
A Proofs

A.1 Proof of theorem 1

W œ SW is the weight matrix of a graph with R connected components {C1, ..., CR}

partitioning [n]. Since k is upper bounded by a constant, there exists M+ > 1 that upper
bounds k. Let T be the adjacency matrix of a spanning forest of W , since each edge of W
is bounded by n, one has:⁄

fk(X,W )⁄SC
(dX) =

⁄ Ÿ

(i,j)œ[n]2

k(Xi ≠ Xj)Wij ⁄SC
(dX)

Æ M
n3

+

⁄ Ÿ

(i,j)œ[n]2

k(Xi ≠ Xj)Tij ⁄SC
(dX)

Æ M
n3

+
Ÿ

rœ[R]

⁄ Ÿ

(i,j)œC2
r

k(Xi ≠ Xj)Tij ⁄SC
(dX) . (10)

Let r œ [R]. The spanning tree corresponding to the r
th connected component called T r has

exactly nr ≠ 1 edges. There exists a leaf node ¸ œ [n] of T r and let ˜̧ be the node linked to it.
Consider a bijective map ‡ : Cr\{¸} æ [nr ≠ 1] such that ‡(˜̧) = 1 and for (i, j) œ (Cr\{¸})2,
‡(i) Æ ‡(j) implies that node i has a shorter path on T r1 to ¸ than node j. There exists a
bijective map e : [2 : nr ≠ 1] æ [nr ≠ 2] such that for i œ [2 : nR ≠ 1], T r

‡≠1(i),‡≠1(e(i)) > 0
and node ‡

≠1(e(i)) has a shorter path on T r to node ¸ than node ‡
≠1(i). Recall that since

X œ SC one has:
q

iœCr
Xi = 0 hence X¸ = ≠

q
i ”=¸ Xi. Let us now consider the linear

map „
r such that:

’i œ [nr ≠ 1], „
r(Xi) =

;
X‡≠1(i) +

q
jœ[nr≠1] X‡≠1(j) if i = 1

X‡≠1(i) ≠ X‡≠1(e(i)) otherwise .

We now show that the change of variable „
r is a C

1 di�eomorphism by proving that its
Jacobian has full rank. Ordering the columns with the map ‡, the latter takes the form:

J„r =

Q

ccccca

2 1 1 . . . 1
1 0 . . . 0

. . . . . .
...

A
. . . 0

1

R

dddddb

where A is a strictly lower triangular matrix such that for all i œ [2 : nr ≠ 1], Aie(i) = ≠1
and for all t ”= e(i), Ait = 0. The above can be factorized as:

J„r =

Q

ccccca

–nr≠1 –nr≠2 . . . –2 –1
0 1 0 . . . 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 . . . . . . 0 1

R

dddddb

≠1 Q

cccccca

1 0 . . . . . . 0

1
. . .

...
. . . . . .

...

A
. . . 0

1

R

ddddddb

where –1 = ≠1 and for ¸ > 1, –¸ =
q

j<l –j11e(nr≠j)=nr≠¸ ≠ 1. With this in place, for
i œ [nr ≠1], –i ”= 0 in particular –nr≠1 ”= 0 therefore |J„r | ”= 0 and „

r is a C
1 di�eomorphism.

This change of variable yields:⁄ Ÿ

(i,j)œC2
r

k(Xi ≠ Xj)Tij ⁄SC
(dX) =

⁄ p

iœ[nr≠1]
k(Yi)|J„r (Y )|≠1

⁄Rp(dY )

= |J„r |
≠1

Ÿ

iœ[nr≠1]

⁄
k(Yi)⁄Rp(dYi)

1Symmetrized version i.e. T r = T r + (T r)€.
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using the Fubini Tonelli theorem. The result follows from ⁄Rp-integrability of k and upper
bound 10.

A.2 Proof of proposition 1

Let P œ {B, D, E}, k be a valid kernel (assumptions of theorem 1) with KX = (k(Xi ≠

Xj))(i,j)œ[n]2 and ⇡ œ Rn◊n
+ . Let W ≥ PÁ

P,k(· ;⇡, 1). Inversion of conditional with Bayes rule
gives:

’W œ SW , P(W |X) Ã C
Á
k(W )≠1

f
Á(X,W )fk(X,W )PÁ

P,k(W ;⇡, 1) (11)
where the prior reads:

PÁ
P,k(W ;⇡, 1) Ã C

Á
k(W )�P(W )

Ÿ

(i,j)œ[n]2

fi
Wij

ij . (12)

Hence the joint normalizing constant simplifies such that:

’W œ SW , P(W |X) Ã f
Á(X,W )�P(W )

Ÿ

(i,j)œ[n]2

(fiijk(Xi ≠ Xj))Wij (13)

≠≠≠æ
Áæ0

�P(W )
Ÿ

(i,j)œ[n]2

(fiijk(Xi ≠ Xj))Wij (14)

which ends the proof. As a complement, we now explicit the simple forms taken by the
posterior limit graph in each case.

B-Prior Recall that in this case the prior reads:

PÁ
B(W ;⇡, 1) Ã C

Á
k(W )

Ÿ

(i,j)œ[n]2

fi
Wij

ij 11WijÆ1 .

Therefore the posterior limit graph has the distribution:

PB(W ;⇡ § KX) =
r

(i,j)œ[n]2 (fiijk(Xi ≠ Xj))Wij 11WijÆ1
q

WœSW

r
(i,j)œ[n]2 (fiijk(Xi ≠ Xj))Wij 11WijÆ1

=
Ÿ

(i,j)œ[n]2

3
fiijk(Xi ≠ Xj)

1 + fiijk(Xi ≠ Xj)

4Wij
3

1
1 + fiijk(Xi ≠ Xj)

41≠Wij

11WijÆ1 .

This distribution amounts to: ’(i, j) œ [n]2, Wij
‹‹
≥ B

1
fiijk(Xi≠Xj)

1+fiijk(Xi≠Xj)

2
.

D-Prior The prior writes:

PÁ
D(W ;⇡, 1) Ã C

Á
k(W )

Ÿ

(i,j)œ[n]2

fi
Wij

ij 11Wi+=1 .

The distribution of the posterior limit then becomes:

PD(W ;⇡ § KX) =
r

(i,j)œ[n]2 (fiijk(Xi ≠ Xj))Wij 11Wi+=1
q

WœSW

r
(i,j)œ[n]2 (fiijk(Xi ≠ Xj))Wij 11Wi+=1

=
r

(i,j)œ[n]2 (fiijk(Xi ≠ Xj))Wij 11Wi+=1r
iœ[n]

q
¸œ[n] fii¸k(Xi ≠ X¸)

=
Ÿ

(i,j)œ[n]2

A
fiijk(Xi ≠ Xj)q

¸œ[n] fii¸k(Xi ≠ X¸)

BWij

11Wi+=1 .

This distribution amounts to: ’i œ [n], Wi
‹‹
≥ M

A
1,

3
fiijk(Xi≠Xj)q

¸œ[n]
fii¸k(Xi≠X¸)

4

jœ[n]

B
.
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E-Prior In this case the prior reads:

PÁ
E(W ;⇡, 1) Ã C

Á
k(W )

Ÿ

(i,j)œ[n]2

fi
Wij

ij

Wij ! 11W++=n .

Finally, deriving the distribution of the posterior graph limit:

PE(W ;⇡ § KX) =
r

(i,j)œ[n]2(Wij !)≠1 (fiijk(Xi ≠ Xj))Wij 11W++=n
q

WœSW

r
(i,j)œ[n]2(Wij !)≠1 (fiijk(Xi ≠ Xj))Wij 11W++=n

= n!
Ÿ

(i,j)œ[n]2

(Wij)≠1

A
fiijk(Xi ≠ Xj)q

(¸,t)œ[n]2 fi¸tk(X¸ ≠ Xt)

BWij

11W++=n .

This distribution amounts to: W ≥ M

A
n,

3
fiijk(Xi≠Xj)q

(¸,t)œ[n]2
fi¸tk(X¸≠Xt)

4

(i,j)œ[n]2

B
.

A.3 Proof of theorem 2

We consider the following hierarchical model, for ‹X , ‹Z Ø n:

⇥X ≥ W(‹X , In)
vec(X)|⇥X ≥ N (0,⇥≠1

X ¢ Ip)
⇥Z ≥ W(‹Z , In)

vec(Z)|⇥Z ≥ N (0,⇥≠1
Z ¢ Iq) .

With this at hand, the posteriors for ⇥X and ⇥Z can be derived in closed form:

⇥X |X ≥ W(‹X + p,
!
In + XX€

"≠1)

⇥Z |Z ≥ W(‹Z + q,
!
In + ZZ€

"≠1) .

Keeping terms of ≠E⇥X [logP(⇥Z = ⇥X |Z)|X] that depends on Z, one has the optimization
problem:

min
ZœRn◊q

‹X + p

2 tr
!
Z€(In + XX€)≠1Z

"
≠

‹Z + q

2 log |In + ZZ€
|

Our strategy is to first find the optimal sample covariance matrix ZZ€ and then focus on
the solution in Z. To that extend, consider the eigendecomposition of the sample covariance
matrices: XX€ = V DV € and ZZ€ = U⇤U€ where D = diag(d) and ⇤ = diag(�) such
that d1 Ø ... Ø dn and ⁄1 Ø ... Ø ⁄n. Denoting “ = (‹X + q)/(‹Z + p), we consider the
following problem:

min
UœO(n),⇤

tr
!
U⇤U€V (In + D)≠1V €

"
≠ “ log |In + ⇤| (15)

s.t. ⇤ < 0 (16)
rank(⇤) Æ q (17)

The above problem is non-convex because of the rank constraint (17). Nonetheless it can be
simplified as we now show.
We focus on finding the optimal eigenvectors first. To that extent, let us denote, R = U€V .
Only the left term in (18) depends on R. The optimization problem for eigenvectors writes:

min
RœO(n)

tr
!
R€⇤R(In + D)≠1"

(18)

The objective (18) can be expressed as:
q

(i,j)œ[n]2 ⁄i(1 + dj)≠1
R

2
ij . Now one can notice that

since R is orthogonal, R § R is doubly stochastic (i.e. sum of coe�cients on each row and
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column is equal to one). Therefore thanks to the Birkho�–von Neumann theorem, there
exists ◊1, ..., ◊L Ø 0,

q
¸œ[L] ◊¸ = 1 and permutation matrices P1, ...,PL such that:

R § R =
ÿ

¸œ[L]
◊¸P¸

where for all ¸ œ [L], there exists a permutation ‡¸ of [n] such that P¸,ij = 11‡¸(i)=j for
(i, j) œ [n]2.
With this at hand, objective (18) writes:

q
¸œ[L] ◊¸

q
iœ[n] ⁄i(1 + d‡¸(i))≠1. There exists a

permutation ‡
ı such that the quantity

q
iœ[n] ⁄i(1 + d‡¸(i))≠1 is minimal. Note that the

identity permutation i.e. for i œ [n], ‡(i) = i is optimal in this case as the (⁄i)iœ[n] and the
(di)iœ[n] are in decreasing order. Then choosing for ¸ œ [L], ◊¸ =‡¸=‡ı minimizes the latter
quantity. Therefore the solution of (18) Rı is such that for (i, j) œ [n]2, R

ı
ij = ±11‡ı(i)=j .

Thus an optimum in U of 18 is such that Uı = V Rı.
Hence U = V , in particular, is optimal. We will choose this U in what follows as the sign of
the axes do not influence the characterization of the final result in Z as a PCA embedding.
Such a choice gives ZZ€ = V ⇤V €.
Now it remains to find the optimal eigenvalues (⁄i)iœ[n]. The rank constraint (17) can be
easily dealt with: since the eigenvalues are sorted in decreasing order, the constraint implies
that for i Ø q, ⁄i = 0. Thus the eigenvalue problem can be formulated in Rq:

min
�œRq

�€(1 + d)≠1
≠ “1€ log(1 + �) (19)

s.t. ’i œ [q], ⁄i Ø 0, ⁄1 Ø ... Ø ⁄q (20)
where (20) accounts for (16). The above is convex. (19) is minimized for � = “(1 + d) ≠ 1.
Taking the feasibility constraint (20) into account one has a solution �ú such that:

’i œ [n], ⁄
ú

i =
;

max(0, “(1 + di) ≠ 1) if i Æ q

0 otherwise .

Note that this solution is not unique if there are repeated eigenvalues. Notice also that one
has the freedom to choose the Wishart prior parameters such that “ = 1. Doing so, the
solution satisfies ZıZı T = V[:,q]D[q,q]V

€

[q,:]. Therefore there exists R an orthogonal matrix

of size q such that Zı = V[:,q]D
1
2
[q,q]R. The latter is the output of a PCA model of X with q

components, which is defined up to a rotation.

A.4 Proof of Corollary 1

With the presented hierarchical model (fig. 3), the coupling problem is the following:
min
ZœS

q
M

tr
!
U[:R]Z

€(IR + ÁU€

[R]XX€U[:R])≠1U€

[R]Z
"

≠ log |IR + ÁU€

[R]ZZ€U[:R]| (21)

where U[:R] are the eigenvectors associated to the Laplacian null-space of WX .

Let us denote Z̄ = U€
[R]Z œ RR◊q and X̄ = U€

[R]X œ RR◊p. Note that Z æ U€
[R]Z is a

bijective linear map from S
q
M to RR◊q with inverse Z̄ æ U[R]Z̄ (and equivalently for RR◊p).

Hence (21) is equivalent to:
min

Z̄œRR◊q
tr

!
Z̄€(IR + ÁX̄X̄€)≠1Z̄

"
≠ log |IR + ÁZ̄Z̄€

| (22)

According to theorem 2, the solution of problem (22) is such that there exists R orthogonal,
Z̄ı = V[:,q]S[q,q]R where X̄X̄€ = V S2V € is the eigendecomposition in an orthogonal basis
of the among-row covariance matrix of X̄. Note that the solution does not depend on Á.
Therefore (21) is solved for Zı = U[:R]V[:,q]S[q,q]R. One can notice that since the singular
value decomposition (i.e. SVD) of U€

[R]X takes the form V SB where B is an semi-orthogonal
matrix of size p, then U[:R]U€

[R]X = U[:R]V SB. Noticing that V Õ = U[:R]V is orthogonal, one
has that V ÕSB is a compact SVD of U[:R]U€

[R]X. Therefore, since Zı = V ÕS, Zı is a PCA
embedding of U[:R]U€

[R]X.
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Figure 3: Graphical representation of the hierarchical model considered in section 4.2. Plain
directed arrows represent conditional dependencies while dotted arrows represent the coupling
links. Corollary 1 provides a solution for the coupling between ⇥X and ⇥Z .

B Experiments Supplementary Material

B.1 Experimental Setup and Details About ccPCA

Implementation of existing methods. For t-SNE, we rely on the openTSNE imple-
mentation [34] for both computing the kernel KX with appropriate bandwidths and running
the tSNE algorithm. We keep the training default parameters and 1000 iterations of gra-
dient descent. For all experiments, the default perplexity of 30 was used to set the kernel
bandwidths. For UMAP, we use the default Python implementation of [30] with default
parameters. For PCA and Laplacian eigenmaps, the scikit-learn implementation is used [32]
with default parameters as well.

ccPCA. The pseudo code of the algorithm is given in algorithm 1. CCs’ memberships
(i.e. eigenvectors U[R]) are computed using igraph [13]. Regarded the time complexity of
ccPCA, one can sample the posterior graph with constant time if PX = E, linear time if
PX = D and quadratic time if PX = B. Moreover, computing U[R] can be done with linear
complexity w.r.t. the number of nodes. Hence the time complexity is O(N ◊ n) for E and D

priors and O(N ◊ n
2) for the B prior, where N is the number of Monte Carlo samples. In

practice we found that N ¥ 100 Monte Carlo samples produce a consistent ccPCA embedding
for n ¥ 10000. Note that the time complexity of PCA is O(min(p3

, n
3)) where p is the

dimensionality (i.e. number of columns) of X. Hence in most common applications involving
images or biological sequencing data (where p is very large), the additional time complexity
brought by ccPCA compared to PCA is negligible.

Algorithm 1 ccPCA
Input: KX , PX , N
for ¸ = 1 to N do

Sample W ¸
≥ PPX

(·;KX)
Compute CCs’ memberships U ¸

[R] of W ¸

end for
Output: PCA of

1
N

≠1 q
¸œ[N ] U

¸
[R]U

¸ T
[R]

2
X

All experiments are performed on a machine with four Intel Core i5 processors and 16 GB
memory.

B.2 ccPCA with Varying Perplexity Values

Recall that the ccPCA algorithm retrieves the same latent graph as neighbor embedding
methods. As shown in section 3.1, these graphs’ distributions depend on the type of prior
considered, and take simple forms as follows, when ⇡X = 1 :
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• if P = B, ’(i, j) œ [n]2, Wij
‹‹
≥ B (KX,ij/(1 + KX,ij))

• if P = D, ’i œ [n], Wi
‹‹
≥ M (1,KX,i/KX,i+)

• if P = E, W ≥ M (n,KX/KX,++)

and KX is the kernel matrix evaluated on the data such that:
’(i, j) œ [n]2, KX,ij = k((Xi ≠ Xj)/·i)

where ⌧ œ Rn is set using an heuristic depending on the method considered [38, 30, 36]. In
fig. 4, we focus on the e�ect of the kernel bandwidths on ccPCA, choosing the example of
t-SNE.

Figure 4: ccPCA launched for di�erent values of the perplexity parameter. The latter
determines the kernel bandwidths and can be interpreted as the number of e�ective neighbors
of each point [38]. As the perplexity grows, the probability of connecting di�erent clusters of
digit by sampling through the graph posterior PPX

(·;KX) increases. Therefore clusters are
less and less identifiable as the perplexity increases.

From fig. 4, one can notably notice that using a high perplexity leads to a more connected
graph and therefore a PCA-like embedding with less degeneracy and no clustering e�ect.
Recall that ccPCA computes the same clusters as t-SNE through the CCs of the latent
MRF and manage to position t-SNE clusters by focusing on their relative positions (that are
filtered by t-SNE). In the case of a connected graph (high perplexity), ccPCA will show little
advantage over classical PCA since there will not be any cluster to position. Note that this
discussion can be extended to other neighbor embedding methods equivalently. Therefore,
our probabilistic framework allows us to indentify which part of information is filtered by
the posterior graphs with given kernel bandwidth.

B.3 Quantitative Evaluation of ccPCA

For quantitative assessment of ccPCA, we focused on t-SNE [38] and UMAP [30] which
are the most popular neighbor embedding methods. Note that for these algorithms the
initialization is crucial for the global structure of the embeddings as shown in [21]. In addition
to MNIST [14], we considered the datasets cifar-10, cifar-100 [22], fashion-MNIST [42] as
well as the CD8+ T lymphocytes single cell RNA-seq dataset from [24].
We used the quantitative criterion of [25] to assess the quality of the embeddings. As
mentionned in this paper, the use of this criterion appears as the general consensus in
dimension reduction, a field in which building meaningful criteria is tedious. The criterion
measures the rescaled average agreement between the K-ary neighbourhoods in the input
and output spaces. It is constructed as follows.
We first define the following quantities for (i, j) œ [n]2, flij =| {k : ||Xi ≠ Xk||

2
2 < ||Xi ≠

Xj ||
2
2} |, rij =| {k : ||Zi ≠ Zk||

2
2 < ||Zi ≠ Zj ||

2
2} |, ‹

K
i = {j : 1 Æ flij Æ K} and “

K
i = {j :

1 Æ rij Æ K}. The average K-ary neighbourhood preservation is rescaled to indicate the
improvement over a random embedding such that:

Rn(K) = (n ≠ 1)Qn(K) ≠ K

n ≠ 1 ≠ K
(23)

where Qn(K) = 1
Kn

qn
i=1 | ‹

K
i fl “

K
i |, n is the number of data points and K is the

hyperparameter that adjusts the scale at which we are looking.
To focus on large-scale structure, K was chosen as either n/4 or n/2. As summarized by [21],
current practice consists in using PCA or Laplacian eigenmaps as initialization for these
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algorithms, thus we compare to these strategies. Results are displayed in table 2 and table 3,
each entry being an average over 5 random seeds, with standard deviation displayed below
each entry. Note that when not specified, tSNE and UMAP are initialized with an isotropic
Gaussian variable.
These results show that using ccPCA is a reliable alternative to PCA and Laplacian eigenmaps
for reproducing large-scale neighborhoods.

Table 2: 100 ◊ Rn(K) (23) for embeddings produced using t-SNE with various initializations.

tSNE PCA + tSNE LE + tSNE ccPCA + tSNE
K of K-ary n/4 n/2 n/4 n/2 n/4 n/2 n/4 n/2
MNIST 18.7 7.4 28.4 21.9 26.7 18.5 31.3 28.5

±2.2 ±5.1 ±0.3 ±0.2 ±0.7 ±0.4 ±0.4 ±1.2
cifar-10 20.3 16.4 36.9 41.9 25.8 24.1 36.4 43.4

±3.2 ±4.8 ±0.6 ±1.1 ±0.6 ±1.5 ±0.4 ±1.6
cifar-100 21.6 18.2 38.1 47.5 23.3 26.5 39.6 43.6

±3.6 ±5.5 ±0.4 ±0.4 ±1.5 ±1.8 ±0.7 ±1.1
fashion-MNIST 27.2 12.3 36.9 28.5 32.0 25.1 41.6 35.7

±4.3 ±7.8 ±0.1 ±0.2 ±0.8 ±2.2 ±0.9 ±1.5
Single Cell data 25.7 22.4 37.7 29.0 28.1 31.5 40.1 34.6

±4.8 ±10.6 ±2.7 ±4.7 ±1.5 ±1.4 ±1.7 ±2.6

Table 3: 100◊Rn(K) (23) for embeddings produced using UMAP with various initializations.

UMAP PCA + UMAP LE + UMAP ccPCA + UMAP
K of K-ary n/4 n/2 n/4 n/2 n/4 n/2 n/4 n/2
MNIST 29.5 22.7 36.6 31.1 34.6 24.9 33.4 32.3

±1.4 ±2.2 ±0.2 ±0.5 ±0.2 ±0.7 ±0.3 ±0.5
cifar-10 39.2 47.6 44.3 53.4 44.2 52.6 44.6 53.2

±2.6 ±1.1 ±0.2 ±0.1 ±0.1 ±0.2 ±0.2 ±0.2
cifar-100 41.6 42.2 45.4 45.2 44.2 43.4 49.9 52.9

±1.8 ±0.9 ±0.2 ±0.1 ±0.3 ±0.1 ±0.4 ±0.6
fashion-MNIST 48.7 33.6 56.2 54.3 58.1 53.4 58.9 55.8

±2.6 ±9.5 ±0.5 ±0.6 ±0.5 ±0.6 ±0.5 ±0.3
Single Cell data 39.5 34.3 52.3 47.2 55.9 45.7 53.6 53.9

±1.4 ±6.1 ±0.8 ±6.9 ±0.3 ±0.9 ±0.3 ±1.3
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