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Abstract

Proving algorithm-dependent generalization error bounds for gradient-type opti-
mization methods has attracted significant attention recently in learning theory.
However, most existing trajectory-based analyses require either restrictive assump-
tions on the learning rate (e.g., fast decreasing learning rate), or continuous injected
noise (such as the Gaussian noise in Langevin dynamics). In this paper, we intro-
duce a new discrete data-dependent prior to the PAC-Bayesian framework, and
prove high probability generalization bounds of order O( 1n ·

∑T
t=1(γt/εt)

2 ∥gt∥2)
for floored GD and SGD (i.e. finite precision versions of GD and SGD with preci-
sion level εt) where, where n is the number of training samples, γt is the learning
rate at step t, gt is roughly the difference between the average gradient over all
samples and that over only prior samples. ∥gt∥ is upper bounded by (typically
much smaller) than the gradient norm ∥∇f(Wt)∥. We remark that our bounds hold
for nonconvex and nonsmooth loss functions. Moreover, our theoretical results
provide numerically favorable upper bounds of testing errors (0.026 on MNIST
and 0.198 on CIFAR10). Furthermore, we study the generalization bounds for
gradient Langevin Dynamics (GLD). Using the same framework with a carefully
constructed continuous prior, we show a new high probability generalization bound
of order O( 1n + L2

n2

∑T
t=1(γt/σt)

2) for GLD. The new 1/n2 rate is obtained using
the concentration of the difference between the gradient of training samples and
that of the prior.

1 Introduction

Bounding generalization error of learning algorithms is one of the most important problems in
machine learning theory. Formally, for a supervised learning problem, the generalization error is
defined as the testing error (or population error) minus the training error (or empirical error). In
particular, we denoteR(w, (x, y)) := 1[hw(x) ̸= y] as the error of a single data point (x, y), where
hw(x) is the output of a model with parameter w ∈ Rd. Suppose S is the set of training data, each
i.i.d. sampled from the population distribution D, and we use R(w, S) := 1

|S|
∑

z∈S R(w, z) and
R(w,D) := Ez∼D[R(w, z)] to denote the training error and the testing error, respectively. The
generalization error of w is formally defined as errgen(w) = R(w,D)−R(w, S).
Proving tighter generalization bounds for general nonconvex learning and particularly deep learning
has attracted significant attention recently. While the classical learning theory (uniform conver-
gence theory) which bounds the generalization error by various complexity measures (e.g., the
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VC-dimension and Rademacher complexity) of the hypothesis class has been successful in several
classical convex learning models, however, they become vacuous and hence fail to explain the success
of modern nonconvex over-parametrized neural networks (i.e., the number of parameters significantly
exceeds the number of training data) (see e.g., Zhang et al. [2017], Nagarajan and Kolter [2019]).
Recently, learning theorists have tried to understand and explain generalization of deep learning
from several other perspectives, such as margin theory [Bartlett et al., 2017, Wei et al., 2019],
algorithmic stability [Hardt et al., 2016, Mou et al., 2018, Li et al., 2020, Bousquet et al., 2020],
PAC-bayeisan [London, 2017, Bartlett et al., 2017, Neyshabur et al., 2018, Zhou et al., 2019, Yang
et al., 2019], neural tangent kernel [Jacot et al., 2018, Du et al., 2019, Arora et al., 2019, Cao and Gu,
2019], information theory [Pensia et al., 2018, Negrea et al., 2019], model compression [Arora et al.,
2018, Zhou et al., 2019], differential privacy [Oneto et al., 2017, Wu et al., 2021] and so on.

In this paper, we aim to obtain tighter generalization error bounds that depend on both the training
data and the optimization algorithms (a.k.a. gradient-type methods) for general nonconvex learning
problems. In particular, we prove algorithm-dependent generalization bounds for several gradient-
based optimization algorithms such as certain variants of gradient descent (GD), stochastic gradient
descent (SGD) and stochastic gradient Langevin dynamics (SGLD). Our proofs are based on the
classic Catoni’s PAC-Bayesian framework [Catoni, 2007] and also have a flavor of algorithmic
stability [Bousquet and Elisseeff, 2002]. Several prior works have obtained generalization bounds for
SGD and SGLD by analyzing trajectory through either the PAC-Bayesian or the algorithmic stability
framework (or closely related information theoretic arguments). However, most existing results
based on analyzing the optimization trajectories require either restrictive assumptions on the learning
rates, or continuous noise (such as the Gaussian noise in Langevin dynamics) in order to bound the
stability or the KL-divergence. In this paper, we resolve the above restrictions by combining the
PAC-Bayesian framework with a few simple (yet effective) ideas, so that we can obtain new high
probability and non-vacuous generalization bounds for several gradient-based optimization methods
with either discrete or continuous noises (in particular certain variants of GD and SGD, either being
deterministic or with discrete noise, which cannot be handled by existing techniques).

1.1 Prior work

We first briefly mention some recent work on bounding the generalization error of gradient-based
methods. Hardt et al. [2016] first studied the uniform stability (hence the generalization) of stochastic
gradient descent (SGD) for both convex and non-convex functions. Their results for non-convex
functions requires that the learning rate ηt scales with 1/t. Their work motivates a long line of
subsequent work on generalization error bounds of gradient-based optimization methods: Kuzborskij
and Lampert [2018], London [2016], Chaudhari et al. [2019], Raginsky et al. [2017], Mou et al.
[2018], Chen et al. [2018], Li et al. [2020], Negrea et al. [2019], Wang et al. [2021].

Recently, Simsekli et al. [2020], Hodgkinson et al. [2022] obtained generalization bound of SGD
through the perspective of heavy-tailed behaviors and using the notion of Hausdorff dimension dH
which depends on both the algorithm and data.

PAC-Bayesian bounds. The PAC-Bayesian framework [McAllester, 1999] is a powerful method
for proving high probability generalization bound [Bartlett et al., 2017, Zhou et al., 2019, Mou et al.,
2018]. Roughly speaking, it bounds the generalization error by the KL divergence KL

(
Q
∣∣∣∣P ),

where Q is the distribution of the learned output and P is a prior distribution which is typically
independent of dataset S. In this framework, bounding KL

(
Q
∣∣∣∣P ) is the most crucial part for

obtaining tighter PAC-Bayesian bounds. In order to bound the KL divergence, both the prior P
and posterior Q are typically chosen to be continuous distributions (mostly Gaussians so that KL
can be computed in closed form). Hence, most prior work either considered gradient methods with
continuous noise (such as Gradient Langevin Dynamics) (e.g., [Mou et al., 2018, Li et al., 2020,
Negrea et al., 2019]), or injected a Gaussian noise to the final parameter at the end (e.g., [Neyshabur
et al., 2018, Zhou et al., 2019]) (so Q is a Gaussian distribution). We also note that designing
effective prior P can be also very important. For example, Lever et al. [2013] proposed to use the
population distribution to compute the prior. In fact, the prior can even partially depend on the
training data [Parrado-Hernández et al., 2012, Negrea et al., 2019], and our Theorem 4.1 is partially
inspired by this idea.
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1.2 Our contributions

First, we provide high probability generalization bounds for discrete gradient methods. In particular,
we study the generalization of Floored Gradient Descent (FGD), which is a variant of GD, and Floored
Stochastic Gradient Descent (FSGD), a variant of SGD. We obtain our bound by an interesting
construction of discrete priors. Secondly, we consider well studied gradient methods with continuous
noise, (stochastic) gradient Langvin dynamics (GLD and SGLD). We show sharper generalization
bounds by carefully bounding the concentration of the sample gradients. Now, we summarize our
results.

FGD and FSGD. We first study an interesting variant of GD, called Floored GD (FGD) (Algo-
rithm 1). The update rule of FGD is defined as follows:

Wt ←Wt−1 − γt∇f(Wt−1, SJ)− εtfloor (γtgt/εt) , (FGD)

where SJ is the subset of training dataset S with size m indexed by subset J ⊂ [n] (J is chosen
before training),∇f(Wt−1, Z) := 1

|Z|
∑

z∈Z ∇f(Wt−1, z) is the average gradient over the dataset
Z, γt is the learning rate, εt is the precision level, and gt := ∇f(Wt−1, S) − ∇f(Wt−1, SJ) is
the gradient difference. The flooring operation is defined by floor(x) := sign(x)⌊|x|⌋ for any real
number x. FGD can viewed as GD with given precision limit εt. We can see if we ignore the floor
operation or let εt approaches 0, FGD reduces to GD (see also Appendix A).

We also study a finite precision variant of SGD, called Floored SGD (FSGD) (see Section 5 for its
formal definition). Empirically, the optimization and generalization capabilities of FGD and FSGD
are very close to those of GD and SGD (see Figure 5 and 6 in Appendix H).

By constructing a discrete data-dependent prior and incorporate it into Catoni’s PAC-Bayesian
framework, we prove that the following bound (Theorem 5.2) holds for FGD with high probability:

R(WT ,D) ≤ c0R(WT , S[n]\J) +O

(
1

n−m
+

ln(dT )

n−m

T∑
t=1

γ2
t

ε2t
∥gt∥2

)
,

where d is the dimension of parameter space and c0 can be chosen to be a small constant. The bound
for FSGD is very similar (see Theorem 5.3). Now we make a few remarks about our results.

1. Our result holds for nonconvex and nonsmooth learning problems (replacing the gradients
with subgradients for nonsmooth cases). Moreover, there is no additional requirement on
the learning rate γt.

2. The gradient difference gt is typical much smaller than the worst case gradient norm. It
usually decreases when m = |J | grows (see Figure 1c in Section 7).

3. We obtain non-vacuous generalization bounds on commonly used datasets. Specifically,
our theoretical test error upper bounds on MNIST and CIFAR10 are 0.026 and 0.198,
respectively (see Section 7). Both of them are tighter than the best-known MNIST bound
(11%) and CIFAR10 bound (23%) reported in Dziugaite et al. [2021]. See Table 1 in
Appendix B for more comparisons.

4. In order to bound the KL between P and the deterministic process of FGD, we construct
the prior P from a discrete random processes.. We hope it may inspire future research on
handling deterministic optimization algorithms or discrete noise.

Why study FGD/FSGD? We would like to remark that we study FGD/FSGD, not because
FGD/FSGD have better performances than GD/SGD or other advantages. Indeed, their perfor-
mances are almost the same as those of GD/SGD (see Appendix H). We use them as important
stepping stones to study generalization bounds for GD and SGD. Note that most existing trajectory-
based generalization bounds require either fast decreasing learning rate, or continuous injected noise,
such as the Gaussian noise in Langevin dynamics, for general non-convex loss functions. Handling
deterministic algorithms (such as GD) or discrete noises (such as SGD) is challenging and beyond
the reach of existing techniques. In fact, understanding such discrete noises and their effects on
generalization has been an important research topic (see e.g., Li et al. [2020], Zhu et al. [2019],
Ziyin et al. [2021]). In particular, Zhu et al. [2019] show that it is insufficient to approximate SGD’s
discrete noise by isotropic Gaussian noise. Moreover, proving nontrivial generalization bounds for
SGD-like algorithms with discrete noise has also been proposed as an open research direction in Li
et al. [2020].
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GLD and SGLD. We provide a new generalization bound for Gradient Langevin Dynamics (GLD).
The update rule of GLD is defined as follows.

Wt ←Wt−1 + γt∇f(Wt−1, S) + σtN (0, Id). (GLD)

In this paper, we show that the following generalization bound (Theorem 6.2) holds with high
probability over the randomness of S ∼ Dn and random subset J ⊂ [n] (|J | = m):

R(WT ,D) ≤ c0R(WT , S[n]\J) +O

(
1

n−m
+

1

(n−m)m
E

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

])
,

where L(Wt−1) := maxz∈S ∥f(Wt−1, z)∥ is the longest gradient norm of any training sample in
S at step t and m is the size of J . Since WT is independent of the index set J , the first term
R(WT , S[n]\J) is upper bounded byR(WT , S) +O( 1√

n−m
) with high probability, using standard

Hoeffding’s inequality. By setting m = n/2, our generalization bound has an O( 1√
n
+ 1

n + T
n2 )

rate. The new 1/n2 rate is obtained using the concentration of the difference between the gradient of
training samples and that of the prior (See Lemma 6.1).

We also prove a high probability generalization bound for Stochastic Gradient Langevin Dynamics
(SGLD) (see Theorem 6.3):

R(WT ,D) ≤ c0R(WT , S[n]\J) +O

(
1

n−m
+

1

n−m

(
1

b
+

1

m

)
E

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

])
.

We compare our bounds with other GLD/SGLD bounds obtained in [Mou et al., 2018, Negrea et al.,
2019, Li et al., 2020] and the details can be found in Appendix B.

CLD. Using the PAC-Bayesian framework, we obtain a new generalization bound for Continuous
Langevin Dynamics (CLD), defined by the stochastic differential equation dWt = −∇F (Wt, S) dt+√
2β−1 dBt. The main term of the generalization bound scales as O(1/n2) (by choosing m = n/2)

and does not grow to infinity as the training time T increases. See Theorem G.6 for the details.

2 Other Related Work
Stochastic Langevin Dynamics Stochastic Langevin dynamics is a popular sampling and opti-
mization method in machine learning [Welling and Teh, 2011]. Zhang et al. [2017], Chen et al.
[2020] show a polynomial hitting time (hitting a stationary point) of SGLD in general non-convex
setting. Raginsky et al. [2017] study the generalization and excess risk of SGLD in nonconvex
settings and their bound depends inversely polynomially on a certain spectral gap parameter, which
may be exponential small in the dimension. Continuous Langevin dynamics (SDE) with various
noise structure has also been used extensively as approximations of SGD in literature (see e.g., [Li
et al., 2017, 2021]). However, in terms of generalization, isotropic Gaussian noise is not a good
approximation of the discrete noise in SGD (Zhu et al. [2019]).

Nonvacuous PAC-Bayesian Generalization Bounds. Dziugaite and Roy [2017] first present a non-
vacuous PAC-Bayesian generalization bound on MNIST (0.161 for a 1-layer MLP, see column T-600
of Table 1 in their paper). They use a very different training algorithm that explicitly optimizes the
PAC-Bayesian bound and the output distribution is a multivariate normal distribution. To computing
the closed form of KL, they choose a zero-mean Gaussian distribution as the prior distribution. Zhou
et al. [2019] obtain the first non-vacuous generalization bound for ImageNet via a different method.
Their method does not require any continuous noise injected but assumes that the network can be
significantly compressed (so that the prior distribution is supported over the set of discrete parameters
with finite precision). To our best knowledge, it is the only work that utilizes a discrete prior for
proving generalization bounds of deep neural networks. Our result for FGD/FSGD has a similar
flavor in a high level, that is the optimization method has a finite precision. However, our results do
not need any assumption on compressibility of the model and can be applied to nonconvex learning
problems other than neural networks.

Generalization bounds via Information theory. Raginsky et al. [2017] first show that the expected
generalization error ES∼Dn [R(W,D)−R(W,S)] is bounded by

√
2I(S;W )/n, where I(S;W ) :=
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KL
(
P (S,W )

∣∣∣∣P (S)⊗ P (W )
)

is the mutual information between the data set S and the parameter
W . This work motivates several subsequent studies [Pensia et al., 2018, Negrea et al., 2019, Bu
et al., 2020, Wang et al., 2021]. The main goal in this line of work is to obtain a tight bound on the
mutual information I(S;W ). This is again reduced to bounding the KL divergence and thus typically
requires continuous injected noise (e.g., Wang et al. [2021], Negrea et al. [2019]).

3 Preliminaries
Notations. We assume that the training dataset S = (z1, .., zn) is sampled from Dn, where D is the
population distribution over the data domain Ω. The model parameter w is in Rd. The risk function
R : Rd×Ω→ [0, 1] measures the error of a model on a datapoint. The loss function f : Rd×Ω→ R
is a proxy of the risk. The optimization algorithm minimizes the loss function and we assume we can
compute the gradient of the loss function. We note that the loss function may be different from the risk
function (e.g., 0/1 risk vs the cross-entropy loss). The empirical risk isR(w, S) = 1

|S|
∑

z∈S R(w, z)
and population risk is R(w,D) = Ez∼D[R(w, z)]. Similarly, we can define the empirical loss
f(w, S) and population loss f(w,D). For any J = (j1, .., jm), we use SJ to denote the sequence
(Sj1 , ..., Sjm). The subsequence (Ai, Ai+1, ..., Aj) is denoted by Aj

i . We use (An
1 , B

m
1 ) to denote

the merged sequence (A1, A2, ..., An, B1, ..., Bm). When the elements in sequence J are distinct,
we also use J to represent the set consisting of all of its elements. We may also slightly abuse the
notation of a random variable to denote its distribution. For example, Ex∼X [f(x)] is a shorthand
for Ex∼PX

[f(x)], and KL
(
X
∣∣∣∣Y ) means KL

(
PX

∣∣∣∣PY

)
. For a random variable W , we define

R(W,S) = Ew∼W [R(w, S)] andR(W,D) = Ew∼W [R(w,D)]. The set {1, 2, ..., n} is denoted by
[n].
KL-divergence. Let P and Q be two probability distributions. The Kullback–Leibler diver-
gence KL

(
P
∣∣∣∣Q) is defined only when P is absolute continuous with respect to Q (i.e., for

any x, Q(x) = 0 implies P (x) = 0). In particular, if P and Q are discrete distributions, then
KL
(
P
∣∣∣∣Q) =∑x P (x) ln P (x)

Q(x) . Otherwise, if P and Q are continuous distributions, it is defined

as
∫
P (x) ln P (x)

Q(x) dx. The following Lemma 3.1 is frequently used in this paper and is a well known
property of KL divergence (see Cover [1999, Theorem 2.5.3], Li et al. [2020], Negrea et al. [2019]).
Lemma 3.1 (Chain Rule of KL). We are given two random sequences W = (W0, ...,WT ) and
W ′ = (W ′

0, ...,W
′
T ). Then, the following equation holds (given all KLs are well defined):

KL
(
W
∣∣∣∣W ′) = KL

(
W0

∣∣∣∣W ′
0

)
+

T∑
t=1

E
w∼W t−1

0

[
KL
(
Wt|W t−1

0 = w
∣∣∣∣W ′

t |W ′t−1
0 = w

)]
.

Here Wt|W t−1
0 = w denotes the distribution of Wt conditioning on W t−1

0 = (W0, . . . ,Wt−1) = w.

PAC-Bayesian. In this paper, we use the PAC-Bayesian bound presented in Catoni [2007] which

enjoys a tighter O(KL
(
Q
∣∣∣∣P ) /n) rate comparing to the traditional O(

√
KL
(
Q
∣∣∣∣P ) /n) bound,

but with a slightly larger constant factor on the empirical error. We restate their bound as follows.
Lemma 3.2 (Catoni’s Bound). (see e.g., Lever et al. [2013]) For any prior distribution P independent
of the training set S, any δ ∈ (0, 1), and any η > 0, the following bound holds w.p. ≥ 1 − δ over
S ∼ Dn:

E
W∼Q

[R(W,D)] ≤ ηCη E
W∼Q

[R(W,S)] + Cη ·
KL
(
Q
∣∣∣∣P )+ ln(1/δ)

n
(∀Q), (1)

where Cη = 1
1−e−η is an absolute constant.

Concentration inequality. We use the following variant of McDiramid inequality (Lemma 3.3)
to prove the concentration of cumulative gradient difference in Section 6. The proof is deferred to
Appendix C.
Lemma 3.3. Suppose Φ : [n]m → R+ is order-independent1 and |Φ(J)− Φ(J ′)| ≤ c holds for any
adjacent J, J ′ ∈ [n]m satisfying |J ∩ J ′| = m− 12. Let J be m indices sampled uniformly from [n]

without replacement. Then PrJ [Φ(J)− EJ [Φ(J)] > ϵ] ≤ exp(−2ϵ2

mc2 ).
1Φ(j1, ..., jm) = Φ(jπ1 , ..., jπm) holds for any input J = (j1, ..., jm) ∈ Ωm and any permutation π ∈ Sm.
2J ∩ J ′ := {i ∈ [n] : i ∈ J ∩ i ∈ J ′}.
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4 Data-Dependent PAC-Bayesian Bound

The dominating term in the PAC-Bayesian bound (1) is KL
(
Q
∣∣∣∣P ) /n, where P is a prior distribu-

tion independent of the training dataset S. Typically, without knowing any information from S, the
best possible bound for KL

(
Q
∣∣∣∣P ) we can hope is at least Θ(1) (it should not be a function of n

hence should not decrease with n). However, if we are allowed to see m data points from S when
constructing our prior, we may produce better prediction on posterior QS . The following theorem
enables us to use data-dependent prior in PAC-Bayesian bound. The proof is almost the same as
Cantoni’s original proof and we provide a proof for completeness in Appendix D.
Theorem 4.1 (Data-Dependent PAC-Bayesian). Suppose J is a random sequence including m
indices uniformly sampled from [n] without replacement. For any δ ∈ (0, 1) and η > 0, we have w.p.
≥ 1− δ over S ∼ Dn and J:

R(Q,D) ≤ ηCηR(Q,SI) + Cη ·
KL
(
Q
∣∣∣∣P (SJ)

)
+ ln(1/δ)

n−m
(∀Q),

where I = [n]\J is the set of indices not in J , P (SJ) is the prior distribution only depending on the
information of SJ (SJ is the subset of S indexed by J), and Cη := 1

1−e−η is a constant.

Remarks. Note that the above bound holds regardless of whether Q depends on S or not. Also
note that the first term in the right hand side isR(Q,SI), notR(Q,S) as in the usual generalization
bounds. We remark that for most of our learning algorithms that are independent of J (i.e., changing
J does not change the output Q), by standard Chernoff-Hoeffding inequality, R(Q,SI) can be
bounded byR(Q,S)+O(1/

√
n−m) with high probability over the randomness of J . For example,

the update rules of GLD, SGLD and CLD are independent of J , hence R(Q,SI) can be replaced
by R(Q,S) + O(1/

√
n−m) in Theorem 4.1. However, we point out a subtle point that FGD

(Algorithm 1) studied in this paper depends on J . It may be the case that by knowing J , FGD extracts
more information from SJ but not much from SI , unintentionally making R(Q,SI) a validation
error, rather than the training error as it should be. However, from our experiment (see Figure 5 and 6
in Appendix H, and Figure 2a), we can see that FGD is very close to GD and the SI errorR(WT , SI)
is indeed close to the training errorR(WT , S) and both are significantly smaller than the testing error
R(WT ,D). SoR(Q,SI) can be considered as a genuine training error in our study of FGD.

5 FGD and FSGD

In this section, we study the generalization error of finite precision variants of gradient descent
and stochastic gradient descent: Floored Gradient Descent (FGD) and Floored Stochastic Gradient
Descent (FSGD).

First we need to define the “floor” operation which is used in the definitions of FGD and FSGD.
Definition 5.1 (Floor). For any vector X ∈ Rd, let Y = floor(X) defined as:

Yi = floor(Xi) = ⌊Xi⌋ if Xi ≥ 0, = −⌊−Xi⌋ if Xi < 0, for all i ∈ [d].

FGD: The Floored Gradient Descent algorithm is formally defined in Algorithm 1, where (γt)t≥0

and (εt)t≥0 are the step size and precision sequences, respectively. For a subset Z ⊆ S, we write
∇f(Wt−1, Z) := 1

|Z|
∑

z∈Z ∇f(Wt−1, z). Note that FGD can be viewed as gradient descent with
given precision limit εt. We can see if we ignore the floor operation or let εt approach 0, FGD
reduces to the ordinary GD (see Appendix A). We also study momentum FGD, in which the 5th line
of Algorithm 1 is replaced by

Wt ←Wt−1 + α · (Wt−1 −Wt−2)− g2 − εt · floor((g1 − g2)/εt);

Here α > 0 is a constant. We remark that both FGD and its momentum version are deterministic
algorithms. The following theorem provides the generalization error bound for both algorithms.
Theorem 5.2. Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Then for any δ ∈ (0, 1), both FGD (Algorithm 1) and its momentum version
satisfy the following generalization bound w.p. at least 1− δ over S ∼ Dn and J:

R(WT ,D) ≤ ηCηR(WT , SI) + Cη ·
ln(1/δ) + 3

n−m
+

Cη ln(dT )

n−m

T∑
t=1

(
γ2
t

ε2t
∥gt∥2

)
,
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Algorithm 1: Floored Gradient Descent (FGD)
Input: Training dataset S = (z1, .., zn). Index set J .
Result: Parameter WT ∈ Rd.

1 Initialize W0 ← w0;
2 for t : 1→ T do
3 g1 ← γt∇f(Wt−1, S);
4 g2 ← γt∇f(Wt−1, SJ);
5 Wt ←Wt−1 − g2 − εt · floor((g1 − g2)/εt);
6 end

where d is the dimension of parameter space, I = [n]\J is the set of indices not in J , Cη := 1
1−e−η

is a constant, and gt := ∇f(Wt−1, S)−∇f(Wt−1, SJ).

Proof. We use Theorem 4.1 to prove our theorem for the momentum version. The ordinary FGD is
a special case of the momentum version with α = 0. The key is to construct the prior distribution
P (SJ) such that KL

(
WT

∣∣∣∣P (SJ)
)

is tractable. Let p be any real number in (0, 1/3). We first
define a stochastic process {W ′

0, . . . ,W
′
T }, by the following update rule (W ′

0 := w0):

W ′
t ←W ′

t−1 + α ·
(
W ′

t−1 −W ′
t−2

)
− γt∇f(W ′

t−1, SJ)− εt · ξt,

where ξt is a discrete random variable such that for all (a1, .., ad) ∈ Zd:

Pr[ξt = (a1, ..., ad)
⊤] :=

( ∞∑
i=−∞

pi
2

)−d

exp

(
−

d∑
k=1

ln(1/p)a2k

)
.

It is easy to verify that the sum of the probabilities (
∑

a∈Zd Pr[ξt = a]) equals to 1. Note that W ′
t

only depends on SJ . We define P (SJ) as the distribution of W ′
T .

Recall that W t
0 = (W0, ...,Wt) is the parameter sequence of FGD (Algorithm 1). Applying the chain

rule of KL-divergence (Lemma 3.1), we have:

KL
(
WT

∣∣∣∣P (SJ)
)
= KL

(
WT

∣∣∣∣W ′
T

)
≤ KL

(
WT

0

∣∣∣∣W ′T
0

)
=

T∑
t=1

E
w∼W t−1

0

[
KL
(
Wt|W t−1

0 = w
∣∣∣∣W ′

t |W ′t−1
0 = w

)]
=

T∑
t=1

KL
(
Wt|W t−1

0 = W t−1
0

∣∣∣∣W ′
t |W ′t−1

0 = W t−1
0

)
.

(2)

The last equation holds because FGD is deterministic. Let w = W t−1
0 . The distribution of

Wt|W t−1
0 = w (where w = (w0, ..., wt−1)) is a point mass on

wt−1 +α · (wt−1 − wt−2)− γt∇f(wt−1, SJ)− εt · floor
(
γt(∇f(wt−1, S)−∇f(wt−1, SJ))

εt

)
.

Let vector a = (a1, . . . , ad) = floor(γt

εt
(∇f(wt−1, S)−∇f(wt−1, SJ))). By the definition of W ′

t ,
we have

KL
(
Wt|W t−1

0 = w
∣∣∣∣W ′

t |W ′t−1
0 = w

)
= 1 · ln (1/Pr [ξt = a])

= ln

(( ∞∑
i=−∞

pi
2
)d)

+

d∑
k=1

ln(1/p) · a2k.

Since |i| ≤ i2 and p ∈ (0, 1/3), we have ln
(
(
∑∞

i=−∞ pi
2

)d
)

is at most d ln
(
1 + 2

∑∞
i=1 p

i
)
. It

can be further bounded by d ln (1 + 3p). Moreover, it can be bounded by 3dp as ln(1 + x) ≤
x. Thus, the above KL-divergence can be bounded by 3dp +

∑d
k=1 ln(1/p)a

2
k. Recall that the

7



kth entry of a is ak := ⌊γt

εt
· (∇kf(wt−1, S) − ∇kf(wt−1, SJ))⌋, which is less than or equal to

γt

εt
· (∇kf(wt−1, S)−∇kf(wt−1, SJ)). Therefore, we have

KL
(
Wt|W t−1

0 = w
∣∣∣∣W ′

t |W ′t−1
0 = w

)
≤ 3dp+

ln(1/p)γ2
t

ε2t
∥∇f(wt−1, S)−∇f(wt−1, SJ)∥22 .

Plugging the above inequality into (2), we have

KL
(
WT

∣∣∣∣P (SJ)
)
≤

T∑
t=1

(
3dp+

ln(1/p)γ2
t

ε2t
∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥22

)
.

We conclude our proof by plugging it into Theorem 4.1 (setting p = 1/(Td)).

FSGD: We can use a similar approach to prove a generalization bound for Floored Stochastic
Gradient Desent (FSGD). Formally, FSGD is identical to Algorithm 1 except for the definitions of g1
and g2 replaced with:

g1 ← ∇f(Wt−1, SBt), g2 ← ∇f(Wt−1, SBt∩J),

where Bt ⊆ [n] is a random batch independent of S, J and W t−1
0 . Formally, each Bt is a set

including b indices uniformly sampled from [n] without replacement. The following theorem provides
a generalization bound for FSGD. The proof can be found in Appendix E.
Theorem 5.3. Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Then for any δ ∈ (0, 1), ε ∈ (0, 1), FSGD satisfies the following generalization
bound: w.p. at least 1− δ over S ∼ Dn and J:

R(WT ,D) ≤ ηCηR(WT , SI) + Cη ·
ln(1/δ) + 3

n−m
+

Cη ln(dT )

n−m
E
BT

0

[
T∑

t=1

γ2
t

ε2t
∥gt∥2

]
,

where d is the dimension of parameter space, I = [n]\J , Cη := 1
1−e−η is a constant, and gt :=

f(Wt−1, SBt
)−∇f(Wt−1, SJ∩Bt

).

6 Gradient Langevin Dynamics
In this section, we present new generalization bounds for Gradient Langevin Dynamics (GLD) and
Stochastic Gradient Langevin Dynamics (SGLD) based on Theorem 4.1.

Gradient Langevin Dynamics (GLD): The GLD algorithm can be viewed as gradient descent
plus a Gaussian noise. Formally, for a given training set S ∼ Dn, the update rule of GLD is defined
as follows:

Wt+1 ←Wt −
γt+1

n

∑
z∈S

∇f(Wt, z) + σt+1N (0, Id), (GLD)

Here the gradient∇f(Wt, z) can be replaced with any gradient-like vector such as a clipped gradient.
The output of GLD is the last step parameter WT or some function of the whole training trajectory
WT

0 (e.g., the average of the suffix 1
K

∑T
t=T−K Wt).

We still use the data-dependent PAC-Bayesian framework (Theorem 4.1) to prove the generalization
bound for GLD. Unlike FGD (Algorithm 1), GLD is independent of the prior indices J , which
enables us to prove the following concentration bound (Lemma 6.1) for the gradient difference. The
proof is based on Lemma 3.3, which is postponed to Appendix F.
Lemma 6.1. Let S = (z1, ...zn) be any fixed training set. J is a random sequence including m
indices uniformly sampled from [n] without replacement, and W = (W0, ...,WT ) is any random
sequence independent of J . Then the following bound holds with probability at least 1− δ over the
randomness of J:

E
W

[
T∑

t=1

γ2
t

σ2
t

∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥2
]
≤ Cδ

m
E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
,

where Cδ = 4 + 2 ln(1/δ) + 5.66
√

ln(1/δ), and L(w) = maxi∈[n] ∥∇f(w, zi)∥.
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(a) entire training path (b) later stage (c) gradient difference

Figure 1: MNIST + CNN + FGD. In (a) and (b), we plot the true test error and our bound (Theorem 5.2
with η = 1.5, δ = 0.1). In (c), we show how cumulative gradient difference decreases as m (the size
of J) increases.

Now we are ready to present our main results. The proofs can be found in Appendix F.
Theorem 6.2. Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Let WT be the output of GLD. Then for any δ ∈ (0, 1

2 ) and η > 0, we have w.p.
≥ 1− 2δ over S ∼ Dn and J , the following holds (L(w) := maxz∈S ∥f(w, z)∥):

R(WT ,D) ≤ ηCηR(WT , SI) +
Cη ln(1/δ)

n−m
+

CηCδ

2(n−m)m
E

WT
0

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
,

where Cδ = 4 + 2 ln(1/δ) + 5.66
√

ln(1/δ), I = [n]\J and Cη = 1
1−e−η .

Stochastic Gradient Langevin Dynamics (SGLD): For a given training data set S, the update
rule of SGLD is defined as:

Wt+1 ←Wt − γt+1∇f(Wt, SBt
) + σt+1N (0, Id), (SGLD)

where Bt ∼ uniform([n])b is the mini-batch of size b at step t. Note that Bt is a sequence instead
of a set, thus it may include duplicate elements. Similar to the analysis of GLD, we can prove the
following bound for SGLD.
Theorem 6.3. Let WT be the output of SGLD when the training set is S, and J be a random sequence
with m indices uniformly sampled from [n] without replacement. For any δ ∈ (0, 1) and m ≥ 1, we
have w.p. ≥ 1− 2δ over S ∼ Dn and J , the following holds:

R(WT ,D) ≤ ηCηR(WT , SI) +
Cη ln(1/δ)

n−m
+

Cη

n−m

(
4

b
+

Cδ

2m

)
E

WT
0

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
,

where L(w) := maxz∈S ∥f(w, z)∥, Cδ = 4 + 2 ln(1/δ) + 5.66
√
ln(1/δ), Cη = 1

1−e−η , b is the
batch size, and I = [n]\J .
Remark 6.4. If the gradient norm is bounded3 and we use a decaying learning rate schedule such
as γt ∝ O(1/t), then the summation in our bound converges. Hence, under such a learning rate
schedule, Theorem 6.2 and 6.3 imply the following test error bound for GLD or SGLD:R(WT ,D) ≤
ηCηR(WT , SI) + Õ( 1

n−m ) which is independent of T , where Õ hides some logarithmic factors.

7 Experiment

In this section, we conduct experiments for FGD and FSGD on MNIST [LeCun et al., 1998] and
CIFAR10 [Krizhevsky et al., 2009] to investigate the the optimization and generalization properties
of FGD and FSGD, and the numerical closeness between our theoretical bounds and true test errors.
Due to space limit, the detailed experimental setting and some additional experimental results can be
found in Appendix H.

FGD/FSGD vs GD/SGD. We first demonstrate that the training and testing curves of FGD and GD
are nearly identical (we choose precision level ε = 0.005 or 0.004). We also show that the same is
true for FSGD vs SGD. Due to space limit, the figures are presented in Appendix H (Figure 5 and 6).

3∥∇f(w, z)∥ ≤ L holds for all w, z
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(a) training and test errors
(FSGD)

(b) our bound (c) gradient difference

Figure 2: CIFAR10 + SimpleNet + FSGD. In (a), we plot R(WT , SI), R(WT , S) and the test
error. We can see thatR(WT , SI) is very close toR(WT , S). In (b), we plot our theoretical bound
(Theorem 5.3 with η = 2, δ = 0.1). The red part corresponds to the first term of our bound (the
empirical risk) and the green part corresponds to the rest. The last step test error and our bound are
0.18 and 0.198, respectively. In (c), we show how cumulative gradient difference decreases as m
(the size of J) increases.

Non-vacuous bounds. For MNIST, we train a CNN (d = 1.4 · 106) by FGD with γt = 0.005 ·
0.9⌊

t
150 ⌋ and εt = 0.005 and momentum α = 0.9). The size m = |J | is set to n/2 = 30000. As

shown in Figure 1a and 1b, our bound (Theorem 5.2 with η = 1.5, δ = 0.1) tracks the testing error
closely. At step T = 990, our bound is 0.026 while the testing error is 0.011. This is non-vacuous
and tighter than best known 11% MNIST bound reported in Dziugaite et al. [2021]. For CIFAR10,
we train a SimpleNet [Hasanpour et al., 2016] without BatchNorm and Dropout. The number of
parameters d is nearly 18 · 106. We use FSGD to train our model. The learning rate γt is set to
0.001 · 0.9⌊t/200⌋, the precision εt is set to 0.004, and the momentum α is set to 0.99. The batch size
is 2000. m = |J | is set to n/5 = 10000. The result is shown in Figure 2b. We stop training at step
t = 8000 when the testing error is and 0.18. At that time, our testing error bound is 0.198 which is
non-vacuous and tighter than best known 0.23 CIFAR10 bound reported in Dziugaite et al. [2021].

Decrease of the gradient difference. Intuitively, the cumulative squared norm of gradient differ-
ence gt := ∇f(Wt, S)−∇f(Wt, SJ) should decrease as m = |J | increases. Although we cannot
prove a concentration like Lemma 6.1 (i.e., ∥gt∥2 scales as O(1/m)), we can still observe that ∥gt∥2
decreases when m increases. The results are depicted in Figure 1c and Figure 2c.

Random labels. We conduct the random label experiment designed in Zhang et al. [2017]. Our
theoretical bounds can distinguish the datasets with different portion (p) of random labels. See
Appendix H.

8 Conclusion

In this paper, we prove new generalization bounds for several gradient-based methods with either
discrete or continuous noises based on carefully constructed data-dependent priors. Recall that FGD
requires to compute the gradient difference for technical reasons. It would be more natural and
desirable if we only need to compute the full gradient and rounded to the nearest grid point. An
intriguing future direction is to free FGD/FSGD from the dependence of the prior subset J so that we
can apply the concentration on the gradient difference to obtain a tighter bound. Of course, a major
further direction is to obtain similar generalization bounds for vanilla GD and SGD, which remains
to be an important open problem in this line of work. Our technique can be useful for handling
deterministic algorithms and discrete noises, but it seems that new technical ideas or assumptions are
needed for tackling GD or SGD.
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A Floored Gradient Descent

FGD is a finite precision variant of GD. It decomposes the full gradient g1 := γt∇f(Wt, S) (used
in GD) into a sum of two parts, g2 := γt∇f(Wt, SJ) and ∆g := γt(g1 − g2) = γt∇f(Wt, S) −
γt∇f(Wt, SJ), where J ⊆ [n] is a subset fixed before training and SJ is the subset of training data
corresponding to index set J . Note that SJ is the “prior" dataset, rather than a mini-batch. Then
we reduce the precision of ∆g to εt by applying a floor-operation ∆′g := εtfloor(∆g/εt). Hence,
g2 +∆′g can be viewed as an approximation of full gradient g1 = g2 +∆g.

It is easy to see that if we ignore the floor operation or when εt goes to 0, FGD becomes GD. More
concretely, recall that the update rule of FGD is (WLOG let γt = 1):

Wt ←Wt−1 −∇f(Wt−1, SJ)− εt · floor
(
∇f(Wt−1, S)−∇f(Wt−1, SJ)

εt

)
.

(1) If we ignore the floor operation in the last term, the equation becomes

Wt ←Wt−1 −∇f(Wt−1, SJ)− εt ·
(
∇f(Wt−1, S)−∇f(Wt−1, SJ)

εt

)
= Wt−1 −∇f(Wt−1, SJ)− (∇f(Wt−1, S)−∇f(Wt−1, SJ))

= Wt−1 −∇f(Wt−1, S).

(2) When ε→ 0, it is easy to see that limε→0 ε ·floor(x/ε) = x. Again, the FGD update rule reduces
to

Wt ←Wt−1 −∇f(Wt−1, SJ)− (∇f(Wt−1, S)−∇f(Wt−1, SJ))

= Wt−1 −∇f(Wt−1, S).

The contribution of∇f(Wt−1, SJ) is canceled out, and again FGD becomes GD.

B Comparison with Existing Work

B.1 Numerical bounds on MNIST and CIFAR10

The following table (Table 1) lists some of existing theoretical test bounds for MNIST and CIFAR10.
Typically, for both datasets, one can fit the training set very well and obtain a near zero training error.
Hence, the generalization error bound is quite close to the theoretical test error bound. There is no
numerical experiment in Mou et al. [2018] and the number is excerpted from Negrea et al. [2019].
The first few rows are excerpted from Nagarajan and Kolter [2017].

B.2 Comparison with Existing GLD/SGLD bounds

We compare our bounds for GLD/SGLD (Theorem 6.2 and 6.3) with existing GLD/SGLD gen-
eralization bounds in prior work. For GLD, Mou et al. [2018] provide a generalization bound in
expectation based on the uniform stability framework, which is of rate O(L

√
T

n ), where L is the
global Lipschitz constant (ignoring the factors depending on γt and σt). Their bound can be tighten

to O( 1n

√∑T
t=1 L

2
t ) where Lt is the gradient norm at time t (which is always less than L) [Li et al.,

2020]. Their bounds can be converted to high probability bound with an additional factor O(1/
√
n)

using the technique developed in [Feldman and Vondrak, 2019]. Bounds of similar orders have been
also obtained through information theory [Wang et al., 2021, Haghifam et al., 2020] and differential
privacy [Wu et al., 2021]. Note that the main term in our bound is of order O( 1

n2

∑T
t=1 L

2
t ), which is

quadratically better than theirs if the bound is in (0, 1). For SGLD, Mou et al. [2018] and Li et al.
[2020] obtained similar bounds, but requires the assumption that the learning rate should be of order
O(1/L). Our bound for SGLD does not require such assumption and is more favorable for large
minibatch size b. For small value of b (say b = O(1)), our bound can be worse.

Another closely related work is Negrea et al. [2019]. They also use a data-dependent prior and present
an in-expectation bound based on information theory. They introduce a quantity called “incoherence”
∥ξt∥ that is defined somewhat similar to ∥gt∥ (it is also the norm of the different between two gradients
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Reference Algorithms Approach MNIST CIFAR10
Harvey et al. [2017] Any VC-dim large large
Bartlett et al. [2017] Any Margin-based large large

Golowich et al. [2018] Any Rademacher Complexity large large
Arora et al. [2018] Any Compression - large

Dziugaite and Roy [2017] OPT-PAC PAC-Bayes 0.161 -
Mou et al. [2018] SGLD PAC-Bayes ≈ 1.2 -

Li et al. [2020] GLD/SGLD Bayes-Stability ≈ 0.2 ≈ 207
Zantedeschi et al. [2021] Majority Votes PAC-Bayes ≈ 0.45 -

Zhou et al. [2019] Any PAC-Bayes 0.46 -
Negrea et al. [2019] SGLD Information theory 0.21 41.13

Haghifam et al. [2020] SGLD Information theory ≈ 0.15 ≈ 0.72
Dziugaite et al. [2021] OPT-PAC PAC-Bayes 0.11 0.23

Our bound FGD/FSGD PAC-Bayes 0.026 0.198

Table 1: Comparison with existing theoretical upper bounds of test errors on MNIST and CIFAR10.
“Any” means that the bound only depends on the trained network, not the training algorithm. “OPT-
PAC" means that the work optimizes a different loss function that corresponds to the PAC-Bayesian
bound. “large” means that the bound is far greater than 1 and “-” indicates the bound is not reported
in that paper.

defined by two different subsets of samples). They obtained an O(
√

1
n−m

∑T
t=1

γ2
t

σ2
t
E[∥ξt∥2]) bound

for SGLD. By taking expectation, it can be further bounded by O(
√

1
n

∑T
t=1(

1
b + (n−m)

nm )
γ2
t

σ2
t
Vt),

where Vt is a quantity about the same size as the variance of training gradients. In fact, they obtain a
worst case O( (n−m)2

n2

∑T
t=1

L2γ2
t

σ2
t
) bound for KL

(
Q
∣∣∣∣P (SJ)

)
, and if we plug it into Catoni’s PAC-

Bayesian bound (Theorem 4.1), one can obtain an O( 1
n−m + (n−m)

n2

∑T
t=1

γ2
t

σ2
t
L2) high probability

bound (see Theorem B.1 below for details). To make the 2nd term in their bound have the same
O(1/n2) rate as ours, one needs to set n − m = O(1) which would result in a large first term

1
n−m = Ω(1). Moreover, our construction of data-dependent prior P (SJ) is also very different from
theirs. Their idea is to use the gradients in SJ to cancel out the gradients in S while ours is based
on the property that the mean gradient on SJ is concentrated around the mean gradient of the whole
dataset S.
Theorem B.1. Suppose the loss f is L-Lipschitz (i.e., ∥∇f(w, z)∥ ≤ L holds for all w, z). Then for
GLD, we have the following bound holds w.p. at least 1− δ over the randomness of J and S ∼ Dn:

R(WT ,D) ≤ ηCηR(WT , S[n]\J) +O

(
ln(1/δ)

n−m
+

(n−m)

n2

T∑
t=1

γ2
t

σ2
t

L2

)
,

where Cη = 1
1−e−η .

Proof. Using a data-dependent prior P (SJ) defined in Negrea et al. [2019, Section 3.1.1], one can
obtain an O( (n−m)2

n2

∑T
t=1

γ2
t

σ2
t
L2) bound for KL

(
WT

∣∣∣∣P (SJ)
)

(see Negrea et al. [2019, Section
3.1.1] for details). We conclude the proof by plugging it into Theorem 4.1.

Mou et al. [2018] also obtain a high probability PAC-Bayesian bound of rate O(
√

1
n

∑T
t=1 e

−rtL2
t )

if there is an ℓ2-regularization in the loss (ignoring other factors depending on γt and σt). Here
e−rt < 1 is a decay factor depending on the regularization coefficient. There is a similar decay factor
in Wang et al. [2021]’s bound (the fact comes from strong data processing inequalities). Note that
without ℓ2-regularization, there is no such decay factor, and Mou et al. [2018]’s bound becomes
O(
√
T/n), which is looser than ours. From technical perspective, they use Fokker Planck equation

to track the time derivative of KL and Logarithmic Sobolev inequality to related KL with Fisher
information. We also use these tools for our generalization bound of Continuous Langevin dynamics
(CLD) (see Appendix G), but the general proof idea is very different.
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C Omitted Proofs in Section 3

In this section, we are going to prove a generalized McDiarmid’s inequality (Lemma 3.3). To avoid
frequently writing long expression Φ(j1, j2, ..., ji, Ji+1, ..., Jm), we briefly denoted it as Φ(ji1, J

m
i+1),

where jrl is a abbreviation of sequence (jl, jl+1, ..., jr). Before proving it, we need the following
lemma:
Lemma C.1 (Theorem 5.3 in Dubhashi and Panconesi [2009]). Let J = (J1, ..., Jm) be any random
sequence and Φ be a function of J . If for any i ∈ [m] and any fixed ji1 = (j1, .., ji), it satisfies∣∣∣∣∣ EJm

i+1

[Φ(ji1, J
m
i+1)|J i

1 = ji1]− E
Jm
i

[Φ(ji−1
1 , Jm

i )|J i−1
1 = ji−1

1 ]

∣∣∣∣∣ ≤ ci.

Then, the following inequality holds:

Pr
J

[
Φ(J)− E

J
[Φ(J)] > ϵ

]
≤ exp

(
− 2ϵ2∑m

i=1 c
2
i

)
.

Now we are able to prove our result.
Lemma. 3.3 Suppose Φ : [n]m → R+ is order-independent and |Φ(J)− Φ(J ′)| ≤ c holds for any
adjacent J, J ′ ∈ [n]m satisfying |J ∩ J ′| = m− 1. Let J be m indices sampled uniformly from [n]

without replacement. Then PrJ [Φ(J)− EJ [Φ(J)] > ϵ] ≤ exp(−2ϵ2

mc2 ).

Proof. It suffices to verify that the conditions in Lemma C.1 are satisfied. For any fixed ji1 =
(j1, ..., ji), let X and Y be two independent random variables with distribution equal to J |J i

1 = ji1
and J |J i−1

1 = ji−1
1 , respectively.

The goal is to find an upper bound ci for |E[Φ(X)]−E[Φ(Y )]|. We distinguish the following disjoint
events.

• E1 : Yi = ji.
Conditioning on this, we have Xm

i+1 and Y m
i+1 share the same distribution. Notice that

Xi
1 = Y i

1 . Thus, we have:

|E[Φ(X)− Φ(Y ) | E1]| = 0.

• E2 : Yi ̸= ji
⋂

Yi /∈ Xm
i+1

⋂
ji /∈ Y m

i+1.
Conditioning on this, both suffixes Xm

i+1 and Y m
i+1 are sampled from [n]\(ji1 ∪ J ′

i). Thus
their distributions are identical. We have

|E[Φ(X)|E1]− E[Φ(Y )|E2]|
≤ E

jmi+1∼Xm
i+1

[|Φ(ji−1
1 , ji, j

m
i+1)− Φ(ji−1

1 , Yi, j
m
i+1)|]

≤ c. (Assumption)

• E3 : Yi ̸= ji
⋂

Yi /∈ Xm
i+1

⋂
ji ∈ Y m

i+1.
Without loss of generality, we assume Yi+1 = ji. Then Xm−1

i+1 and Y m
i+2 share the same

distribution. Moreover, we have set(X)
⋂
set(Y ) = m − 1. The only different pair is

(Xm, Yi). Since Φ is order-independent, we have

|E[Φ(X)|E3]− E[Φ(Y )|E3]| ≤ c.

• E4 : Yi ̸= ji
⋂

Yi ∈ Xm
i+1

⋂
ji /∈ Y m

i+1.
Similar to the previous situation, we can prove

|E[Φ(X)|E4]− E[Φ(Y )|E4]| ≤ c.

• E5 : Yi ̸= ji
⋂

Yi ∈ Xm
i+1

⋂
ji ∈ Y m

i+1.
Without loss of generality, we assume Yi+1 = ji and Xi+1 = Yi. Then Xm

i+2 and Y m
i+2 have

the same distribution. It further implies

|E[Φ(X)|E5]− E[Φ(Y )|E5]| = 0.
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Putting these together, we have

|E[Φ(X)]− E[Φ(Y )]| ≤
5∑

k=1

Pr[Ek] · |E[Φ(X)|Ek]− E[Φ(Y )|Ek]|

≤ c · (Pr[E2
⋃
E3
⋃
E4])

= c · (Pr[Yi ̸= ji]− Pr[E5])

= c ·
(

n− i

n− i+ 1
− n− i

n− i+ 1
· 1

n− i
· 1

n− i

)
= c · n− i− 1

n− i
.

Therefore, we can apply Lemma C.1 with ci =
c(n−i−1)

n−i to obtain:

Pr
J

[
Φ(J)− E

J
[Φ(J)] > ϵ

]
≤ exp

(
−2ϵ2∑m
i=1 c

2
i

)
= exp

 −2ϵ2

c2
∑m

i=1
(n−i−1)2

(n−i)2

 .

D Omitted Proofs in Section 4

Theorem. 4.1 Suppose J is a random sequence including m indices uniformly sampled from [n]
without replacement. For any δ ∈ (0, 1) and η > 0, we have w.p. ≥ 1− δ over S ∼ Dn and J:

R(Q,D) ≤ ηCηR(Q,SI) + Cη ·
KL
(
Q
∣∣∣∣P (SJ)

)
+ ln(1/δ)

n−m
(∀Q),

where I = [n]\J , P (SJ) is the prior distribution only depending on the information of SJ , and
Cη := 1

1−e−η is a constant.

The proof is almost the same as Catoni [2007][Theorem 1.2.6]. We prove it here for completeness.

Proof. For any λ > 0, define Φ(x) := −n−m
λ ln(1− (1− e−

λ
n−m )x). To simplify notation, let PJ

denote P (SJ). The goal is to prove

E
S∼Dn,J

[
exp

(
sup

Q≪PJ

(λ(Φ(R(Q,D))−R(Q,SI))−KL
(
Q
∣∣∣∣PJ

))]
≤ 1. (3)

If (3) holds, we can apply Markov inequality to prove our theorem. Because for any random variable
satisfying E[eX ] ≤ 1, we have Pr[X > ln(1/δ)] = Pr[eX > 1

δ ] which is less than or equal to
E[eX ]
1/δ ≤ δ. It further implies with probability at least 1− δ:

Φ(R(Q,D)) ≤ R(Q,SI) +
KL
(
Q
∣∣∣∣PJ

)
+ ln(1/δ)

λ
. (4)

Note that Φ(x) : (0, 1)→ (0, 1) is an increasing function whose inverse is given by

Φ−1(x) =
1− exp(− xλ

n−m )

1− exp(− λ
n−m )

.

We can compose Φ−1 to both sides of (4) and use the basic inequality 1− exp(−x) ≤ x (∀x > 0)
to prove our theorem (let η = λ

n−m ).

It remains to prove (3). First it is easy to verify that Φ(x) is convex when x ∈ (0, 1). Hence, for any
Q, we have the following holds by Jensen’s inequality:

Φ(R(Q,D)) = Φ( E
w∼Q

R(w,D)) ≤ E
w∼Q

[Φ(R(w,D))].
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Define h(w) := λ(Φ(R(w,D))−R(w, SI)). Then, the LHS of (3) is less than or equal to

E
S,J

[
exp

(
sup

Q≪PJ

( E
w∼Q

[h(w)]−KL
(
Q
∣∣∣∣PJ

)
)

)]
= E

S,J

[
exp

(
ln E

w∼PJ

[exp(h(w))]

)]
.

The last equation is due to Donsker and Varadhan’s variational formula [Donsker and Varadhan,
1983]. Moreover, since the J and S are independent, and SI and SJ are independent, it can be
rewritten as

E
J

E
SJ∼Dm

E
SI∼Dn−m

E
w∼PJ

[exp(h(w))].

Note that SI is independent of PJ . We have the above formula is equal to

E
J

E
SJ∼Dm

E
w∼PJ

E
SI∼Dn−m

[exp(h(w))].

For any fixed w, J, SJ , let random sequence SI = (z1, .., zn−m). We have

E
SI∼Dn−m

[exp(h(w))] ≤
n−m∏
i=1

E
zi∼D

[
exp

(
λ

n−m
(Φ(R(w,D))−R(w, zi))

)]

=

n−m∏
i=1

1.

We give a detailed proof for the last equation. Suppose i ∈ [n] is fixed. Let b denote the random
variable R(w, zi). Note that b is a Bernoulli random variable with mean q := R(w,D). Thus, we
can directly compute the multiplier term:

exp

(
λ

n−m
(Φ(R(w,D))

)
E

zi∼D

 1

exp
(

λ
n−mR(w, zi)

)


=
1

1− (1− e−
λ

n−m )q
·
(
qe−

λ
n−m ·1 + (1− q)e0

)
= 1.

E Omitted Proofs in Section 5

FSGD Proofs. We formally define FSGD in Algorithm 2. The only difference is that we sample a
mini-batch Bt before each step. Recall that each Bt is a set including b indices uniformly sampled
from [n] without replacement.

Algorithm 2: Floored Stochastic Gradient Descent (FSGD)
Input: Training dataset S = (z1, .., zn). Index set J . Momentum coefficient α.
Result: Parameter WT ∈ Rd.

1 Initialize W0 ← w0;
2 for t : 1→ T do
3 Bt ← a random mini-batch with size nbatch;
4 g1 ← γt∇f(Wt−1, SBt);
5 g2 ← γt∇f(Wt−1, SJ∩Bt);
6 Wt ←W t−1

0 + α · (Wt−1 −Wt−2)− g2 − εt · floor((g1 − g2)/εt);
7 end
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Theorem. 5.3 Suppose J is a random sequence consisting of m indices uniformly sampled from [n]
without replacement. Then for any δ ∈ (0, 1), ε ∈ (0, 1), FSGD satisfies the following generalization
bound: w.p. at least 1− δ over S ∼ Dn and J:

R(WT ,D) ≤ ηCηR(WT , SI) + Cη ·
ln(1/δ) + 3

n−m
+

Cη ln(dT )

n−m
E

WT
0 ,BT

0

[
T∑

t=1

γ2
t

ε2t
∥gt∥2

]
,

where d is the dimension of parameter space, I = [n]\J includes indices out of J , Cη := 1
1−e−η is a

constant, and gt := f(Wt−1, SBt)−∇f(Wt−1, SJ∩Bt) is the gradient difference.

Proof. The proof is similar to that of Theorem 5.2. We still use Theorem 4.1 to prove our theorem.
Let p be an arbitrary real number in (0, 1/3). We define P (SJ) as the distribution of W ′

T obtained by
the following update rule (W ′

0 := w0):

W ′
t ←W ′

t−1 + α ·
(
W ′

t−1 −W ′
t−2

)
− γt∇f(W ′

t−1, SJ∩B′
t
)− εt · ξt,

where B′
t follows the same distribution as Bt, and ξt is a discrete random variable such that for all

(a1, .., ad) ∈ Zd:

Pr[ξt = (a1, ..., ad)
⊤] :=

( ∞∑
i=−∞

pi
2

)−d

exp

(
−

d∑
k=1

ln(1/p)a2k

)
.

By the chain-rule of KL divergence (Lemma 3.1), we have

KL
(
WT

∣∣∣∣W ′
T

)
≤ KL

(
WT

0

∣∣∣∣W ′T
0

)
=

T∑
t=1

E
w∼W t−1

0

[
KL
(
Wt|W t−1

0 = w
∣∣∣∣W ′

t |W ′t−1
0 = w

)]
.

Again by the chain-rule of KL divergence (the sequences are (W t−1
0 , Bt,Wt) and (W ′t−1

0 , B′
t,W

′
t )),

we have for any w:

KL
(
Wt|W t−1

0 = w
∣∣∣∣W ′

t |W ′t−1
0 = w

)
= KL

(
Bt|W t−1

0 = w
∣∣∣∣B′

t|W ′t−1
0 = w

)
+ E

B∼Bt

[
KL
(
Wt|(W t−1

0 , Bt) = (w,B)
∣∣∣∣W ′

t |(W ′t−1
0 , B′

t) = (w,B)
)]

.

Note that KL
(
Bt|W t−1

0 = w
∣∣∣∣B′

t|W ′t−1
0 = w

)
is equal to zero by definition of P (SJ). Moreover,

conditioning on W t−1
0 = W ′t−1

0 = w and Bt = B′
t = B, we have the KL divergence between

Wt and W ′
t is equal to ln(1/Pr[ξt = a]), where a = floor(γt

εt
(∇f(w, SBt

) − ∇f(w, SJ∩Bt
))).

Applying the method used in the proof of Theorem 1, we can prove

ln(1/Pr[ξt = a]) ≤ 3dp+
ln(1/p)γ2

t

ε2t
∥∇f(w, SB)−∇f(w, SJ∩B)∥22 .

Thus, the KL between posterior WT and prior W ′
T satisfies:

KL
(
WT

∣∣∣∣W ′
T

)
≤ 3Tdp+

ln(1/p)

ε2t

T∑
t=1

γ2
t E ∥∇f(Wt−1, SBt

)−∇f(Wt−1, SJ∩Bt
)∥22 .

We conclude our proof by plugging it into Theorem 4.1 (setting p = 1/(Td)).

F Omitted Proofs in Section 6

Lemma. 6.1 Let S = (z1, ...zn) be any fixed training set. J is a random sequence including m
indices uniformly sampled from [n] without replacement, and W = (W0, ...,WT ) is any random
sequence independent of J . Then the following bound holds with probability at least 1− δ over the
randomness of J:

E
W

[
T∑

t=1

γ2
t

σ2
t

∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥2
]
≤ Cδ

m
E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
,

where Cδ = 4 + 2 ln(1/δ) + 5.66
√

ln(1/δ), and L(w) = maxi∈[n] ∥∇f(w, zi)∥.
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Proof. The idea is to prove a concentration bound for the following function Φ via a modified
McDiarmid inequality (Lemma 3.3). Define function Φ : [n]m → R+ as follows:

Φ(J) :=

√√√√E
W

T∑
t=1

γ2
t

σ2
t

∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥2.

Let J and J ′ be any two “neighboring” sequences satisfying J ∩ J ′ = m− 1. It easy to verify that
Φ(J) is order-independent. Define Ut = ∇f(Wt−1, S)−∇f(Wt−1, SJ) and Vt = ∇f(Wt−1, SJ)−
∇f(Wt−1, SJ′). Note that W is independent of J . We can prove an upper bound for Φ(J ′)− Φ(J).

Φ(J ′)2 := E
W

T∑
t=1

γ2
t

σ2
t

∥Ut + Vt∥2

= E
W

T∑
t=1

γ2
t

σ2
t

(U⊤
t Ut + V ⊤

t Vt) + 2 E
W

T∑
t=1

γ2
t

σ2
t

U⊤
t Vt

≤ E
W

T∑
t=1

γ2
t

σ2
t

(U⊤
t Ut + V ⊤

t Vt) + 2

√√√√E
W

T∑
t=1

γ2
t

σ2
t

U⊤
t Ut

√√√√E
W

T∑
t=1

γ2
t

σ2
t

V ⊤
t Vt

=


√√√√E

W

T∑
t=1

γ2
t

σ2
t

∥Ut∥2 +

√√√√E
W

T∑
t=1

γ2
t

σ2
t

∥Vt∥2
2

≤

Φ(J) +
2

m

√√√√E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)2

]2

.

The last inequality holds because J and J ′ only differ in one element. Thus ∥Vt∥2 ≤ 1
m2L(Wt−1)

2

holds for any W and t. It implies Φ(J ′) ≤ Φ(J) + 2
m

√
EW

[∑T
t=1

γ2
t

σ2
t
L(Wt−1)2

]
. Similarly, we

can prove Φ(J) ≤ Φ(J ′) + 2
m

√
EW

[∑T
t=1

γ2
t

σ2
t
L(Wt−1)2

]
. Thus we have the following holds for

any J, J ′ differing in one element:

|Φ(J)− Φ(J ′)| ≤ 2

m

√√√√E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)2

]
.

Applying Lemma 3.3, we have for any ϵ > 0:

Pr
J

[
Φ(J)2 ≥ (ϵ+ E

J
[Φ(J)])2

]
= Pr

J

[
Φ(J)− E

J
[Φ(J)] ≥ ϵ

]

≤ exp

 −2mϵ2

4EW

[∑T
t=1

γ2
t

σ2
t
L(Wt−1)2

]
 . (5)

It remains to control the expectation:

E
J
[Φ(J)] = E

J

√√√√E
W

[
T∑

t=1

γ2
t

σ2
t

∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥2
]

≤

√√√√E
W

[
T∑

t=1

γ2
t

σ2
t
E
J
∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥2

]
(W ⊥ J)
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For any fixed W = (W0, ..,WT ) and t ≤ T , we define g[i] := ∇f(Wt−1, S)−∇f(Wt−1, zi). Let
J = (J1, ..., Jm). We bound the variance of∇f(Wt−1, SJ) as follows:

E
J
∥∇f(Wt−1, S)−∇f(Wt−1, SJ)∥2 = E

J

( 1

m

m∑
i=1

g[Ji]

)⊤(
1

m

m∑
i=1

g[Ji]

)
=

1

m2

m∑
i=1

m∑
j=1

E
Ji,Jj

[g[Ji]
⊤g[Jj ]]

=
m

m2 E
J1

[∥g[J1]∥2] +
m(m− 1)

m2 E
J1,J2

[g[J1]
⊤g[J2]]

=
1

m
E
J1

[∥g[J1]∥2] +
m− 1

mn(n− 1)

n∑
i=1

∑
j ̸=i

[g[i]⊤g[j]]

=
1

m
E
J1

[∥g[J1]∥2] +
m− 1

mn(n− 1)

 n∑
i=1

n∑
j=1

[g[i]⊤g[j]]−
n∑

i=1

g[i]⊤g[i]


≤ 4L(Wt−1)

2

m
. (

∑n
i=1 g[i] = 0 and g[i]⊤g[i] ≥ 0)

Therefore, we have

E
J
[Φ(J)] ≤

√√√√ 4

m
E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)2

]
.

Plugging the above inequality into (5) and replacing ϵ with

√
ln(1/δ)4EW

[∑T
t=1

γ2
t

σ2
t
L(Wt−1)2

]
2m , we

conclude that:

Pr
J

[
Φ(J)2 ≤

4 + 2 ln(1/δ) + 5.66
√
ln(1/δ)

m
E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]]
≥ 1− δ.

Theorem. 6.2 Suppose J is a random sequence consisting for m indices uniformly sampled from [n]
without replacement. Let WT be the output of GLD. Then for any δ ∈ (0, 1

2 ) and η > 0, we have w.p.
≥ 1− 2δ over S ∼ Dn and J , the following holds:

R(WT ,D) ≤ ηCηR(WT , S[n]\J) +
Cη ln(1/δ)

n−m
+

CηCδ

2(n−m)m
E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
,

where L(w) := maxz∈S ∥f(w, z)∥, Cδ = 4 + 2 ln(1/δ) + 5.66
√
ln(1/δ), and Cη = 1

1−e−η .

Proof. of Theorem 6.2 We use Theorem 4.1 to prove our theorem. The prior process is defined
below.

W ′
t ←W ′

t−1 − γt∇f(W ′
t−1, SJ) + σtN (0, Id).

Then P (SJ) is defined by the distribution of W ′
T . The key is to bound the kl-divergence

KL
(
WT

∣∣∣∣W ′
T

)
. Applying chain-rule of kl, we have

KL
(
WT

∣∣∣∣W ′
T

)
≤

T∑
t=1

E
w∼Wt−1

[KL
(
Wt|Wt−1 = w

∣∣∣∣W ′
t |W ′

t−1 = w
)
].

Note that KL
(
Wt|Wt−1 = w

∣∣∣∣W ′
t |W ′

t−1 = w
)

is equal to KL
(
N (µ, σ2

t I)
∣∣∣∣N (µ′, σ2

t I)
)
, where

µ = w − γt∇f(w, S) and µ′ = w − γt∇f(w, SJ). One can directly compute the kl divergence of
these two gaussian distributions (see e.g., Duchi [2007, Section 9]) to obtain

KL
(
Wt|Wt−1 = w

∣∣∣∣W ′
t |W ′

t−1 = w
)
=
∥µ− µ′∥2

2σ2
t

=
γ2
t

2σ2
t

∥∇f(w, S)−∇f(w, SJ)∥2 .
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Putting this together, we have

KL
(
WT

∣∣∣∣W ′
T

)
≤ E

W

[
T∑

t=1

γ2
t

2σ2
t

∥∇f(w, S)−∇f(w, SJ)∥2
]
.

Recall that W = (W1, ..,WT ) is the training trajectory w.r.t. S. By Lemma 6.1, we can infer that
w.p. at least 1− δ over J , the above term is at most

Cδ

2m
E
W

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
.

We conclude our proof by using an union bound over S and J .

Theorem. 6.3 Let WT be the output of SGLD when the training set is S, and J be a random sequence
with m indices uniformly sampled from [n] without replacement. For any δ ∈ (0, 1) and m ≥ 1, we
have w.p. ≥ 1− 2δ over S ∼ Dn and J , the following holds:

R(WT ,D) ≤ ηCηR(WT , SI) +
Cη ln(1/δ)

n−m
+

Cη

n−m

(
4

b
+

Cδ

2m

)
E

WT
0

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2

]
,

where L(w) := maxz∈S ∥f(w, z)∥, Cδ = 4 + 2 ln(1/δ) + 5.66
√
ln(1/δ), Cη = 1

1−e−η , b is the
batch size, and I = [n]\J .

Proof. Similar to Theorem 6.2, we Theorem 4.1 to bound the generalization by the KL from the
posterior to a data-dependent prior P (SJ). We define the prior distribution P (SJ) as the output
distribution of SGLD trained on SJ . Formally, it is the distribution of W ′

T defined below:

W ′
t+1 ←W ′

t − γt∇f(Wt, SB′
t
) + σtN (0, Id),

where B′
t ∼ uniform([n])b is the mini-batch indices at step t. It is independent of other random

variables including W t−1
0 ,W ′t−1

0 , Bt−1
0 and B′t−1

0 . For any fixed S, let W and W ′ be the training
trajectory of posterior and prior, respectively. By the chain-rule of KL-divergence, we have

KL
(
WT

∣∣∣∣P (SJ)
)
≤

T∑
t=1

E
wt−1∼Wt−1

[KL
(
Wt|Wt−1 = wt−1

∣∣∣∣W ′
t |W ′

t−1 = wt−1

)
]. (6)

For any fixed wt−1, let q and p be the pdfs of Wt|Wt−1 = wt−1 and W ′
t |W ′

t−1 = wt−1, respectively.
By the definition of SGLD, we have q = EBt [q

Bt ] and p = EB′
t
[pB

′
t ], where

qBt = N (wt−1 − γt∇f(wt−1, Bt), σ
2
t I),

pB
′
t = N (wt−1 − γt∇f(wt−1, B

′
t), σ

2
t I).

By the convexity of KL-divergence, we can apply Jensen’s inequality to obtain

KL
(
q
∣∣∣∣ p) = KL

(
E

Bt,B′
t

[qBt ]
∣∣∣∣ E

Bt,B′
t

[pB
′
t ]

)
≤ E

Bt,B′
t

[
KL
(
qBt

∣∣∣∣ pB′
t

)]
≤ E

Bt,B′
t

[
γ2
t ∥∇f(wt−1, Bt)−∇f(wt−1, B

′
t)∥

2
2

2σ2
t

]
.

For convenience, we define g(A) := 1
|A|
∑

z∈A∇f(wt−1, z) for any A ⊆ S. Moreover, let a, b and
c be g(SBt

)−g(S), g(SJ)−g(SB′
t
), and g(S)−g(SJ), respectively. Then we can rewrite the above
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inequality as

KL
(
q
∣∣∣∣ p) ≤ γ2

t

2σ2
t

E
Bt,B′

t

[
∥∥g(SBt

)− g(SB′
t
)
∥∥2
2
]

=
γ2
t

2σ2
t

E
Bt,B′

t

[
∥∥g(SBt)− g(S) + g(SJ)− g(SB′

t
) + g(S)− g(SJ)

∥∥2
2
]

≤ γ2
t

2σ2
t

E
Bt,B′

t

[∥a+ b+ c∥22]

≤ γ2
t

2σ2
t

E
Bt,B′

t

[a⊤a+ a⊤(b+ c) + b⊤b+ b⊤(a+ c) + c⊤c+ c⊤(a+ b)]

=
γ2
t

2σ2
t

E
Bt,B′

t

[a⊤a+ b⊤b+ c⊤c].

The last step is because a = g(SBt) − g(S) is independent of b = g(SJ) − g(SB′
t
) and E[a] =

E[b] = 0. Note that E[a⊤a] = Var[g(SBt
)] is at most 4L(wt−1)

2

b . Similarly, we can show that

E[b⊤b] ≤ 4L(wt−1)
2

b . Since c⊤c is a constant when S and wt−1 is fixed, we have the following
bound:

KL
(
q
∣∣∣∣ p) ≤ γ2

t

2σ2
t

(
8L(wt−1)

2

b
+ ∥∇f(wt−1, S)−∇f(wt−1, SJ)∥22

)
.

Plugging the above inequality into (6), we have

KL
(
W
∣∣∣∣W ′) ≤ T∑

t=1

E
wt−1∼Wt−1

[
4γ2

tL(wt−1)
2

bσ2
t

+
γ2
t

2σ2
t

∥∇f(wt−1, S)−∇f(wt−1, SJ)∥22

]
.

Lemma 6.1 shows that with probability at least 1− δ over J the following holds:

E
WT

0

[
T∑

t=1

γ2
t

σ2
t

∥∇f(wt−1, S)−∇f(wt−1, SJ)∥22

]
≤ Cδ

m
E

[
T∑

t=1

γ2
t

σ2
t

L(Wt−1)
2.

]
The KL divergence satisfies the following bound w.p ≥ 1− δ over J :

KL
(
WT

∣∣∣∣P (SJ)
)
≤ E

WT
0

[
T∑

t=1

γ2
t

σ2
t

(
4

b
+

Cδ

2m

)
L(Wt−1)

2

]
.

We conclude our proof by plugging it into Theorem 4.1 and applying an union bound.

G Continuous Langevin Dynamics

If we let the step size γt approach 0, GLD would become a coninuous diffusion process called
Continuous Langevin Dynamics (CLD). Formally, for any fixed S, it is defined by the following
stochastic differential equation:

dWt = −∇F (Wt, S) dt+
√
2β−1 dBt, W0 ∼ µ0, (CLD)

where F (w, S) := f(w, S)+ λ
2 ∥w∥

2, (Bt)t≥0 is the standard Brownian motion, and µ0 is the initial
distribution. The loss function F is the sum of a bounded original loss f and a ℓ2-regularization. The
main result of this section is the O( 1n + 1

n2 ) generalization bound (Theorem G.6) for CLD. Before
proving our main theorem, we first introduce two important mathematical tools.
Lemma G.1 (Fokker-Planck Equation). (see e.g., Risken [1996] or Mou et al. [2018, Appendix C])
For any fixed S, let p(·, t) be the pdf of Wt defined in CLD. The time evolution of p(w, t) follows the
Fokker-Planck equation:

∂p(w, t)

∂t
=

1

β
∆p(w, t)−∇ · (p(w, t)∇F (·, S)),

where ∆ = ∇ ·∇ is the Laplace operator, and∇ is the gradient operator w.r.t the first argument (w).
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The following Log-Sobelev inequality for pt is proven in Li et al. [2020, Lemma 16], which bounds
the Fisher information from below by the KL divergence.
Lemma G.2 (Log-Sobelev Inequality (LSI) for CLD). Suppose f(w, z) is C-bounded (i.e.,
|f(w, z)| ≤ C holds for all w, z). Let pt be the pdf of Wt in CLD with W0 ∼ N (0, 1

λβ Id). Then,
we have for any probability density function q that is absolutely continuous w.r.t. pt, the following
inequality holds:

KL
(
q
∣∣∣∣ pt) ≤ exp(8βC)

2λβ

∫
Rd

∥∥∥∥∇ ln
q(w)

pt(w)

∥∥∥∥2 q(w) dw.
Applying Theorem 4.1 to CLD, we can obtain the following corollary. The proof for bounding KL
uses similar idea developed in Li et al. [2020][Theorem 15].
Corollary G.3. Assume the original loss function f(w, z) is C-bounded (i.e., |f(w, z)| ≤ C holds for
any w and z), and the initial distribution satisfies dµ0 = 1

Z e−
λβ∥w∥2

2 dw. Let QS be the distribution
of WT in CLD. Let J be a random sequence include m indices uniformly sampled from [n] without
replacement. Then with probability at least 1 − δ over the randomness of S ∼ Dn and J , the
following holds:

R(QS ,D) ≤ηCηR(QS , SI) +
Cη ln(1/δ)

n−m

+
Cηβ

2(n−m)

∫ T

0

exp

(
λ(t− T )

e8βC

)
E

w∼Wt

[∥∇F (w, S)−∇F (w, SJ)∥22] dt,

where Cη := 1
1−e−η is a constant.

Proof. Let P (SJ) := QSJ
be the output distribution of CLD when training data is SJ . From

Theorem 4.1, we can see that

R(QS ,D) ≤ ηCηR(QS , SI) + Cη ·
KL
(
QS

∣∣∣∣P (SJ)
)
+ ln(1/δ)

n−m
. (7)

The key is to control KL
(
QS

∣∣∣∣P (SJ)
)
. Let W = (Wt)t≥0 and W ′ = (W ′

t )t≥0 be the training
processes when trained on S and SJ , respectively. Let qt and pt be the probability density function of
Wt and W ′

t , respectively. Note that KL
(
QS

∣∣∣∣P (SJ)
)

is equal to KL
(
qT
∣∣∣∣ pT ). We first compute

the upper bound of its derivative d
dtKL

(
qt
∣∣∣∣ pt) w.r.t. time t.

d

dt
KL
(
qt
∣∣∣∣ pt) = d

dt

∫
Rd

qt log
qt
pt

dw

=

∫
Rd

(
dqt
dt

log
qt
pt

+ qt ·
pt
qt
·

dqt
dt pt − qt

dpt

dt

p2t

)
dw

=

∫
Rd

(
dqt
dt

log
qt
pt

)
dw −

∫
Rd

(
qt
pt

dpt
dt

)
dw

(8)

According to Fokker-Planck Equation (Lemma G.1), we can compute the derivative of CLD pdfs
w.r.t time t:

∂qt
∂t

=
1

β
∆qt +∇ · (qt∇F (·, S)), ∂pt

∂t
=

1

β
∆pt +∇ · (pt∇F (·, SJ)).

It follows that

I :=

∫
Rd

(
dqt
dt

log
qt
pt

)
dw

=

∫
Rd

(
1

β
∆qt +∇ · (qt∇F (w, S))

)
log

qt
pt

dw

=
−1
β

∫
Rd

⟨∇ log
qt
pt
,∇qt⟩ dw −

∫
Rd

⟨∇ log
qt
pt
, qt∇F (w, S)⟩ dw, (integration by parts)
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and

J :=

∫
Rd

(
qt
pt

dpt
dt

)
dw

=

∫
Rd

qt
pt

(
1

β
∆pt +∇ · (pt∇F (w, SJ))

)
dw

=
−1
β

∫
Rd

⟨∇ qt
pt
,∇pt⟩ dw −

∫
Rd

⟨∇ qt
pt
, pt∇F (w, SJ)⟩ dw. (integration by parts)

Together with (8), we have

d

dt
KL
(
qt
∣∣∣∣ pt) = I − J

=
−1
β

∫
Rd

(
⟨∇qt
qt
− ∇pt

pt
,∇qt⟩ − ⟨

∇qt
pt
− qt∇pt

p2t
,∇pt⟩

)
dw

−
∫
Rd

(
⟨∇ log

qt
pt
, qt∇F (w, S)⟩ − qt

pt
⟨∇ log

qt
pt
, pt∇F (w, SJ)⟩

)
dw

=
−1
β

∫
Rd

qt

∥∥∥∥∇ log
qt
pt

∥∥∥∥2
2

dw +

∫
Rd

qt⟨∇ log
qt
pt
,∇F (w, S)−∇F (w, SJ)⟩ dw

≤ −1
2β

∫
Rd

qt

∥∥∥∥∇ log
qt
pt

∥∥∥∥2
2

dw +
β

2

∫
Rd

qt ∥∇F (w, S)−∇F (w, SJ)∥22 dw.

The last step holds because ⟨a/
√
β,b
√
β⟩ ≤ ∥a∥2

2

2β +
β∥b∥2

2

2 . By the Log-Sobolev inequality for CLD
(Lemma G.2), we have ∫

Rd

qt

∥∥∥∥∇ log
qt
pt

∥∥∥∥2
2

dw ≥ 2λβ

exp(8βC)
KL
(
qt
∣∣∣∣ pt) .

Hence the derivative satisfies the following bound:

d

dt
KL
(
qt
∣∣∣∣ pt) ≤ −λ

exp(8βC)
KL
(
qt
∣∣∣∣πt

)
+

β

2
E
Wt

[∥∇F (Wt, S)−∇F (Wt, SJ)∥22].

Let α = λ
e8βC , y(t) := KL

(
qt
∣∣∣∣ pt), and g(t) = β

2 EWt
[∥∇F (Wt, S)−∇F (Wt, SJ)∥22]. Then we

can rewrite the above inequality as

y(t)′ ≤ −αy(t) + g(t), y(0) = 0.

Solving this inequality, we have

KL
(
qT
∣∣∣∣ pT ) ≤ β

2

∫ T

0

exp

(
λ(t− T )

e8βC

)
E
Wt

[∥∇F (Wt, S)−∇F (Wt, SJ)∥22] dt.

The following Lemma G.5 demonstrates that the integral of the gradient difference ∥∇FS −∇FSJ
∥22

enjoys a concentration property like Lemma 6.1.
Definition G.4 (Lipschitz). A differentiable function is L-Lipschitz if and only if ∥∇wf(w, z)∥ ≤ L
holds for any w ∈ Rd.

Lemma G.5. Suppose the loss function f is L-Lipschitz. Let S ∈ Zn be any fixed training set, and
W = (Wt)t∈[0,T ] be any random process. For any α > 0, we have the following bound holds w.p.
≥ 1− δ over the randomness of J (m indices sampled from [n] without replacement):

E
W

[∫ T

0

eα(t−T ) ∥f(Wt, S)− f(Wt, SJ)∥22 dt

]
≤ CδL

2(1− e−αT )

αm
,

where Cδ = 4 + 2 ln(1/δ) + 5.66
√
ln(1/δ).
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Proof. Define function Φ : [n]m → R+ as follows:

Φ(J) :=

√√√√E
W

[∫ T

0

eα(t−T ) ∥f(Wt, S)− f(Wt, SJ)∥22 dt

]
.

Let J and J ′ be any two “neighboring” index-sets. In other words, they should satisfy J∩J ′ = m−1.
Similar to the proof of Lemma 6.1, we first show that |Φ(J) − Φ(J ′)| is small. Formally, define
Ut = ∇f(Wt−1, S)−∇f(Wt−1, SJ) and Vt = ∇f(Wt−1, SJ)−∇f(Wt−1, SJ′). We have

Φ(J ′)2 := E
W

[∫ T

0

eα(t−T ) ∥Ut + Vt∥22 dt

]

= E
W

[∫ T

0

eα(t−T )
(
U⊤
t Ut + V ⊤

t Vt

)
dt

]
+ 2 E

W

[∫ T

0

eα(t−T )U⊤
t Vt dt

]

≤ E
W

[∫ T

0

eα(t−T )
(
∥Ut∥22 + ∥Vt∥22

)
dt

]

+ 2

√√√√E
W

[∫ T

0

eα(t−T ) ∥Ut∥22 dt

]√√√√E
W

[∫ T

0

eα(t−T ) ∥Vt∥22 dt

]

=


√√√√E

W

[∫ T

0

eα(t−T ) ∥Ut∥22 dt

]
+

√√√√E
W

[∫ T

0

eα(t−T ) ∥Vt∥22 dt

]2

=

Φ(J) +

√√√√E
W

[∫ T

0

eα(t−T ) ∥Vt∥22 dt

]2

.

For any fixed W , we have ∫ T

0

eα(t−T ) ∥Ut∥22 dt ≤
∫ T

0

eα(t−T ) 4L
2

m2
dt

=
4L2(1− eαT )

αm2
.

Plugging it into the above inequality, we obtain

Φ(J ′)2 ≤

(
Φ(J) +

2L

m

√
1− e−αT

α

)2

.

The other direction can be proved in a same way. Therefore, for any J and J ′ that are different in
only one element, we have:

|Φ(J)− Φ(J ′)| ≤ 2L

m

√
1− eαT

α
.

Applying Lemma 3.3, one can infer that for any ϵ > 0:

Pr
J

[
Φ(J)− E

J
[Φ(J)] ≥ ϵ

]
≤ exp

(
−2mϵ2

4L2(1− e−αT )/α

)
.

It further implies that

Pr
J

[
Φ(J)2 ≥ (ϵ+ E

J
[Φ(J)])2

]
≤ exp

(
−2mϵ2

4L2(1− e−αT )/α

)
. (9)
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It remains to bound the expectation:

E
J
[Φ(J)] = E

J

√√√√E
W

[∫ T

0

eα(t−T ) ∥f(Wt, S)− f(Wt, SJ)∥22 dt

]

≤

√√√√E
W

[∫ T

0

eα(t−T ) E
J
[∥f(Wt, S)− f(Wt, SJ)∥22] dt

]

≤

√∫ T

0

eα(t−T )
4L2

m
dt (a)

=
2L√
m

√
1− e−αT

α
,

Plugging it into (9) and replacing ϵ with
√

4L2(1−e−αT )/α·ln(1/δ)
2m , we can conclude the proof. It

remains to prove (a) in the above inequality. For any fixed W and t ∈ [0, T ], we define g[i] :=
∇f(Wt, S)−∇f(Wt, zi). Let J = (J1, ..., Jm). We bound the variance of∇f(Wt, SJ) as follows:

E
J
∥∇f(Wt, S)−∇f(Wt, SJ)∥2 = E

J

( 1

m

m∑
i=1

g[Ji]

)⊤(
1

m

m∑
i=1

g[Ji]

)
=

1

m2

m∑
i=1

m∑
j=1

E
Ji,Jj

[g[Ji]
⊤g[Jj ]]

=
m

m2 E
J1

[∥g[J1]∥2] +
m(m− 1)

m2 E
J1,J2

[g[J1]
⊤g[J2]]

=
1

m
E
J1

[∥g[J1]∥2] +
m− 1

mn(n− 1)

n∑
i=1

∑
j ̸=i

[g[i]⊤g[j]]

=
1

m
E
J1

[∥g[J1]∥2] +
m− 1

mn(n− 1)

 n∑
i=1

n∑
j=1

[g[i]⊤g[j]]−
n∑

i=1

g[i]⊤g[i]


≤ 4L2

m
. (

∑n
i=1 g[i] = 0 and g[i]⊤g[i] ≥ 0)

Now we are ready to prove our generalization bound for CLD.

Theorem G.6. Assume the original loss function f(w, z) is C-bounded (i.e. |f(w, z)| ≤ C holds
for all w, z), and W0 ∼ N (0, 1

λβ Id). Let WT be the output of CLD. Then, for any δ ∈ (0, 1) and
η > 0, we have the following inequality holds with probability at least 1− 2δ over the randomness of
S ∼ Dn and J (m indices uniformly sampled from [n] without replacement):

R(WT ,D) ≤ηCηR(WT , SI) +
Cη ln(1/δ)

n−m
+

CηCδβL
2 · e8βC

(
1− exp(− λT

e8βC )
)

2λ(n−m)m
,

where Cδ = 4 + 2 ln(1/δ) + 5.66
√
ln(1/δ), Cη = 1

1−e−η , and I = [n]\J .
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Proof. Let W = (Wt)t∈[0,T ] be the training trajectory of CLD when dataset is S. Applying
Lemma G.5 with α = λ

e8βC , we have w.p. ≥ 1− δ over J :∫ T

0

exp

(
λ(t− T )

e8βC

)
E
Wt

[∥∇F (Wt, S)−∇F (Wt, SJ)∥22] dt

= E
W

[∫ T

0

exp

(
λ(t− T )

e8βC

)
∥∇f(Wt, S)−∇f(Wt, SJ)∥22 dt

]

≤
CδL

2 · e8βC
(
1− exp(− λT

e8βC )
)

λm
.

we conclude our proof by plugging it into Corollary G.3 and use an union bound over S and J .

H Experimental Details

We train our model on a single server equipped with Intel Xeon CPU (2.40GHZ, 16 cores), 256G
memory, and GeForce GTX 1080 Ti (11G) GPU.

Models. For MNIST experiments, we use a CNN defined as follows (conv kernel size is 5× 5):

1 2 3 4
conv(32) + relu conv(512) fc(1024) + relu fc(10)
conv(32) + relu relu

maxpool(2)

For CIFAR10 experiments, we use a modifed version (turnoff the BatchNorm and Dropout) of
SimpleNet [Hasanpour et al., 2016] which is defined below (convolution kernel size is 3× 3):

1 2 3 4 5 6
conv(64) + relu conv(128) + relu conv(256) + relu conv(512) + relu conv(2048) + relu conv(256)
conv(64) + relu conv(128) + relu conv(256) + relu conv(256) + relu
conv(64) + relu conv(256) + relu
conv(64) + relu

maxpool(2) maxpool(2) maxpool(2) maxpool(2) maxpool(2) fc(10)

Train FGD on MNIST. We train a CNN defined above by FGD (εt = 0.005, momentum α = 0.9,
m = n/2 = 30000) 20 times (with different initialization w0 and J). We plot the means and stds
(error bar) in Figure 1a and 1b. Recall that the bound at step T is the RHS of Theorem 5.2 (η = 1,
δ = 0.1, d = 1, 407, 370):

bound =
1

1− e−1

[
R(WT , SI) +

ln(10) + 3

30000
+

ln(dT )

30000

T∑
t=1

γ2
t

ε2t
∥gt∥2

]
,

where gt := ∇f(Wt−1, S)−∇f(Wt−1, SJ) is deterministic when w0, J are fixed.

We also study how the prior size m affects the squared norm of gradient difference ∥gt∥2. We test 9
different choices of m (from 1000 to 9000). For each prior size m = |J |, we run our experiment 30
times and report the means and stds (error bar) in Figure 1c.

Train FSGD on CIFAR10. It should be very time-consuming to train our SimpleNet on CIFAR10
by FGD as it requires computing full gradient and demands for more training steps. Hence we use the
stochastic FSGD (Algorithm 2) to train our model. The learning rate γt and the precision εt are set to
0.001 · 0.9⌊ t

200 ⌋ and 0.004, respectively. At each step, the random mini-batch with size b = 2000 is
made up of 1000 indices uniformly sampled from I and 1000 indices uniformly sampled from J . We
run FSGD (m = n/5 = 10000) 15 times and report the means and stds (error bar) in Figure 2a, 2b
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(a) training accuracy (b) test error (c) our bound

Figure 3: Random labels (MNIST + FGD). Here p is the portion of random labels.

(a) (b) (c)

Figure 4: Random labels (FSGD + CIFAR10).

and 2c, where the bound is the RHS of Theorem 5.3 ( η = 2, δ = 0.1, d = 18, 072, 202):

bound =
1

1− e−3

[
3R(WT , SI) +

ln(10) + 3

40000
+

T∑
t=1

γ2
t

ε2t
∥gt∥2

]
,

where gt := ∇f(Wt−1, SBt) − ∇f(Wt−1, SJ∩Bt) is the gradient difference w.r.t. this run. Note
that in Theorem 5.3, the bound should take expectation over the randomness of BT

0 . However, one
can view the random seed generating BT

0 is fixed so that FSGD becomes a deterministic algorithm.

Random labels. We conduct the random label experiment designed in Zhang et al. [2017]. We
replace the true labels of some training samples with random labels. The portion of random labels
is specified by p (0 ≤ p ≤ 1). Concretely, if the training dataset includes n samples, the labels of
np samples (randomly chosen) are replaced with random labels. We use the same neural network
architectures as above. In Figure 3, we train a CNN defined above by FGD (εt = 0.0005, γt =

0.0005 × 0.9⌊
t

150 ⌋ momentum α = 0.9, m = n/2 = 30000) 20 times per random portion p. In
Figure 4, we train a SimpleNet by FSGD (γt = 0.001 · 0.9⌊ t

200 ⌋ and ϵt = 0.004) 10 times per random
portion p. One can see that even for such datasets with larger true test errors, our bounds are still
non-vacuous.

FGD vs GD We attempt to show that the performance of FGD (Algorithm 1) with reasonable
precision εt is similar to the traditional Gradient Descent (GD) defined below (with momentum α):

Wt ←Wt−1 + α(Wt−1 −Wt−2) + γt∇f(Wt−1, S). (GD)

We train a CNN defined above on MNIST by GD (γt = 0.005×0.9⌊
t

150 ⌋, α = 0.9). And we compare
the training curves with that of FGD under the same hyper-parameter setting (εt = γt = 0.005,
α = 0.9). We repeat our experiment on GD 25 times. The result is shown in Figure 5. As we can see
from the figures, the optimization as well as generalization performance of GD and FGD are close.

FSGD vs SGD We also show that the performance of FSGD (Algorithm 2) with reasonable
precision εt is very close to the ordinary Stochastic Gradient Descent (SGD) defined below (with
momentum α and a). The only difference is that we sample a mini-batch Bt before each step.:

Wt ←Wt−1 + α(Wt−1 −Wt−2) + γt∇f(Wt−1, SBt
). (SGD)

We train a SimpleNet defined above on CIFAR10 by SGD (γt = 0.001, α = 0.99). And we compare
the training curves with that of FSGD under the same hyper-parameter setting (εt = 0.001, γt =
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(a) FGD (b) GD (c) together

Figure 5: MNIST: FGD vs GD. In (c), we plot FGD and GD together. As we can see that, the curves
of FGD and GD are almost coincident.

(a) FSGD (b) SGD (c) together

Figure 6: CIFAR10: FSGD vs SGD.

0.001 × 0.9⌊
t

200 ⌋, α = 0.99). We repeat our experiment on SGD 10 times. The result is shown in
Figure 6. As we can see from the figures, the optimization as well as generalization performance of
FSGD are close to SGD.
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