
Temporally-Consistent Survival Analysis
Supplementary Material

Lucas Maystre
Spotify

lucasm@spotify.com

Daniel Russo
Spotify & Columbia Business School

djr2174@gsb.columbia.edu

A Methodology

This appendix is organized as follows. In Section A.1, we provide complete proofs for the results
presented in Section 3 of the main text. We develop a generalization of TCSR that considers multi-
hop transitions in Section A.2. Finally, in Section A.3, we revisit connections with RL and sketch
extensions of our approach to problems with actions.

A.1 Proofs

For convenience, we briefly recall each result before presenting a complete proof. We start with the
fixed-point iteration that recovers the exact finite-horizon survival distribution Q⋆.
Proposition 1. For any initial survival distribution f0(k|x) and corresponding row-stochastic matrix
Q0, the sequence (Qi)

∞
i=0 defined by (3) converges to Q⋆ after K steps.

Proof. We will show, by induction on i, that the first i columns of Qi match those of Q⋆. As all
survival matrices are row-stochastic, their K+1 columns must add up to exactly one, and K iterations
are sufficient to ensure that QK = Q⋆.

Denote the row of matrix Qi corresponding to state x by the vector
[fi(1|x) · · · fi(K|x) Si(K|x)]. By definition of the backshift operator and of the func-
tion fj(0|·), we have

Q1 = P
←−
Q0 =⇒ f1(1|x) =

∑
x′

p(x′|x)f0(0|x′) =
∑
x′

p(x′|x)1{x′ = ∅} = p(∅|x)

=⇒ col1(Q1) = col1(Q
⋆).

Next, fix i and assume that the first min{i,K} columns of Qi match those of Q⋆. This implies
fi(k|x) = f(k|x) and Si(k|x) = S(k|x) for all x and all k ≤ min{i,K}. Making use of the
identities (2), we obtain

Qi+1 = P
←−
Qi =⇒


fi+1(k|x) =

∑
x′

p(x′|x)fi(k−1|x′) =
∑
x′

p(x′|x)f(k−1|x′) = f(k|x′),

Si+1(k|x) =
∑
x′

p(x′|x)Si(k−1|x′) =
∑
x′

p(x′|x)S(k−1|x′) = S(k|x′)

=⇒ colk(Qi+1) = colk(Q
⋆),

for all k ≤ 1 + min{i,K}, completing the proof.

Next, we look at the convergence of the fixed-point iteration that projects iterates onto a parametric
family.
Proposition 2. If A1–A2 are satisfied, then, for any initial row-stochastic matrix Q0, the sequence
(Qi)

∞
i=0 defined by (5) converges to a unique fixed point Q̄ after K steps.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

mailto:lucasm@spotify.com
mailto:djr2174@gsb.columbia.edu


Proof. By using the fact that f(k|x) = h(k|x)S(k−1|x) and S(k|x) =
∏k

k′=1[1−h(k′|x)], we can
rewrite the divergence dπ(Q,Qθ) in terms of binary cross-entropy to the hazard probabilities. Letting
Q = [qx,k], we have

dπ(Q,Qθ) =
∑
x

π(x)

(
−

K∑
k=1

qx,k log fθ(k|x)− qx,K+1 logSθ(K|x)

)

=
∑
x

π(x)

(
−

K∑
k=1

qx,k log hθ(k|x)−
K+1∑
k=2

qx,k

k−1∑
k′=1

log[1− hθ(k
′|x)]

)

=
∑
x

π(x)

(
−

K∑
k=1

{
qx,k log hθ(k|x)−

( K+1∑
k′=k+1

qx,k′

)
log[1− hθ(k|x)]

})

=
∑
x

π(x)

(
K∑

k=1

wxkH[yxk∥hθ(k|x)]

)

=

K∑
k=1

(∑
x

π(x)wxkH[yxk∥hθ(k|x)]

)
,

where wxk =
∑K+1

k′=k qx,k′ and yxk = qx,k/wxk. If Q = P
←−
Qθ′ , it is easy to verify that

yxk(θ
′) =

∑
x′

p(x′|x)hθ′(k−1|x′),

wxk(θ
′) =

{∑
x′ p(x′|x)

∏k−2
ℓ=0 [1− hθ′(ℓ|x′)] if k ≥ 2,

1 if k = 1,

where we make the dependence of yxk and wxk on parameters θ′ explicit. This reformulation of the
divergence reveals two important properties of the projection operator for separable models.

1. Minimizing dπ(Q,Qθ) with respect to θ can be decomposed into minimizing K independent
quantities that are functions of the hazard at each step.

2. The pseudo-weights and pseudo-labels wxk(θ) and yxk(θ) depend on θ only through
(θ(1), . . . , θ(k−1)).

Let θi = (θ
(1)
i , . . . , θ

(K)
i ) be the parameters corresponding to Qi. We will now show by induction on

i that, for all i and all k ≤ min{i,K}, θ(k)i exists, is unique, and is equal to θ
(k)
k . For i = 1, we have

θ1 ∈ argmin
θ

dπ(P
←−
Q0, Qθ) =⇒ θ

(1)
1 ∈ argmin

θ

∑
x

π(x)wx1H[yx1∥hθ(1|x)],

where wx1 = 1 and yx1 =
∑

x′ p(x′|x)1{x′ = ∅} = p(∅|x). Thus, θ(1)1 is identical to the
population MLE, which, as a consequence of A1–A2, exists and is unique. Next, fix i and assume
that θ(k)i = θ

(k)
k exists and is unique for all k ≤ min{i,K}. Then

θi+1 ∈ argmin
θ

dπ(P
←−
Qi, Qθ)

=⇒ θ
(k)
i+1 ∈ argmin

θ

∑
x

π(x)wxk(θi)H[yxk(θi)∥hθ(k|x)] ∀k ≤ i

=⇒ θ
(k)
i+1 ∈ argmin

θ

∑
x

π(x)wxk(θk−1)H[yxk(θk−1)∥hθ(k|x)] ∀k ≤ i

=⇒ θ
(k)
i+1 = θ

(k)
k ∀k ≤ i.

Furthermore, assume that i < K. Because θ(1)i , . . . , θ
(i)
i are finite, we have 0 < wx(i+1), yx(i+1) < 1

and thus

θ
(i+1)
i+1 ∈ argmin

θ

∑
x

π(x)wxk(θi)H[yxk(θi)∥hθ(i+ 1|x)]

2



exists and is unique by A1. The statement follows by taking Q̄ to be the matrix induced by the
parameters (θ(1)1 , . . . , θ

(K)
K ).

Finally, we show how TCSR relates to the fixed-point iteration with parametric approximation through
an empirical Markov chain and state distribution.
Proposition 3. Algorithm 1 is equivalent the fixed-point iteration (5) with the empirical Markov
chain and state distribution

p(x′|x) =
∑

m 1{xm = x, x′
m = x′}/

∑
m 1{xm = x}, π(x) =

∑
m 1{xm = x}/M.

Proof. We begin as in the proof of Proposition 2 and rewrite the divergence minimized at each
iteration of (5) in terms of binary cross-entropy as

dπ(P
←−
Qθ′ , Qθ) =

∑
x

π(x)

K∑
k=1

wxkH[yxk∥hθ(k|x)],

yxk =
∑
x′

p(x′|x)hθ′(k−1|x′),

wxk =

{
1 if k = 1,∑

x′ p(x′|x)Sθ′(k − 2|x′) if k ≥ 2.

Next, we plug in in the definition of π(x) and p(x′|x) and use the linearity of the binary cross-entropy
to find that

dπ(P
←−
Qθ′ , Qθ) =

∑
x

π(x)

K∑
k=1

wxkH[yxk∥hθ(k|x)]

=
1

M

M∑
m=1

K∑
k=1

wxmkH[yxmk∥hθ(k|xm)]

=
1

M

M∑
m=1

K∑
k=1

wxmk

∑
x′

p(x′ | xm)H[hθ′(k−1|x′)∥hθ(k|xm)]

=
1

M

M∑
m=1

K∑
k=1

wxmkH[hθ′(k−1|x′
m)∥hθ(k|xm)]

=
1

M

M∑
m=1

(
H[1{x′

m = ∅}∥hθ(k|xm)]

+

K∑
k=2

Sθ′(k − 2|x′
m)H[hθ′(k−1|x′

m)∥hθ(k|xm)]

)
.

The last equality establishes the equivalence between (5) and Line 8 in Algorithm 1.

A.2 TCSR(λ)

In this section, we discuss how the one-step temporal consistency equations (2) can be extended to
multistep transitions, and we present an algorithm that takes advantage of this extension. Without loss
of generality, we can assume that p(∅|∅) = 1, i.e., that the terminal state is absorbing. The ℓ-hop
transition probability pℓ(x

′|x) is given by

p1(x
′|x) = p(x′|x), pℓ(x

′|x) =
∑
z

p(x′|z)pℓ−1(z|x), ℓ ≥ 2.

The probability of reaching the terminal state, starting from x, on or before the ℓth step is given by
pℓ(∅|x). Using the Markov property and the law of total expectation, we can write a generalization
of (2) as follows. For all x and all k ≥ 1, we have

f(k|x) = Ex′∼pℓ(·|x)[f(k − ℓ|x′)], S(k|x) = Ex′∼pℓ(·|x)[S(k − ℓ|x′)],

3



Algorithm 2 TCSR(λ)

Require: Sequences D̃ = {(xm0, . . . , xmtm)}, initial parameters θ, decay λ ∈ [0, 1]
1: repeat
2: for ℓ = 1, . . . ,K do ▷ Weights and targets for ℓ-step lookahead.
3: for m = 1, . . . ,M do
4: for k = 1, . . . , ℓ do ▷ Based on observed outcomes.
5: y

(ℓ)
mk ← 1{tm = k ∧ xmtm = ∅}

6: w
(ℓ)
mk ← 1{tm ≥ k}

7: for k = ℓ+ 1, . . . ,K do ▷ Based on predictions at xℓ.
8: y

(ℓ)
mk ← hθ(k−ℓ|xmℓ)

9: w
(ℓ)
mk ← Sθ(k−ℓ−1|xmℓ)

10: cℓ ← (1− λ)1{ℓ<K}λℓ

11: θ ← argminθ
∑K

ℓ=1 cℓ
∑M

m=1

∑K
k=1 w

(ℓ)
mkH[y

(ℓ)
mk∥hθ(k|xm)]

12: until θ has converged

where we slightly abuse notation and denote, for all k ≥ 1,

f(−k|x) =
{
1 if x = ∅,

0 otherwise,
S(−k|x) =

{
0 if x = ∅,

1 otherwise.

We omit the multistep generalization of the fixed-point iterations (3) and (5), but we note that they
can be obtained by repeatedly composing the transition and backshift operators (assuming that
the definition of the latter is extended appropriately). Inspired by the LSTD(λ) algorithm in the
reinforcement learning literature [1], we present a generalization of Algorithm 1. We call it TCSR(λ)
and describe it in Algorithm 2.

The dataset D̃ given as input to the algorithm consists of all subsequences of D = {sn}. This set
extends the transitions T = {(xm, x′

m)} we considered as input to TCSR in the main text and
encompasses the full subsequence starting from every non-final state. The algorithm then repeatedly
solves a survival regression problem (Line 11). The weights and targets are a combination of near-term
observations and of predictions at future states that are 1, 2, . . . ,K steps away. The algorithm also
uses an additional weight, cℓ, that is associated with ℓ-step lookahead targets, and that decreases
exponentially fast with the lookahead. We identify two cases of special interest.

1. When λ = 0, only the next state is taken into account. In this case, one can verify that
TCSR(0) is equivalent to Algorithm 1 presented in the main text.

2. When λ = 1, only the targets associated with the K-step lookahead are taken into account.
In that case, TCSR(1) is identical to the landmarking estimator we discuss in the main text.
That is, the algorithm is equivalent to the MLE (1) on the augmented dataset obtained by
including intermediate states and the remaining time-to-event or time-to-censoring.

For values of λ strictly between 0 and 1, TCSR(λ) outputs models that can be understood to interpolate
between these two extremes. A complete study of the benefits of choosing 0 < λ < 1 is outside of
the scope of this paper, but in the context of learning a scalar-valued function we note that the RL
literature contains examples where such a choice leads to better sample-efficiency [7].

A.3 Extensions to problems with actions

Our presentation so far has synthesized temporal difference learning—one of the central intellectual
ideas in RL—and survival analysis. In RL, the algorithms SARSA and Q-learning naturally extend the
insight of temporal difference learning to problems with actions. We provide a similar generalization
here.

Consider a setting where data has been collected according to a baseline policy µ, which assigns a
probability µ(x, a) to action a ∈ {1, · · · , A} in state x. A transition kernel p encodes the probability
p(x′|x, a) of transitioning from state x to state x′ when action a is chosen. Write

Sµ(k|x) = [T > k | x0 = x, a0 = a, at ∼ µ(xt) ∀t ≥ 1]

4



Algorithm 3 Survival SARSA for policy evaluation.
Require: dataset of actions and transitions under µ T = {(xm, am, x′

m, a′m)}, initial parameters θ
1: repeat
2: Sample (x, a, x′, a′) ∼ T .
3: y1 ← 1{x′ ̸= ∅} ▷ Based on one-step observed outcome.
4: w1 ← 1
5: for k = 2, . . . ,K do ▷ Based on predictions at x′.
6: yk ← hθ(k − 1|x′, a′)
7: wk ← Sθ(k − 2|x′, a′)

8: θ ← θ − α
∑K

k=1 wk∇θH[yk∥hθ(k|x, a)]
9: Update stepsize α

10: until θ has converged

Algorithm 4 Incremental temporally-consistent survival regression.
Require: dataset of transitions T = {(xm, x′

m)}, initial parameters θ.
1: repeat
2: y1 ← 1{x′ ̸= ∅} ▷ Based on one-step observed outcome.
3: w1 ← 1
4: for k = 2, . . . ,K do ▷ Based on predictions at x′.
5: yk ← hθ(k − 1|x′)
6: wk ← Sθ(k − 2|x′)

7: θ ← θ − α
∑K

k=1 wmk∇θH[yk∥hθ(k|x)]
8: Update stepsize α
9: until θ has converged

for the probability that the time-to-event exceeds k given the a0 is chosen in state x0 and the
baseline policy is applied thereafter. As before, the survival function Sµ is related to the k-step
hazard hµ(k|x, a) = P[T = k | T ≥ k, x0 = x, a0 = a, at ∼ µ(xt) ∀t ≥ 1] through the formula
Sµ(k|x) =

∏k
k′=1[1− hµ(k′|x, a)].

Algorithm 3 estimates a parametric approximation to hµ using a batch of data collected by applying
µ. It is analogous to the online or incremental variant of temporally-consistent survival regression
presented in Algorithm 4. In all places where Algorithm 4 accepted a state as input, Algorithm 3
takes a state-action pair. If Algorithms 1 and 4 are viewed as forms of temporal difference learning,
then Algorithm 3 can be viewed as SARSA [7], which itself is a close relative of Q-learning.

The survival function is closely related to fundamental objects in dynamic programming and rein-
forcement learning. If a reward of 1 were earned in each period before an event occurs, it is typical to
write the future expected reward as

Qµ(x, a) = E

[
K∑

k=1

1(xk ̸= ∅) | x0 = x, a0, xt ∼ µ(xt, ·)∀t ≥ 0

]
=

K∑
k=1

Sµ(k|x, a). (6)

Through such a formula, estimates of the survival function or hazard induce estimates of the value
function Q, but the former objects are an ideal fit for time-to-event data and have been extensively
studied for decades.

If Qµ were estimated accurately, then improved performance can be attained through the policy µ+

which, when faced with any state x, chooses argmaxa Qµ(x, a). Many RL algorithms mimic the
classic policy iteration algorithm by interleaving steps of policy evaluation and policy improvement
of this form. The objective in (6) aligns naturally with problems where the goal is to retain a customer,
to keep a from developing a condition, or to prevent a critical machine from breaking, for as long as
possible.

5



B Experimental evaluation

In this appendix, we provide additional details on the experiments presented in Section 4 of the
main text. Note that the supplementary material also contains the code necessary to reproduce all the
experiments presented in the paper. The code is structured as follows.

• A Python library called tdsurv provides an implementation of TCSR(λ), the algorithm
presented in Appendix A.2. This algorithm generalizes all the approaches investigated in
the paper (including TCSR, initial state and landmarking) and underpins all experimental
results. The library implements the Cox PH model and several other parametric models.
New models can be added easily, by specifying a function that gives the hazard log-odds.

• A set of computational notebooks (Jupyter notebook files) documents the experiments in
detail. They rely on the tdsurv library, and they can be used to reproduce experimental
results and figures presented in the paper.

Installation instructions and technical details can be found in the README file included with the code
archive. We plan to open-source the library and the notebooks on Github upon publication of the
paper.

B.1 Metrics

Devising evaluation metrics for survival models is challenging due to the presence of right-censored
data; Care must be taken to properly account for censoring and to avoid bias. We describe in more
detail the four metrics that we use in the main text and in section B.3 of this appendix.

Concordance index. This metric measures the agreement between the ranking induced by the
observed time-to-event and that induced by a set of scores. Random scores achieve a CI
of 0.5, while a CI of 1 corresponds to perfect agreement between scores and observed
time-to-event. In the Cox-PH model, a natural choice is to score instances by the partial
hazard log-odds β⊤ϕx0

. The concordance index (CI) is similar to the Kendall-tau rank
correlation: it counts the fraction of pairs whose relative order under the true and predicted
ranking is identical. The CI accounts for right-censored observations by removing pairs
that are incomparable. A precise definition is given in [4], and we also refer the interested
reader to Raykar et al. [6]. In our experiments, we use the implementation provided by the
lifelines Python library.1

RMSE. This metric measures the ℓ2-distance between parameter estimate β and a gold-standard
value β⋆, defined as ∥β − β⋆∥2. This metric can be thought of as a proxy to measuring, e.g.,
how well a model estimates the effect of a treatment on survival.

Integrated Brier score. This metric is an extension of the well-known Brier score to the survival
setting. Given a validation set D = {(xn0, tn, cn) : n = 1, . . . , N}, it is defined as

1

K

K∑
k=1

N∑
n=1

{
[0− S(k|xn0)]

2

w(tn)
1{tn ≤ k ∧ cn = 0}+ [1− S(k|xn0)]

2

w(k)
1{tn > k}

}
,

where w(k) is the Kaplan-Meier estimate of time-to-censoring. It favors survival probabili-
ties that are accurate and calibrated uniformly at all horizons. See Graf et al. [3] and Gerds
and Schumacher [2] for more details.

Predictive log-likelihod. This metric captures the likelihood of the model on a validation dataset. It
is defined as

N∑
n=1

[
1{cn = 0} log f(tn|xn0) + 1{cn = 1} logS(tn|xn0)

]
.

Similarly to the integrated Brier score, it favors accurate and well-calibrated survival distri-
butions.

1See: https://lifelines.readthedocs.io/en/latest/lifelines.utils.html.

6

https://lifelines.readthedocs.io/en/latest/lifelines.utils.html


Throughout the experiments, we add a small ℓ2 penalty on the model parameters θ to the optimiza-
tion objective of the various learning algorithms. All but one metric are sensitive to the choice of
regularization strength (the concordance index is the only metric that is usually highest with models
trained without regularization). For this reason, we run a grid search across a range of regularization
strengths, and report the best result for each combination of dataset, metric and learning algorithm.
Details on the grid search are presented in the *-experiments.ipynb notebooks provided with the
code.

B.2 Datasets

The two clinical datasets we discuss in the main text are lightly preprocessed. In the PBC2 dataset,
some biomarkers are absent for some of the measurements. We replace missing values with the
median of the all the values of the corresponding biomarker; Lee et al. [5] use a similar approach but
use the mean instead of the median. In the AIDS dataset, position in the sequence is predictive of
survival, controlling for the features. We address this by augmenting the state representation ϕx with
an additional dimension containing the index of the observation within the sequence. More details on
the datasets and preprocessing steps are given in the *-exploratory-analysis.ipynb notebooks
provided with the code.

Random walk dataset. We experiment with the following generative model of sequences. Denote
by N (µ, r2I) a multivariate Gaussian distribution with mean µ and spherical covariance of radius r,
and let σ(u) = 1/(1+e−u) be the logistic function. We initialize each sequence with a 20-dimensional
state x0 ∼ N (0, r20I). For ℓ = 1, 2, . . ., we sample zℓ ∼ Bernoulli(pi) with pi = σ(γ⊤xℓ−1 + b).
If zℓ = 1, the sequence terminates and we set xℓ = ∅. Otherwise, we sample xℓ ∼ N (xℓ−1, w

2I).
We repeat this process until the sequence terminates or until ℓ = 10. By construction, this process is
Markovian. Despite its simplicity, the sequence dynamics (conditioned on survival) and the survival
distribution are non-trivial; Informally, the process “moves away” from the point γ conditioned on
survival. We instantiate this model with

r20 = 1.0, w2 = 0.5, γ ∼ N (0, I), b = −3.
We sample 5 independent training sets containing 200 sequences each, and we also sample a validation
set consisting of 10 000 sequences. Approximately 24 % of sequences are right-censored. We define
the gold-standard β⋆ as the MLE (1) obtained on the validation set. We set ϕx = x and train Cox PH
models using increasingly larger subsets of the training data. In the results presented in the main text
and Section B.3 of this appendix, we report the performance on the validation set, averaged over the
5 training splits.

B.3 Additional experimental results

In Figure 1, we report the performance of the three approaches discussed in the main text on two
additional metrics that capture models’ ability to estimate accurate, calibrated survival probabilities.
These results are consistent with the observations we made based on the performance in terms
of RMSE and concordance index. For PBC2 and RW, our algorithm (TCSR) is a) usually more
sample-efficient, and b) it achieves better overall performance given the full data. On the AIDS
dataset, there is no significant advantage obtained by landmarking and TCSR, an observation we
explain by the absence of rich sequence dynamics compared to the other two datasets.

Computational setup. The experiments reported in the paper were run on a Google cloud
c2-standard-16 instance with 16 vCPUs and 64GB RAM. Note that they have also been replicated
on a 2019 laptop with 4 cores and 16GB RAM, with a minimal difference in running time. Overall,
on the datasets that we consider, all learning algorithms converge in a fraction of a second in most
cases, and computational infrastructure & running time are likely not a concern for reproducibility.

References
[1] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.

Machine Learning, 22:33–57, 1996.

[2] T. A. Gerds and M. Schumacher. Consistent estimation of the expected brier score in general
survival models with right-censored event times. Biometrical Journal, 48(6):1029–1040, 2006.

7



−150

−100
Lo

g-
lik

eli
ho
od

PBC2

Initial state
Landmarking
TCSR −140

−120

−100

AIDS

−28000

−26000

−24000

−22000

RW

50 100 150 200

# sequences

0.15

0.20

In
teg

ra
ted

Br
ier

sc
or
e

50 100 150 200

# sequences

0.18

0.20

50 100 150 200

# sequences

0.22

0.24

0.26

Figure 1: Empirical performance of learning algorithms on three datasets. We report the mean and
standard deviation over 5 splits. Log-likelihood: higher is better, integrated Brier score: lower is
better.

[3] E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher. Assessment and comparison of
prognostic classification schemes for survival data. Statistics in Medicine, 18(17-18):2529–2545,
1999.

[4] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random survival forests. The
Annals of Applied Statistics, 2(3):841–860, 2008.

[5] C. Lee, J. Yoon, and M. van der Schaar. Dynamic-DeepHit: A deep learning approach for
dynamic survival analysis with competing risks based on longitudinal data. IEEE Transactions
on Biomedical Engineering, 67(1):122–133, 2020.

[6] V. C. Raykar, H. Steck, B. Krishnapuram, C. Dehing-Oberije, and P. Lambin. On ranking
in survival analysis: Bounds on the concordance index. In Advances in Neural Information
Processing Systems 20, Vancouver, B.C., Canada, Dec. 2007.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, second
edition, 2018.

8


	Methodology
	Proofs
	TCSR()
	Extensions to problems with actions

	Experimental evaluation
	Metrics
	Datasets
	Additional experimental results


