm in
Figures 6a and 6b that MA + SAM leads to flatter minimas than
MA alone (i.e., with ERM) or SAM alone. Yet, MA does not
benefit from SAM in Figure 6c. [14] showed an even stronger
result in Table 3: SWAD + ERM performs better than SWAD
+ SAM. We recover similar findings in Table 4: DiWA performs
worse when SAM is applied in each training run.

This behavior is not explained by Theorem 1, which states that
more flatness should improve OOD generalization. Yet it is
explained by our diversity-based analysis. Indeed, we observe
in Figure 7 that the diversity across two checkpoints along a
SAM trajectory is much lower than along a standard ERM trajec-
tory (with SGD). We speculate that this is related to the recent
empirical observation made in [92]: “the rank of the CLIP repre-
sentation space is drastically reduced when training CLIP with
SAM”. Under diversity shift, variance dominates (see Equa-
tion (4)): in this setup, the gain in accuracy of models trained
with SAM cannot compensate the decrease in diversity. This ex-
plains why WA and SAM are not complementary under diversity
shift: in this case, variance is large.
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C Proof

C.1 WA loss derivation

Lemma (1). Given {✓m}M
m=1 with learning procedures LM

S
, {l(m)

S
}M
m=1. Denoting �L

M
S

=

maxM
m=1k✓m � ✓WAk2, 8(x, y) 2 X ⇥ Y:

fWA(x) = fENS(x) +O(�2
L

M
S
) and `(fWA(x), y) = `(fENS(x), y) +O(�2

L
M
S
).

Proof. This proof has two components:

• to establish the functional approximation, as [13], it performs Taylor expansion of the
models’ predictions at the first order.

• to establish the loss approximation, as [28], it performs Taylor expansion of the loss at the
first order.

Functional approximation With a Taylor expansion at the first order of the models’ predictions
w.r.t. parameters ✓:

f✓m = fWA +rf|
WA�m +O

⇣
k�mk22

⌘

fENS � fWA =
1

M

MX

m=1

⇣
rf|

WA�m +O
⇣
k�mk22

⌘⌘

Therefore, because
P

M

m=1 �m = 0,

fENS � fWA = O
�
�2
�

where � =
M

max
m=1

k�mk2. (6)

Loss approximation With a Taylor expansion at the zeroth order of the loss w.r.t. its first input and
injecting Equation (6):

`(fENS(x); y) = `(fWA(x); y) +O(kfENS(x)� fWA(x)k2)
`(fENS(x); y) = `(fWA(x); y) +O

�
�2
�
.

C.2 Bias-variance-covariance-locality decomposition

Remark 1. Our result in Proposition 1 is simplified by leveraging the fact that the learning procedures
LM

S
= {l(m)

S
}M
m=1 are identically distributed (i.d.). This assumption naturally holds for DiWA which

selects weights from different runs with i.i.d. hyperparameters. It may be less obvious why it applies
to MA [29] and SWAD [14]. It is even false if the weights {✓(l(m)

S
)}M

m=1 are defined as being taken
sequentially along a training trajectory, i.e., when 0  i < j  M implies that l(i)

S
has fewer training

steps than l(j)
S

. We propose an alternative indexing strategy to respect the i.d. assumption. Given
M weights selected by the weight selection procedure, we draw without replacement the M weights,
i.e., ✓(l(i)

S
) refers to the ith sampled weights. With this procedure, all weights are i.d. as they are

uniformly sampled. Critically, their WA are unchanged for the two definitions.

Proposition (1). Denoting f̄S(x) = ElS [f(x, ✓(lS))], under identically distributed learning pro-
cedures LM

S
, {l(m)

S
}M
m=1, the expected generalization error on domain T of ✓WA(LM

S
) ,
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1
M

P
M

m=1 ✓m over the joint distribution of LM

S
is:

EL
M
S
ET (✓WA(L

M

S
)) = E(x,y)⇠pT

h
bias2(x, y) +

1

M
var(x) +

M � 1

M
cov(x)

i
+O(�̄2),

where bias(x, y) = y � f̄S(x),

and var(x) = ElS

h�
f(x, ✓(lS))� f̄S(x)

�2i
,

and cov(x) = ElS ,l
0
S

⇥�
f(x, ✓(lS))� f̄S(x)

��
f(x, ✓(l0

S
)))� f̄S(x)

�⇤
,

and �̄2 = EL
M
S
�2

L
M
S

with �L
M
S

=
M

max
m=1

k✓m � ✓WAk2.

(BVCL)

cov is the prediction covariance between two member models whose weights are averaged. The
locality term �̄2 is the expected squared maximum distance between weights and their average.

Proof. This proof has two components:

• it follows the bias-variance-covariance decomposition from [18, 35] for functional ensem-
bling. It is tailored to WA by assuming that learning procedures are identically distributed.

• it injects the obtained equation into Lemma 1 to obtain the Proposition 1 for WA.

BVC for ensembling with identically distributed learning procedures With f̄S(x) =
ElS [f(x, ✓(lS))], we recall the bias-variance decomposition [32] (Equation (BV)):

ElSET (✓(lS)) = E(x,y)⇠pT

h
bias(x, y)2 + var(x)

i
,

where bias(x, y) = Bias{f |(x, y)} = y � f̄S(x),

and var(x) = Var{f |x} = ElS

h�
f(x, ✓(lS))� f̄S(x)

�2i
.

Using fENS , fENS(·, {✓(l(m)
S

)}M
m=1) , 1

M

P
M

m=1 f(·, ✓(l
(m)
S

)) in this decomposition yields,

EL
M
S
ET ({✓(l(m)

S
)}M

m=1) = Ex⇠pT

h
Bias{fENS | (x, y)}2 +Var{fENS | x}

i
. (7)

As fENS depends on LM

S
, we extend the bias into:

Bias{fENS | (x, y)} = y � EL
M
S

"
1

M

MX

m=1

f(x, ✓(l(m)
S

))

#
= y � 1

M

MX

m=1

E
l
(m)
S

h
f(x, ✓(l(m)

S
))
i

Under identically distributed LM

S
, {l(m)

S
}M
m=1,

1

M

MX

m=1

E
l
(m)
S

h
y � f(x, ✓(l(m)

S
))
i
= ElS [y � f(x, ✓(lS))] = Bias{f |(x, y)}.

Thus the bias of ENS is the same as for a single member of the WA.

Regarding the variance:

Var{fENS | x} = EL
M
S

2

4
 

1

M

MX

m=1

f(x, ✓(l(m)
S

))� EL
M
S

"
1

M

MX

m=1

f(x, ✓(l(m)
S

))

#!2
3

5.
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Under identically distributed LM

S
, {l(m)

S
}M
m=1,

Var{fENS | x} =
1

M2

MX

m=1

ElS

h
(f(x, ✓(lS))� ElS [f(x, ✓(lS))])

2
i
+

1

M2

X

m

X

m0 6=m

ElS ,l
0
S

⇥
(f(x, ✓(lS))� ElS [f(x, ✓(lS))])

�
f(x, ✓(l0

S
))� El

0
S
[f(x, ✓(l0

S
))]
�⇤

=
1

M
ElS

h
(f(x, ✓(lS))� ElS [f(x, ✓(lS))])

2
i
+

M � 1

M
ElS ,l

0
S

⇥
(f(x, ✓(lS))� ElS [f(x, ✓(lS))])

�
f(x, ✓(l0

S
))� El

0
S
[f(x, ✓(l0

S
))]
�⇤

=
1

M
var(x) +

✓
1� 1

M

◆
cov(x).

The variance is split into the variance of a single member (divided by M ) and a covariance term.

Combination with Lemma 1 We recall that per Lemma 1,
`(fWA(x), y) = `(fENS(x), y) +O(�2

L
M
S
).

Then we have:
ET (✓WA(L

M

S
)) = E(x,y)⇠pT

[`(fWA(x), y)]

= E(x,y)⇠pT
[`(fENS(x), y)] +O(�2

L
M
S
) = ET ({✓(l(m)

S
)}M

m=1) +O(�2
L

M
S
),

EL
M
S
ET (✓WA(L

M

S
)) = EL

M
S
ET ({✓(l(m)

S
)}M

m=1) +O(EL
M
S
[�2

L
M
S
]).

We eventually obtain the result:

EL
M
S
ET (✓WA(L

M

S
)) = E(x,y)⇠pT

h
bias(x, y)2 +

1

M
var(x) +

M � 1

M
cov(x)

i
+O(�̄2).

C.3 Bias, correlation shift and support mismatch

We first present in Appendix C.3.1 a decomposition of the OOD bias without any assumptions. We
then justify in Appendix C.3.2 the simplifying Assumption 1 from Section 2.4.1.

C.3.1 OOD bias

Proposition 4 (OOD bias). Denoting f̄S(x) = ElS [f(x, ✓(lS))], the bias is:

E(x,y)⇠pT
[bias2(x, y)] =

Z

XT\XS

(fT (x)� fS(x))
2pT (x)dx (Correlation shift)

+

Z

XT\XS

�
fS(x)� f̄S(x)

�2
pT (x)dx (Weighted IID bias)

+

Z

XT\XS

2(fT (x)� fS(x))
�
fS(x)� f̄S(x)

�
pT (x)dx (Interaction IID bias and corr. shift)

+

Z

XT \XS

�
fT (x)� f̄S(x)

�2
pT (x)dx. (Support mismatch)

Proof. This proof is original and based on splitting the OOD bias in and out of XS :

E(x,y)⇠pT
[bias2(x, y)] = E(x,y)⇠pT

�
y � f̄S(x)

�2

=

Z

XT

�
fT (x)� f̄S(x)

�2
pT (x)dx

=

Z

XT\XS

�
fT (x)� f̄S(x)

�2
pT (x)dx+

Z

XT \XS

�
fT (x)� f̄S(x)

�2
pT (x)dx.
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To decompose the first term, we write 8x 2 XS , �f̄S(x) = �fS(x) +
�
fS(x)� f̄S(x)

�
.

Z

XT\XS

�
fT (x)� f̄S(x)

�2
pT (x)dx =

Z

XT\XS

�
(fT (x)� fS(x)) +

�
fS(x)� f̄S(x)

��2
pT (x)dx

=

Z

XT\XS

(fT (x)� fS(x))
2pT (x)dx+

Z

XT\XS

�
fS(x)� f̄S(x)

�2
pT (x)dx

+

Z

XT\XS

2(fT (x)� fS(x))
�
fS(x)� f̄S(x)

�
pT (x)dx.

The four terms can be qualitatively analyzed:

• The first term measures differences between train and test labelling function. By rewriting
8x 2 XT \ XS , fT (x) , EpT [Y |X = x] and fS(x) , EpS [Y |X = x], this term measures
whether conditional distributions differ. This recovers a similar expression to the correlation
shift formula from [19].

• The second term is exactly the IID bias, but weighted by the marginal distribution pT (X).

• The third term
R
XT\XS

2(fT (x)� fS(x))
�
fS(x)� f̄S(x)

�
pT (x)dx measures to what ex-

tent the IID bias compensates the correlation shift. It can be negative if (by chance) the IID
bias goes in opposite direction to the correlation shift.

• The last term measures support mismatch between test and train marginal distributions.
It lead to the “No free lunch for learning representations for DG” in [36]. The error is
irreducible because “outside of the source domain, the label distribution is unconstrained”:
“for any domain which gives some probability mass on an example that has not been seen
during training, then all [. . .] labels for that example” are possible.

C.3.2 Discussion of the small IID bias Assumption 1

Assumption 1 states that 9✏ > 0 small s.t. 8x 2 XS , |fS(x) � f̄S(x)| ✏ where f̄S(x) =
ElS [f(x, ✓(lS))]. f̄S is the expectation over the possible learning procedures lS = {dS , c}. Thus
Assumption 1 involves:

• the network architecture f which should be able to fit a given dataset dS . This is realistic
when the network is sufficiently parameterized, i.e., when the number of weights |✓| is large.

• the expected datasets dS which should be representative enough of the underlying domain
S; in particular the dataset size nS should be large.

• the sampled configurations c which should be well chosen: the network should be trained
for enough steps, with an adequate learning rate ...

For DiWA, this is realistic as it selects the weights with the highest training validation accuracy from
each run. For SWAD [14], this is also realistic thanks to their overfit-aware weight selection strategy.
In contrast, this assumption may not perfectlty hold for MA [29], which averages weights starting
from batch 100 until the end of training: indeed, 100 batches are not enough to fit the training dataset.

C.3.3 OOD bias when small IID bias

We now develop our equality under Assumption 1.
Proposition (2. OOD bias when small IID bias). With a bounded difference between the labeling
functions fT � fS on XT \ XS , under Assumption 1, the bias on domain T is:

E(x,y)⇠pT
[bias2(x, y)] = Correlation shift + Support mismatch +O(✏),

where Correlation shift =
Z

XT\XS

(fT (x)� fS(x))
2pT (x)dx,

and Support mismatch =

Z

XT \XS

�
fT (x)� f̄S(x)

�2
pT (x)dx.

(3)
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Proof. We simplify the second and third terms from Proposition 4 under Assumption 1.

The second term is
R
XT\XS

�
fS(x)� f̄S(x)

�2
pT (x)dx. Under Assumption 1, |fS(x)� f̄S(x)| ✏.

Thus the second term is O(✏2).

The third term is
R
XT\XS

2(fT (x)� fS(x))
�
fS(x)� f̄S(x)

�
pT (x)dx. As fT � fS is bounded on

XS \ XT , 9K � 0 such that 8x 2 XS ,

|(fT (x)� fS(x))
�
fS(x)� f̄S(x)

�
pT (x)| K

��fS(x)� f̄S(x)
��pT (x) = O(✏)pT (x).

Thus the third term is O(✏).

Finally, note that we cannot say anything about f̄S(x) when x 2 XT \ XS .

To prove the previous equality, we needed a bounded difference between labeling functions fT � fS
on XT \XS . We relax this bounded assumption to obtain an inequality in the following Proposition 5.

Proposition 5 (OOD bias when small IID bias without bounded difference between labeling func-
tions). Under Assumption 1,

E(x,y)⇠pT
[bias2(x, y)]  2⇥ Correlation shift + Support mismatch +O(✏2) (8)

Proof. We follow the same proof as in Proposition 4, except that we now use: (a+ b)2  2(a2 + b2).
Then,
Z

XT\XS

�
fT (x)� f̄S(x)

�2
pT (x)dx =

Z

XT\XS

�
(fT (x)� fS(x)) +

�
fS(x)� f̄S(x)

��2
pT (x)dx

 2⇥
Z

XT\XS

(fT (x)� fS(x))
2 +

�
fS(x)� f̄S(x)

�2
pT (x)dx

 2⇥
Z

XT\XS

(fT (x)� fS(x))
2pT (x)dx+ 2⇥

Z

XT\XS

✏2pT (x)dx

 2⇥
Z

XT\XS

(fT (x)� fS(x))
2pT (x)dx+O(✏2)

C.4 Variance and diversity shift

We prove the link between variance and diversity shift. Our proof builds upon the similarity between
NNs and GPs in the kernel regime, detailed in Appendix C.4.1. We discuss our simplifying Assump-
tion 3 in Appendix C.4.2. We present our final proof in Appendix C.4.3. We discuss the relation
between variance and initialization in Appendix C.4.4.

C.4.1 Neural Networks as Gaussian Processes

We fix dS , dT and denote XdS = {xS}(xS ,yS)2dS
, XdT = {xT }(xT ,yT )2dT

their respective input
supports. We fix the initialization of the network. lS encapsulates all other sources of randomness.

Lemma 2 (Inspired from [93]). Given a NN f(·, ✓(lS)) under Assumption 2, we denote K its neural
tangent kernel and K(XdS , XdS ) , (K(xS , x0

S
))xS ,x

0
S2X

2
dS

2 RnS⇥nS . Given x 2 X , we denote

K(x,XdS ) , [K(x, xS)]xS2XdS
2 RnS . Then:

var(x) = K(x, x)�K(x,XdS )K(XdS , XdS )
�1K(x,XdS )

|. (9)

Proof. Under Assumption 2, NNs are equivalent to GPs. var(x) is the formula of the variance of the
GP posterior given by Eq. (2.26) in [93], when conditioned on dS . This formula thus also applies to
the variance f(·, ✓(lS)) when lS varies (at fixed dS and initialization).
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Figure 8: Mean and variance of a Gaussian process’s prediction. Image from [94]. Intuitively,
variance grows when samples are distant from training samples.

C.4.2 Discussion of the same norm and low similarity Assumption 3 on source dataset

Lemma 2 shows that the variance only depends on the input distributions p(X) without involving
the label distributions p(Y |X). This formula highlights that the variance is related to shifts in input
similarities (measured by K) between XdS and XdT . Yet, a more refined analysis of the variance
requires additional assumptions, in particular to obtain a closed-form expression of K(XdS , XdS )

�1.
Assumption 3 is useful because then K(XdS , XdS ) is diagonally dominant and can be approximately
inverted (see Appendix C.4.3).

The first part of Assumption 3 assumes that 9�S such that all training inputs xS 2 XdS verify
K(xS , xS) = �S . Note that this equality is standard in some kernel machine algorithms [40, 41, 42]
and is usually achieved by replacing K(x, x0) by �S

K(x,x0)p
K(x,x)

p
K(x0,x0)

, 8(x, x0) 2 (XdS [XdT )
2.

In the NTK literature, this equality is achieved without changing the kernel by normalizing the
samples of XdS such that they lie on the hypersphere; this input preprocessing was used in [39].
This is theoretically based: for example, the NTK K(x, x0) for an architecture with an initial fully
connected layer only depends on kxk, kx0k, hx, x0i [95]. Thus in the case where all samples from
XdS are preprocessed to have the same norm, the value of K(xS , xS) does not depend on xS 2 XdS ;
we denote �S the corresponding value.

The second part of Assumption 3 states that 90  ✏ ⌧ �S , s.t. 8xS , x0
S

2 X2
dS
, xS 6= x0

S
)

|K(xS , x0
S
)| ✏, i.e., that training samples are dissimilar and do not interact. This diagonal structure

of the NTK [37], with diagonal values larger than non-diagonal ones, is consistent with empirical
observations from [44] at initialization. Theoretically, this is reasonable if K is close to the RBF kernel
Kh(x, x0) = exp(�kx� x0k22/h) where h would be the bandwidth: in this case, Assumption 3 is
satisfied when training inputs are distant in pixel space.

We now provide an analysis of the variance where the diagonal assumption is relaxed. Specifically,
we provide the sketch for proving an upper-bound of the variance when the NTK has a block-diagonal
structure. This is indeed closer to the empirical observations in [44] at the end of training, consistently
with the local elasticity property of NNs [43]. We then consider the dataset dS0 ⇢ dS made of
one sample per block, to which Assumption 3 applies. As decreasing the size of a training dataset
empirically reduces variance [96], the variance of f trained on dS is upper-bounded by the variance
of f trained on dS0 ; the latter is given by applying Proposition 3 to dS0 . We believe that the proper
formulation of this idea is beyond the scope of this article and best left for future theoretical work.

C.4.3 Expression of OOD variance

Proposition (3). Given f trained on source dataset dS (of size nS) with NTK K, under Assumptions 2
and 3, the variance on dataset dT is:

ExT2XdT
[var(xT )] =

nS

2�S

MMD2(XdS , XdT ) + �T � nS

2�S

�T +O(✏), (4)

with MMD the empirical Maximum Mean Discrepancy in the RKHS of K2(x, y) = (K(x, y))2;�T ,
ExT2XdT

K(xT , xT ) and �T , E(xT ,x
0
T )2X

2
dT

,xT 6=x
0
T
K2(xT , x0

T
) the empirical mean similarities

resp. measured between identical (w.r.t. K) and different (w.r.t. K2) samples averaged over XdT .
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Proof. Our proof is original and is based on the posterior form of GPs in Lemma 2. Given dS , we
recall Equation (9) that states 8x 2 X :

var(x) = K(x, x)�K(x,XdS )K(XdS , XdS )
�1K(x,XdS )

|.

Denoting B = K(XdS , XdS )
�1 with symmetric coefficients bi,j = bj,i, then

var(x) = K(x, x)�
X

1inS
1jnS

bi,jK(x, xi

S
)K(x, xj

S
). (10)

Assumption 3 states that K(XdS , XdS ) = A +H where A = �SInS and H = (hij)1inS
1jnS

with

hi,i = 0 and maxi,j |hi,j | ✏.

We fix xT 2 XdT and determine the form of B�1 in two cases: ✏ = 0 and ✏ 6= 0.

Case when ✏ = 0 We first derive a simplified result, when ✏ = 0.

Then, bi,i = 1
�S

and bi,j = 0 s.t.

var(xT ) = K(xT , xT )�
X

xS2XdS

K(xT , xS)2

�S

= K(x, x)� nS

�S

ExS2XdS
[K2(x, xS)]

We can then write:

ExT2XdT
[var(xT )] = ExT2XdT

[K(xT , xT )]�
nS

�S

ExT2XdT
[ExS2XdS

[K2(xT , xS)]]

ExT2XdT
[var(xT )] = �T � nS

�S

ExS2XdS
,xT2XdT

[K2(xT , xS)].

We now relate the second term on the r.h.s. to a MMD distance. As K is a kernel, K2 is a kernel and
its MMD between XdS and XdT is per [97]:

MMD2(XdS , XdT ) =ExS 6=x
0
S2X

2
dS
[K2(xS , x

0
S
)] + ExT 6=x

0
T2X

2
dT

[K2(xT , x
0
T
)]

� 2ExS2XdS
,xT2XdT

[K2(xT , xS)].

Finally, because ✏ = 0, ExS 6=x
0
S2X

2
dS
K2(xS , x0

S
) = 0 s.t.

ExT2XdT
[var(xT )] =

nS

2�S

MMD2(XdS , XdT ) + �T

� nS

2�S

⇣
ExT 6=x

0
T2X

2
dT

K2(xT , x
0
T
) + ExS 6=x

0
S2X

2
dS
K2(xS , x

0
S
)
⌘

=
nS

2�S

MMD2(XdS , XdT ) + �T � nS

2�S

ExT 6=x
0
T2X

2
dT

K2(xT , x
0
T
)

=
nS

2�S

MMD2(XdS , XdT ) + �T � nS

2�S

�T .

We recover the same expression with a O(✏) in the general setting where ✏ 6= 0.

Case when ✏ 6= 0 We denote I :

⇢
GLnS (R) ! GLnS (R)

A 7! A�1 the inversion function defined on

GLnS (R), the set of invertible matrices of MnS (R).
The function I is differentiable [98] in all A 2 GLnS (R) with its differentiate given by the linear

application dIA :

⇢
MnS (R) ! MnS (R)

H 7! �A�1HA�1 . Therefore, we can perform a Taylor expansion

of I at the first order at A:

I(A+H) = I(A) + dIA(H) + o(kHk),
(A+H)�1 = A�1 �A�1HA�1 + o(kHk).
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where kHk nS✏ = O(✏). Thus,

(�SInS +H)�1 = (�SInS )
�1 � (�SInS )

�1H(�SInS )
�1 +O(✏) =

1

�S

InS � 1

�2
S

H +O(✏),

8i 2 J1, nSK, bii =
1

�S

� 1

�2
S

hi,i + o(✏) =
1

�S

+O(✏),

8i 6= j 2 J1, nSK, bij = � 1

�2
S

hi,j + o(✏) = O(✏).

Therefore, when ✏ is small, Equation (10) can be developed into:

var(xT ) = K(xT , xT )�
X

xS2XdS

(
1

�S

+O(✏))K(xT , xS)
2 +O(✏)

= K(xT , xT )�
nS

�S

ExS2XdS
[K(xT , xS)

2] +O(✏)

Following the derivation for the case ✏ = 0, and remarking that under Assumption 3 we have
ExS 6=x

0
S2X

2
dS
K2(xS , x0

S
) = O(✏2), yields:

ExT2XdT
[var(xT )] =

nS

2�S

MMD2(XdS , XdT ) + �T � nS

2�S

�T +O(✏).

C.4.4 Variance and initialization

The MMD depends on the kernel K, i.e., only on the initialization of f in the kernel regime per
[37]. Thus, to reduce variance, we could act on the initialization to match pS(X) and pT (X) in the
RKHS of K2. This is consistent with Section 2.4.1 that motivated matching the train and test in
features. In our paper, we used the standard pretraining from ImageNet [48], as commonly done on
DomainBed [12]. The Linear Probing [49] initialization of the classifier was shown in [49] to prevent
the distortion of the features along the training. This could be improved by pretraining the encoder on
a task with fewer domain-specific information, e.g., CLIP [99] image-to-text translation as in [36].

C.5 WA vs. its members

We validate that WA’s expected error is smaller than its members’ error under the locality constraint.
Lemma 3 (WA vs. its members.).

EL
M
S
ET (✓WA(L

M

S
))�ElSET (✓(lS)) =

M � 1

M
Ex⇠pT [cov(x)�var(x)]+O(�̄2)  O(�̄2). (11)

Proof. The proof builds upon Equation (BVCL):

EL
M
S
ET (✓WA) = E(x,y)⇠pT

h
bias(x, y)2 +

1

M
var(x) +

M � 1

M
cov(x)

i
+O(�̄2),

and the expression of the standard bias-variance decomposition in Equation (BV) from [32],

ElSET (✓) = E(x,y)⇠pT

h
bias(x, y)2 + var(x)

i
.

The difference between the two provides:

EL
M
S
ET (✓WA)� ElSET (✓) =

M � 1

M
E(x,y)⇠pT

h
cov(x)� var(x)

i
+O(�̄2).

Cauchy Schwartz inequality states |cov(Y, Y 0)|
p

var(Y )var(Y 0), thus cov(x)  var(x). Then:

EL
M
S
ET (✓WA)� ElSET (✓)  O(�̄2).
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D Weight averaging versus functional ensembling

Figure 9: fWA performs similarly
or better than fENS on domain
“Art” on PACS.

We further compare the following two methods to combine M

weights {✓(l(m)
S

)}M
m=1: fWA that averages the weights and fENS

[15] that averages the predictions. We showed in Lemma 1 that
fWA ⇡ fENS when maxM

m=1k✓(l
(m)
S

)� ✓WAk2 is small.

In particular, when {l(m)
S

}M
m=1 share the same initialization and

the hyperparameters are sampled from mild ranges, we empir-
ically validate our approximation on OfficeHome in Figure 1.
This is confirmed on PACS dataset in Figure 9. For both datasets,
we even observe that fWA performs slightly but consistently bet-
ter than fENS. The observed improvement is non-trivial; we refer
to Equation 1 in [28] for some initial explanations based on the
value of OOD Hessian and the confidence of fWA. The complete
analysis of this second-order difference is left for future work.

Yet, we do not claim that fWA is systematically better than fENS. In Table 5, we show that this is
no longer the case when we relax our two constraints, consistently with Figure 5. First, when the
classifiers’ initializations vary, ENS improves thanks to this additional diversity; in contrast, DiWA
degrades because weights are no longer averageable. Second, when the hyperparameters are sampled
from extreme ranges (defined in Table 7), performance drops significantly for DiWA, but much less
for ENS. As a side note, the downward trend in this second setup (even for ENS) is due to inadequate
hyperparameters that degrade the expected individual performances.

This highlights a limitation of DiWA, which requires weights that satisfy the locality requirement or
are at least linearly connectable. In contrast, Deep Ensembles [15] are computationally expensive
(and even impractical for large M ), but can leverage additional sources of diversity. An interesting
extension of DiWA for future work would be to consider the functional ensembling of several DiWAs
trained from different initializations or even with different network architectures [100]. Thus the
Ensemble of Averages (EoA) strategy introduced in [29] is complementary to DiWA and could be
extended into an Ensemble of Diverse Averages.

Table 5: DiWA’s vs. ENS’s accuracy (%, ") on domain “Art” from OfficeHome when varying
initialization and hyperparameter ranges. Best on each setting is in bold.

Configuration M = 20 M = 60

Shared classifier init Mild hyperparameter ranges DiWA ENS DiWA ENS

3 3 67.3 ± 0.2 66.1 ± 0.1 67.7 66.5
7 3 65.0 ± 0.5 67.5 ± 0.3 65.9 68.5
3 7 56.6 ± 0.9 64.3 ± 0.4 59.5 64.7

E Additional diversity analysis

E.1 On OfficeHome

E.1.1 Feature diversity

In Section 4, our diversity-based theoretical findings were empirically validated using the ratio-
error [46], a common diversity measure notably used in [73, 72]. In Figure 10, we recover similar
conclusions with another diversity measure: the Centered Kernel Alignment Complement (CKAC)
[47], also used in [25, 26]. CKAC operates in the feature space and measures to what extent the
pairwise similarity matrices (computed on domain T ) are aligned — where similarity is the dot
product between penultimate representations extracted from two different networks.

E.1.2 Accuracy gain per unit of diversity

In Figures 2 and 10a, we indicated the slope of the linear regressions relating diversity to accuracy
gain at fixed M (between 2 and 9). For example, when M = 9 weights are averaged, the accuracy
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(a) Same as Figure 2. (b) Same as Figure 3. (c) Same as Figure 5.

Figure 10: Same analysis as Section 4, where diversity is measured with CKAC [47] in features
rather than with ratio-error [46] in predictions.

gain increases by 0.297 per unit of additional diversity in prediction [46] (see Figure 2) and by 0.179
per unit of additional diversity in features [47] (see Figure 10a). Most importantly, we note that
the slope increases with M . To make this more visible, we plot slopes w.r.t. M in Figure 11. Our
observations are consistent with the (M � 1)/M factor in front of cov(x) in Equation (BVCL).
This shows that diversity becomes more important for large M . Yet, large M is computationally
impractical in standard functional ensembling, as one forward step is required per model. In contrast,
WA has a fixed inference time which allows it to consider larger M . Increasing M from 20 to 60 is
the main reason why DiWA† improves DiWA.

Figure 11: The slopes of linear regression — relating diversity to accuracy gain in Figure 2 and
Figure 10a — increases with M .

E.1.3 Diversity comparison across a wide range of methods

Inspired by [21], we further analyze in Figure 12 the diversity between two weights obtained from
different (more or less correlated) learning procedures.

• In the upper part, weights are obtained from a single run. They share the same initializa-
tion/hyperparameters/data/noise in the optimization procedure and only differ by the number
of training steps (which we choose to be a multiple of 50). They are less diverse than the
weights in the middle part of Figure 12, that are sampled from two ERM runs.

• When sampled from different runs, the weights become even more diverse when they have
more extreme hyperparameter ranges, they do not share the same classifier initialization
or they are trained on different data. The first two are impractical for WA, as it breaks the
locality requirement (see Figures 5 and 10c). Luckily, the third setting “data diversity” is
more convenient and is another reason for the success of DiWA†; its 60 weights were trained
on 3 different data splits. Data diversity has provable benefits [101], e.g., in bagging [68].

• Finally, we observe that diversity is increased (notably in features) when two runs have dif-
ferent objectives, for example, Interdomain Mixup [56] and Coral [10]. Thus incorporating
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weights trained with different invariance-based objectives have two benefits that explain
the strong results in Table 2: (1) they learn invariant features by leveraging the domain
information and (2) they enrich the diversity of solutions by extracting different features.
These solutions can bring their own particularity to WA.

In conclusion, our analysis confirms that “model pairs that diverge more in training methodology
display categorically different generalization behavior, producing increasingly uncorrelated errors”,
as stated in [21].

(a) Prediction diversity [46]. (b) Feature diversity [47].

Figure 12: Diversity analysis across weights, which are per default trained with ERM, with a mild
hyperparameter range (see Table 7), with a shared random classifier initialization, on a given data split.
First, it confirms Figures 3 and 10b: weights obtained from two different runs are more different than
those sampled from a single run (even with extreme hyperparameters). Second, this shows that weights
from two runs are more diverse when the two runs have different hyperparameters/data/classifier
initializations/training objectives. Domain “Art” on OfficeHome.

E.1.4 Trade-off between diversity and averageability

We argue in Section 2.4.4 that our weights should ideally be diverse functionally while being
averageable (despite the nonlinearities in the network). We know from [25] that models fine-tuned
from a shared initialization with shared hyperparameters can be connected along a linear path
where error remains low; thus, they are averageable as their WA also has a low loss. In Figure 5,
we confirmed that averaging models from different initializations performs poorly. Regarding the
hyperparameters, Figure 5 shows that hyperparameters can be selected slightly different but not
too distant. That is why we chose mild hyperparameter ranges (defined in Table 7) in our main
experiments.

A complete analysis of when the averageability holds when varying the different hyperparameters
is a promising lead for future work. Still, Figure 13 is a preliminary investigation of the impact of
different learning rates (between learning procedures of each weight). First, we validate that more
distant learning rates lead to more functional diversity in Figure 13a. Yet, we observe in Figure 13b
that if learning rates are too different, weight averaging no longer approximates functional ensembling
because the O(�2

L
M
S
) term in Lemma 1 can be large.
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(a) Prediction diversity (") [46] between models. (b) Accuracy (") difference between DiWA and ENS.

Figure 13: Trade-off between diversity and averageability for various differences in learning
rates. Considering M = 2 weights obtained from two learning procedures with learning rates lr1
and lr2 (sampled from the extreme distribution in Table 7), we plot in Figure 13a the prediction
diversity for these M = 2 models vs. |lr1� lr2|. Then, in Figure 13b, we plot the accuracy differences
Acc(DiWA)�Acc(ENS) vs. |lr1 � lr2|.

E.2 On PACS

We perform in Figure 14 on domain “Art” from PACS the same core diversity-based experiments
than on OfficeHome in Section 4. We recover the same conclusions.

(a) Same as Figure 2. (b) Same as Figure 10a. (c) Same as Figure 11.

Figure 14: Same analysis on PACS as previously done on OfficeHome.

(a) Same as Figure 3. (b) Same as Figure 10b.
(c) Same as Figure 4.

Figure 15: Same analysis on PACS as previously done on OfficeHome.
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F Number of training runs

In our experiments, we train 20 independent training runs per data split. We selected this value as
20 is the standard number of hyperparameter trials in DomainBed [12]. In Figure 16 we ablate this
choice on the OOD domain “Art” of OfficeHome. We observe that a larger number of runs leads
to improved performance and reduced standard deviation. These results are consistent with our
theoretical analysis, as the variance is divided per M in Proposition 1. If reducing the training time is
critical, one could benefit from significant gains over ERM even with a smaller number of runs: for
example, 10 runs seem sufficient in this case. This analysis complements Figure 4 — where 60 runs
were launched then sorted in increasing validation accuracy.

Figure 16: Mean and standard deviation of DiWA-uniform’s accuracy (") on OfficeHome when in-
creasing the number of training runs and uniformly averaging all weights. OOD accuracy is computed
on domain “Art”, while IID accuracy is computed on validation data from the “Clipart”+“Prod-
uct”+“Photo” domains.

Moreover, in Table 6 we report DiWA’s results when considering only 5 runs, with uniform weight
selection. Interestingly, it shows that M = 5 is enough to be competitive against SWAD [14], the
previous state of the art.

Table 6: Accuracy (%, ") on DomainBed. DiWA-uniform and LP initialization [49].
Algorithm PACS VLCS OfficeHome TerraInc DomainNet Avg
SWAD [14] 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
DiWA: M = 5 87.9 ± 0.2 78.3 ± 0.3 71.5 ± 0.2 51.0 ± 0.7 46.9 ± 0.3 67.1
DiWA: M = 20 88.7 ± 0.2 78.4 ± 0.2 72.1 ± 0.2 51.4 ± 0.6 47.4 ± 0.2 67.6
DiWA†: M = 60 89.0 78.6 72.8 51.9 47.7 68.0

G DomainBed

G.1 Description of the DomainBed benchmark

We now further detail our experiments on the DomainBed benchmark [12].

Data. DomainBed includes several computer vision classification datasets divided into multiple
domains. Each domain is successively considered as the test domain while other domains are used in
training. In practice, the data from each domain is split into 80% (used as training and testing) and
20% (used as validation for hyperparameter selection) splits. This random process is repeated with 3
different seeds: the reported numbers are the means and the standard errors over these 3 seeds.

Training protocol. We follow the training protocol from https://github.com/
facebookresearch/DomainBed. For each dataset, domain and seed, we perform a ran-
dom search of 20 trials on the hyperparameter distributions described in Table 7. Our mild
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distribution is taken directly from [14], yet could be adapted by dataset for better results. Even
though these distributions are more restricted than the extreme distributions introduced [12],
our ERM runs perform better. It leads to a total amount of 2640 runs only for Table 1. In
Appendix B, the ⇢ hyperparameter for SAM is sampled from [0.001, 0.002, 0.005, 0.01, 0.02, 0.05].
In Table 2, hyperparameters specific to Interdomain Mixup [56] (“mixup_alpha”) and Coral [10]
(“mmd_gamma”) are sampled from the distributions defined in [12]. We use a ResNet50 [52]
pretrained on ImageNet, with a dropout layer before the newly added dense layer and fine-tuned with
frozen batch normalization layers. The optimizer is Adam [102]. Our classifier is either initialized
randomly or with Linear Probing [49]; in the latter case, we first learn only the classifier (with the
encoder frozen) with the default hyperparameters defined in Table 7; the classifier’s weights are then
used to initialize all subsequent runs. All runs are trained for 5k steps, except on DomainNet with
15k steps as done in concurrent works [14, 29]. As in [14], validation accuracy is calculated every 50
steps for VLCS, 500 steps for DomainNet and 100 steps for others.

Table 7: Hyperparameters, their default values and distributions for random search.

Hyperparameter Default value
Random distribution

Extreme Mild
(DomainBed [12]) (DiWA as [14])

Learning rate 5 · 10�5 10U(�5,�3.5) [1, 3, 5] · 10�5

Batch size 32 2U(3,5.5) 32
ResNet dropout 0 [0, 0.1, 0.5] [0, 0.1, 0.5]
Weight decay 0 10U(�6,�2) [10�6, 10�4]

Model selection and scores. We consider the training-domain validation set protocol. From each
run, we thus take the weights of the epoch with maximum accuracy on the validation dataset — which
follows the training distribution. Our restricted weight selection is also based on this training-domain
validation set. This strategy is not possible for DiWA† as it averages M = 20⇥3 weights trained with
different data splits: they do not share a common validation dataset. The scores for ERM and Coral
are taken from DomainBed [12]. Scores for SWAD [14] and MA [29] are taken from their respective
papers. Note that MA and SWAD perform similarly even though SWAD introduced three additional
hyperparameters tuned per dataset: “an optimum patient parameter, an overfitting patient parameter,
and the tolerance rate for searching the start iteration and the end iteration”. Thus we reproduced MA
[29] which was much easier to implement, and closer to our uniform weight selection.

G.2 DomainBed results detailed per domain for each real-world dataset

Tables below detail results per domain for the 5 multi-domain real-world datasets from DomainBed:
PACS [51], VLCS [53], OfficeHome [50], TerraIncognita [54] and DomainNet [55]. Critically, [19]
showed that diversity shift dominates in these datasets.
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Table 8: Accuracy (%, ") on PACS with ResNet50 (best in bold and second best underlined).
Algorithm Weight selection Init A C P S Avg
ERM N/A

Random

84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5 ± 0.2
Coral[10] N/A 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2 ± 0.3
SWAD [14] Overfit-aware 89.3 ± 0.5 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.8 88.1 ± 0.1
MA [29] Uniform 89.1 ± 0.1 82.6 ± 0.2 97.6 ± 0.0 80.5 ± 0.9 87.5 ± 0.2
DENS [15, 29] Uniform: M = 6 88.3 83.6 96.5 81.9 87.6

O
ur

ru
ns

ERM N/A

Random

87.6 ± 0.4 80.1 ± 1.5 97.7 ± 0.3 76.7 ± 1.2 85.5 ± 0.5
MA [29] Uniform 89.9 ± 0.1 83.3 ± 0.4 97.8 ± 0.2 80.6 ± 0.3 87.9 ± 0.1
ENS Uniform: M = 20 88.9 ± 0.4 82.3 ± 0.5 97.4 ± 0.3 83.2 ± 0.3 88.0 ± 0.1
DiWA Restricted: M  20 90.0 ± 0.3 82.0 ± 0.5 97.5 ± 0.1 82.0 ± 0.6 87.9 ± 0.2
DiWA Uniform: M = 20 90.1 ± 0.6 83.3 ± 0.6 98.2 ± 0.1 83.4 ± 0.4 88.8 ± 0.4
DiWA† Uniform: M = 60 90.5 83.7 98.2 83.8 89.0
ERM N/A

LP [49]

86.8 ± 0.8 80.6 ± 1.0 97.4 ± 0.4 78.7 ± 2.0 85.9 ± 0.6
MA [29] Uniform 89.5 ± 0.1 82.8 ± 0.2 97.8 ± 0.1 80.9 ± 1.3 87.8 ± 0.3
ENS Uniform: M = 20 89.6 ± 0.2 81.6 ± 0.3 97.8 ± 0.2 83.5 ± 0.5 88.1 ± 0.3
DiWA Restricted: M  20 89.3 ± 0.2 82.8 ± 0.2 98.0 ± 0.1 82.0 ± 0.9 88.0 ± 0.3
DiWA Uniform: M = 5 89.9 ± 0.5 82.3 ± 0.3 97.7 ± 0.4 81.7 ± 0.8 87.9 ± 0.2
DiWA Uniform: M = 20 90.1 ± 0.2 82.8 ± 0.6 98.3 ± 0.1 83.3 ± 0.4 88.7 ± 0.2
DiWA† Uniform: M = 60 90.6 83.4 98.2 83.8 89.0

Table 9: Accuracy (%, ") on VLCS with ResNet50 (best in bold and second best underlined).
Algorithm Weight selection Init C L S V Avg
ERM N/A

Random

97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5 ± 0.4
Coral[10] N/A 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8 ± 0.6
SWAD [14] Overfit-aware 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1 ± 0.1
MA [29] Uniform 99.0 ± 0.2 63.0 ± 0.2 74.5 ± 0.3 76.4 ± 1.1 78.2 ± 0.2
DENS [15, 29] Uniform: M = 6 98.7 64.5 72.1 78.9 78.5

O
ur

ru
ns

ERM N/A

Random

97.9 ± 0.5 64.2 ± 0.3 73.5 ± 0.5 74.9 ± 1.2 77.6 ± 0.2
MA [29] Uniform 98.5 ± 0.2 63.5 ± 0.2 74.4 ± 0.8 77.3 ± 0.3 78.4 ± 0.1
ENS Uniform: M = 20 98.6 ± 0.1 64.9 ± 0.2 73.5 ± 0.3 77.7 ± 0.3 78.7 ± 0.1
DiWA Restricted: M  20 98.3 ± 0.1 63.9 ± 0.2 75.6 ± 0.2 79.1 ± 0.3 79.2 ± 0.1
DiWA Uniform: M = 20 98.4 ± 0.1 63.4 ± 0.1 75.5 ± 0.3 78.9 ± 0.6 79.1 ± 0.2
DiWA† Uniform: M = 60 98.4 63.3 76.1 79.6 79.4
ERM N/A

LP [49]

98.1 ± 0.3 64.4 ± 0.3 72.5 ± 0.5 77.7 ± 1.3 78.1 ± 0.5
MA [29] Uniform 98.9 ± 0.0 62.9 ± 0.5 73.7 ± 0.3 78.7 ± 0.6 78.5 ± 0.4
ENS Uniform: M = 20 98.5 ± 0.1 64.9 ± 0.1 73.4 ± 0.4 77.2 ± 0.4 78.5 ± 0.1
DiWA Restricted: M  20 98.4 ± 0.0 64.1 ± 0.2 73.3 ± 0.4 78.1 ± 0.8 78.5 ± 0.1
DiWA Uniform: M = 5 98.8 ± 0.0 63.8 ± 0.5 72.9 ± 0.2 77.6 ± 0.5 78.3 ± 0.3
DiWA Uniform: M = 20 98.8 ± 0.1 62.8 ± 0.2 73.9 ± 0.3 78.3 ± 0.1 78.4 ± 0.2
DiWA† Uniform: M = 60 98.9 62.4 73.9 78.9 78.6

Table 10: Accuracy (%, ") on OfficeHome with ResNet50 (best in bold and second best underlined).
Algorithm Weight selection Init A C P R Avg
ERM N/A

Random

61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5 ± 0.3
Coral[10] N/A 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7 ± 0.3
SWAD [14] Overfit-aware 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6 ± 0.2
MA [29] Uniform 66.7 ± 0.5 57.1 ± 0.1 78.6 ± 0.1 80.0 ± 0.0 70.6 ± 0.1
DENS [15, 29] Uniform: M = 6 65.6 58.5 78.7 80.5 70.8

O
ur

ru
ns

ERM N/A

Random

62.9 ± 1.3 54.0 ± 0.2 75.7 ± 0.9 77.0 ± 0.8 67.4 ± 0.6
MA [29] Uniform 65.0 ± 0.2 57.9 ± 0.3 78.5 ± 0.1 79.7 ± 0.1 70.3 ± 0.1
ENS Uniform: M = 20 66.1 ± 0.1 57.0 ± 0.3 79.0 ± 0.2 80.0 ± 0.1 70.5 ± 0.1
DiWA Restricted: M  20 66.7 ± 0.1 57.0 ± 0.3 78.5 ± 0.3 79.9 ± 0.3 70.5 ± 0.1
DiWA Uniform: M = 20 67.3 ± 0.2 57.9 ± 0.2 79.0 ± 0.2 79.9 ± 0.1 71.0 ± 0.1
DiWA† Uniform: M = 60 67.7 58.8 79.4 80.5 71.6

ERM N/A

LP [49]

63.9 ± 1.2 54.8 ± 0.6 78.7 ± 0.1 80.4 ± 0.2 69.4 ± 0.2
MA [29] Uniform 67.4 ± 0.4 57.3 ± 0.9 79.7 ± 0.1 81.7 ± 0.6 71.5 ± 0.3
ENS Uniform: M = 20 67.0 ± 0.1 57.9 ± 0.4 80.0 ± 0.2 81.7 ± 0.3 71.7 ± 0.1
DiWA Restricted: M  20 67.8 ± 0.5 57.2 ± 0.5 79.6 ± 0.1 81.4 ± 0.4 71.5 ± 0.2
DiWA Uniform: M = 5 68.4 ± 0.4 57.4 ± 0.5 79.2 ± 0.2 80.9 ± 0.4 71.5 ± 0.3
DiWA Uniform: M = 20 68.4 ± 0.2 58.2 ± 0.5 80.0 ± 0.1 81.7 ± 0.3 72.1 ± 0.2
DiWA† Uniform: M = 60 69.2 59.0 80.6 82.2 72.8
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Table 11: Accuracy (%, ") on TerraIncognita with ResNet50 (best in bold and second best
underlined).

Algorithm Weight selection Init L100 L38 L43 L46 Avg
ERM N/A

Random

49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1 ± 1.8
Coral[10] N/A 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6 ± 1.0
SWAD [14] Overfit-aware 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0 ± 0.3
MA [29] Uniform 54.9 ± 0.4 45.5 ± 0.6 60.1 ± 1.5 40.5 ± 0.4 50.3 ± 0.5
DENS [15, 29] Uniform: M = 6 53.0 42.6 60.5 40.8 49.2

O
ur

ru
ns

ERM N/A

Random

56.3 ± 2.9 43.1 ± 1.6 57.1 ± 1.0 36.7 ± 0.7 48.3 ± 0.8
MA [29] Uniform 53.2 ± 0.4 46.3 ± 1.0 60.1 ± 0.6 40.2 ± 0.8 49.9 ± 0.2
ENS Uniform: M = 20 56.4 ± 1.5 45.3 ± 0.4 61.0 ± 0.3 41.4 ± 0.5 51.0 ± 0.5
DiWA Restricted: M  20 55.6 ± 1.5 47.5 ± 0.5 59.5 ± 0.5 39.4 ± 0.2 50.5 ± 0.5
DiWA Uniform: M = 20 52.2 ± 1.8 46.2 ± 0.4 59.2 ± 0.2 37.8 ± 0.6 48.9 ± 0.5
DiWA† Uniform: M = 60 52.7 46.3 59.0 37.7 49.0

ERM N/A

LP [49]

59.9 ± 4.2 46.9 ± 0.9 54.6 ± 0.3 40.1 ± 2.2 50.4 ± 1.8
MA [29] Uniform 54.6 ± 1.4 48.6 ± 0.4 59.9 ± 0.7 42.7 ± 0.8 51.4 ± 0.6
ENS Uniform: M = 20 55.6 ± 1.4 45.4 ± 0.4 61.0 ± 0.4 41.3 ± 0.3 50.8 ± 0.5
DiWA Restricted: M  20 58.5 ± 2.2 48.2 ± 0.3 58.5 ± 0.3 41.1 ± 1.2 51.6 ± 0.9
DiWA Uniform: M = 5 56.0 ± 2.5 48.9 ± 0.8 58.4 ± 0.2 40.6 ± 0.8 51.0 ± 0.7
DiWA Uniform: M = 20 56.3 ± 1.9 49.4 ± 0.7 59.9 ± 0.4 39.8 ± 0.5 51.4 ± 0.6
DiWA† Uniform: M = 60 57.2 50.1 60.3 39.8 51.9

Table 12: Accuracy (%, ") on DomainNet with ResNet50 (best in bold and second best underlined).
Algorithm Weight selection Init clip info paint quick real sketch Avg
ERM N/A

Random

58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9 ± 0.1
Coral[10] N/A 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5 ± 0.1
SWAD [14] Overfit-aware 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5 ± 0.1
MA [29] Uniform 64.4 ± 0.3 22.4 ± 0.2 53.4 ± 0.3 15.4 ± 0.1 64.7 ± 0.2 55.5 ± 0.1 46.0 ± 0.1
DENS [15, 29] Uniform: M = 6 68.3 23.1 54.5 16.3 66.9 57.0 47.7

O
ur

ru
ns

ERM N/A

Random

62.6 ± 0.4 21.6 ± 0.3 50.4 ± 0.1 13.8 ± 0.2 63.6 ± 0.4 52.5 ± 0.4 44.1 ± 0.1
MA [29] Uniform 64.5 ± 0.2 22.7 ± 0.1 53.8 ± 0.1 15.6 ± 0.1 66.0 ± 0.1 55.7 ± 0.1 46.4 ± 0.1
ENS Uniform: M = 20 67.3 ± 0.4 22.9 ± 0.1 54.2 ± 0.2 15.5 ± 0.2 67.7 ± 0.2 56.7 ± 0.2 47.4 ± 0.2
DiWA Restricted: M  20 65.2 ± 0.3 23.0 ± 0.3 54.0 ± 0.1 15.9 ± 0.1 66.2 ± 0.1 55.5 ± 0.1 46.7 ± 0.1
DiWA Uniform: M = 20 63.4 ± 0.2 23.1 ± 0.1 53.9 ± 0.2 15.4 ± 0.2 65.5 ± 0.2 55.1 ± 0.2 46.1 ± 0.1
DiWA† Uniform: M = 60 63.5 23.3 54.3 15.6 65.7 55.3 46.3

ERM N/A

LP [49]

63.4 ± 0.2 21.1 ± 0.4 50.7 ± 0.3 13.5 ± 0.4 64.8 ± 0.4 52.4 ± 0.1 44.3 ± 0.2
MA [29] Uniform 64.8 ± 0.1 22.3 ± 0.0 54.2 ± 0.1 16.0 ± 0.1 67.4 ± 0.0 55.2 ± 0.1 46.6 ± 0.0
ENS Uniform: M = 20 66.7 ± 0.4 22.2 ± 0.1 54.1 ± 0.2 15.1 ± 0.2 68.4 ± 0.1 55.7 ± 0.2 47.0 ± 0.2
DiWA Restricted: M  20 66.7 ± 0.2 23.3 ± 0.2 55.3 ± 0.1 16.3 ± 0.2 68.2 ± 0.0 56.2 ± 0.1 47.7 ± 0.1
DiWA Uniform: M = 5 65.7 ± 0.5 22.6 ± 0.2 54.4 ± 0.4 15.5 ± 0.5 67.7 ± 0.0 55.5 ± 0.4 46.9 ± 0.3
DiWA Uniform: M = 20 65.9 ± 0.4 23.0 ± 0.2 55.0 ± 0.3 16.1 ± 0.2 68.4 ± 0.1 55.7 ± 0.4 47.4 ± 0.2
DiWA† Uniform: M = 60 66.2 23.3 55.4 16.5 68.7 56.0 47.7
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H Failure of WA under correlation shift on ColoredMNIST

Based on Equation (BVCL), we explained that WA is efficient when variance dominates; we showed
in Section 2.4.2 that this occurs under diversity shift. This is confirmed by our state-of-the-art results
in Table 1 and Appendix G.2 on PACS, OfficeHome, VLCS, TerraIncognita and DomainNet. In
contrast, we argue that WA is inefficient when bias dominates, i.e., in the presence of correlation shift
(see Section 2.4.1). We verify this failure on the ColoredMNIST [8] dataset, which is dominated by
correlation shift [55].

Colored MNIST is a colored variant of the MNIST handwritten digit classification dataset [103]
where the correlation strengths between color and label vary across domains. We follow the protocol
described in Appendix G.1 except that (1) we used the convolutional neural network architecture
introduced in DomainBed [12] for MNIST experiments and (2) we used the test-domain model
selection in addition to the train-domain model selection. Indeed, as stated in [19], “it may be
improper to apply training-domain validation to datasets dominated by correlation shift since under the
influence of spurious correlations, achieving excessively high accuracy in the training environments
often leads to low accuracy in novel test environments”.

In Tables 13 and 14, we observe that DiWA-uniform and MA both perform poorly compared to ERM.
Note that DiWA-restricted does not degrade ERM as it selects only a few models for averaging (low
M ). This confirms that our approach is useful to tackle diversity shift but not correlation shift, for
which invariance-based approaches as IRM [8] or Fishr [11] remain state-of-the-art.

Table 13: Accuracy (%, ") on ColoredMNIST. WA does not improve performance under correlation
shift. Random initialization of the classifier. Training-domain model selection.

Algorithm Weight selection +90% +80% -90% Avg
ERM N/A 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5 ± 0.1
Coral [10] N/A 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5 ± 0.1
IRM [8] N/A 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0 ± 0.1
Fishr [11] N/A 72.3 ± 0.9 73.5 ± 0.2 10.1 ± 0.2 52.0 ± 0.2

O
ur

ru
ns

ERM N/A 71.5 ± 0.4 73.3 ± 0.2 10.3 ± 0.2 51.7 ± 0.2
MA [29] Uniform 68.9 ± 0.0 71.8 ± 0.1 10.0 ± 0.1 50.3 ± 0.0
ENS Uniform: M = 20 71.0 ± 0.2 72.9 ± 0.2 9.9 ± 0.0 51.3 ± 0.1
DiWA Restricted: M  20 71.3 ± 0.2 72.9 ± 0.1 10.0 ± 0.1 51.4 ± 0.1
DiWA Uniform: M = 20 69.1 ± 0.8 72.6 ± 0.4 10.6 ± 0.1 50.8 ± 0.4
DiWA† Uniform: M = 60 69.3 72.3 10.3 50.6

Table 14: Accuracy (%, ") on ColoredMNIST. WA does not improve performance under correlation
shift. Random initialization of the classifier. Test-domain model selection.

Algorithm Weight selection +90% +80% -90% Avg
ERM N/A 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8 ± 0.2
Coral [10] N/A 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6 ± 0.5
IRM [8] N/A 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7 ± 1.2
Fishr [11] N/A 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8 ± 1.4

O
ur

ru
ns

ERM N/A 71.5 ± 0.3 74.1 ± 0.4 21.5 ± 1.9 55.7 ± 0.4
MA [29] Uniform 68.8 ± 0.2 72.1 ± 0.2 10.2 ± 0.0 50.4 ± 0.1
ENS Uniform: M = 20 71.0 ± 0.2 72.9 ± 0.2 9.9 ± 0.0 51.3 ± 0.1
DiWA Restricted: M  20 71.9 ± 0.4 73.6 ± 0.2 21.5 ± 1.9 55.7 ± 0.8
DiWA Uniform: M = 20 69.1 ± 0.8 72.6 ± 0.4 10.6 ± 0.1 50.8 ± 0.4
DiWA† Uniform: M = 60 69.3 72.3 10.3 50.6

I Last layer retraining when some target data is available

The traditional OOD generalization setup does not provide access to target samples (labelled or
unlabelled). The goal is to learn a model able to generalize to any kind of distributions. This is
arguably the most challenging generalization setup: under these strict conditions, we showed that
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DiWA outperforms other approaches on DomainBed. Yet, in real-world applications, some target
data is often available for training; moreover, last layer retraining on these target samples was shown
highly efficient in [86, 104]. The complete analysis of DiWA for this new scenario should be properly
addressed in future work; yet, we now hint that a DiWA strategy could be helpful.

Specifically, in Table 15, we consider that after a first training phase on the “Clipart”, “Product” and
“Photo” domains, we eventually have access to some samples from the target “Art” domain (20% or
80% of the whole domain). Following [86], we re-train only the last layer of the network on these
samples before testing. We observe improved performance when the (frozen) feature extractor was
obtained via DiWA (from the first stage) rather than from ERM. It suggests that features extracted by
DiWA are more adapted to last layer retraining/generalization than those of ERM. In conclusion, we
believe our DiWA strategy has great potential for many real-world applications, whether some target
data is available for training or not.

Table 15: Accuracy (") on domain “Art” from OfficeHome when some target samples are available
for last layer retraining (LLR) [86]. The feature extractor is either pre-trained only on ImageNet (7),
fine-tuned on the source domains “Clipart”, “Product” and “Photo” (ERM), or obtained by averaging
multiple runs on these source domains (DiWA-uniform M = 20).

Training on source domains LLR on target domain (% domain in training)
7(0%) X(20%) X(80%)

7 - 61.2 ± 0.6 74.4 ± 1.2
ERM 62.9 ± 1.3 68.0 ± 0.7 74.7 ± 0.6
DiWA 67.3 ± 0.3 70.4 ± 0.1 78.1 ± 0.6
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