BackdoorBench: A Comprehensive Benchmark of
Backdoor Learning

Baoyuan Wu'* Hongrui Chen' Mingda Zhang! Zihao Zhu!
Shaokui Wei! Danni Yuan'  Chao Shen?
ISchool of Data Science, Shenzhen Research Institute of Big Data,
The Chinese University of Hong Kong, Shenzhen
2School of Cyber Science and Engineering, Xi’an Jiaotong University

Abstract

Backdoor learning is an emerging and vital topic for studying deep neural networks’
vulnerability (DNNs). Many pioneering backdoor attack and defense methods are
being proposed, successively or concurrently, in the status of a rapid arms race.
However, we find that the evaluations of new methods are often unthorough to
verify their claims and accurate performance, mainly due to the rapid develop-
ment, diverse settings, and the difficulties of implementation and reproducibility.
Without thorough evaluations and comparisons, it is not easy to track the current
progress and design the future development roadmap of the literature. To alleviate
this dilemma, we build a comprehensive benchmark of backdoor learning called
BackdoorBench. It consists of an extensible modular-based codebase (currently in-
cluding implementations of 8 state-of-the-art (SOTA) attacks and 9 SOTA defense
algorithms) and a standardized protocol of complete backdoor learning. We also
provide comprehensive evaluations of every pair of 8§ attacks against 9 defenses,
with 5 poisoning ratios, based on 5 models and 4 datasets, thus 8,000 pairs of
evaluations in total. We present abundant analysis from different perspectives
about these 8,000 evaluations, studying the effects of different factors in backdoor
learning. All codes and evaluations of BackdoorBench are publicly available at
https://backdoorbench.github.iol

1 Introduction

With the widespread application of deep neural networks (DNNs) in many mission-critical scenarios,
the security issues of DNNs have attracted more attentions. One of the typical security issue is
backdoor learning, which could insert an imperceptible backdoor into the model through maliciously
manipulating the training data or controlling the training process. It brings in severe threat to the
widely adopted paradigm that people often download a unverified dataset/checkpoint to train/fine-tune
their models, or even outsource the training process to the third-party training platform.

Although backdoor learning is a young topic in the machine learning community, its development
speed is remarkable and has shown the state of a rapid arms race. When a new backdoor attack or
defense method is developed based on an assumption or observation, it will be quickly defeated or
evaded by more advanced adaptive defense or attack methods which break previous assumptions
or observations. However, we find that the evaluations of new methods are often insufficient, with
comparisons with limited previous methods, based on limited models and datasets. The possible
reasons include the rapid development of new methods, diverse settings (e.g., different threat models),
as well as the difficulties of implementing or reproducing previous methods. Without thorough
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evaluations and fair comparisons, it is difficult to verify the real performance of a new method, as well
as the correctness or generalization of the assumption or observation it is built upon. Consequently,
we cannot well measure the actual progress of backdoor learning by simply tracking new methods.
This dilemma may not only postpone the development of more advanced methods, but also preclude
the exploration of the intrinsic reason/property of backdoor learning.

To alleviate this dilemma, we build a comprehensive benchmark of backdoor learning, called Back-
doorBench. It is built on an extensible modular based codebase, consisting of the attack module, the
defense module, as well as the evaluation and analysis module. Until now, we have implemented
8 stat-of-the-art (SOTA) backdoor attack methods and 9 SOTA defense methods, and provided 5
analysis tools (e.g., t-SNE, Shapley value, Grad-CAM, frequency saliency map and neuron acti-
vation). More methods and tools are continuously updated. Based on the codebase, to ensure fair
and reproducible evaluations, we also provide a standardized protocol of the complete procedure of
backdoor learning, covering every step of the data preparation, backdoor attack, backdoor defense,
as well as the saving, evaluation and analysis of immediate/final outputs. Moreover, we conduct
comprehensive evaluations of every pair of attack and defense method (i.e., 8 attacks against 9
defenses), with 5 poisoning ratios, based on 5 DNN models and 4 databases, thus up to 8,000 pairs of
evaluations in total. These evaluations allow us to analyze some characteristics of backdoor learning.
In this work, we present the analysis from four perspectives, to study the effects of attack/defense
methods, poisoning ratios, datasets and model architectures, respectively. We hope that Backdoor-
Bench could provide useful tools to facilitate not only the design of new attack/defense methods, but
also the exploration of intrinsic properties and reasons of backdoor learning, such that to promote the
development of backdoor learning.

Our main contributions are three-fold. 1) Codebase: We build an extensible modular based codebase,
including the implementations of 8 backdoor attack methods and 9 backdoor defense methods. 2)
8,000 comprehensive evaluations: We provide evaluations of all pairs of 8 attacks against 9 defense
methods, with 5 poisoning ratios, based on 4 datasets and 5 models, up to 8,000 pairs of evaluations
in total. 3) Thorough analysis and new findings: We present thorough analysis of above evaluations
from different perspectives to study the effects of different factors in backdoor learning, with the help
of 5 analysis tools, and show some interesting findings to inspire future research directions.

2 Related work

Backdoor attacks According to the threat model, existing backdoor attack methods can be partitioned
into two general categories, including data poisoning and training controllable. 1) Data poisoning
attack means that the attacker can only manipulate the training data. Existing methods of this
category focuses on designing different kinds of triggers to improve the imperceptibility and attack
effect, including visible (e.g., BadNets [15]) vs invisible (i.e., Blended [3]], Refool [31]], Invisible
backdoor [26])) triggers, local (e.g., label consistent attack [44}55]]) vs global (e.g., SIG [2]) triggers,
additive (e.g., Blended [5]) vs non-additive triggers (e.g., smooth low frequency (LF) trigger [54],
FaceHack [42])), sample agnostic (e.g., BadNets [[15]) vs sample specific (e.g., SSBA [29], sleeper
agent [46]) triggers, etc. The definitions of these triggers can be found in the bottom notes of Table|T]
2) Training controllable attack means that the attacker can control both the training process and
training data simultaneously. Consequently, the attacker can learn the trigger and the model weights
jointly, such as LIRA [9], blind backdoor [[1], WB [8]], Input-aware [35]], WaNet [36], etc.

Backdoor defenses According to the defense stage in the training procedure, existing defense methods
can be partitioned into three categories, including pre-training, in-training and post-training. 1)
Pre-training defense means that the defender aims to remove or break the poisoned samples before
training. For example, input anomaly detection and input pre-processing were proposed in [33] to
block the backdoor activation by poisoned samples. Februus [7] firstly identified the location of
trigger using Grad-CAM [43]], and then used a GAN-based inpainting method [21] to reconstruct that
region to break the trigger. NEO [50]] proposed to use the dominant color in the image to generate
a patch to cover the identified trigger. Confoc [51]] proposed to change the style of the input image
[12]] to break the trigger. 2) In-training defense means that the defender aims to inhibit the backdoor
injection during the training. For example, anti-backdoor learning (ABL) [28]] utilized the fact that
poisoned samples are fitted faster than clean samples, such that they can be distinguished by the loss
values in early learning epochs, then the identified poisoned samples are unlearned to mitigate the
backdoor effect. DBD [20] observed that poisoned samples will gather together in the feature space



of the backdoored model. To prevent such gathering, DBD utilized the self-supervised learning [4] to
learn the model backbone, then identified the poisoned samples according to the loss values when
learning the classifier. 3) Post-training defense means that the defender aims to remove or mitigate
the backdoor effect from a backdoored model, and most existing defense methods belong to this
category. They are often motivated by a property or observation of the backdoored model using some
existing backdoor attacks. For example, the fine-pruning (FP) defense [30] and the neural attention
distillation (NAD) [27]] observed that poisoned and clean samples have different activation paths in
the backdoored model. Thus, they aimed to mitigate the backdoor effect by pruning the neurons
highly related to the backdoor. The channel Lipschitzness based pruning (CLP) method [56] found
that the backdoor related channels often have a higher Lipschitz constant compared to other channels,
such that the channels with high Lipschitz constant could be pruned to remove the backdoor. The
activation clustering (AC) method [3] observed that samples of the target class will form two clusters
in the feature space of a backdoored model, and the smaller cluster corresponds to poisoned samples.
The spectral signatures (Spectral) method [49] observed that the feature representation distributions
of poisoned and clean samples in the same class class are spectrally separable. The neural cleanse
(NC) method [52]] assumed that the trigger provides a “shortcut” between the samples from different
source classes and the target class. The adversarial neuron pruning (ANP) defense [53]] found that
the neurons related to the injected backdoor are more sensitive to adversarial neuron perturbation
(i.e., perturbing the neuron weight to achieve adversarial attack) than other neurons in a backdoored
model. We refer the readers to some backdoor surveys [11}132] for more backdoor attack and defense
methods.

Related benchmarks Several libraries or benchmarks have been proposed for evaluating the adver-
sarial robustness of DNNs, such as CleverHans [39]], Foolbox [40, 41]], AdvBox [14], RobustBench
[6], RobustART [48]], ARES [10]], Adversarial Robustness Toolbox (ART) [37], etc. However, these
benchmarks mainly focused on adversarial examples [[13| 24], which occur in the testing stage. In
contrast, there are only a few libraries or benchmarks for backdoor learning (e.g., TrojAl [22] and Tro-
janZoo [38l]). Specifically, the most similar benchmark is TrojanZoo, which implemented 8 backdoor
attack methods and 14 backdoor defense methods. However, there are significant differences between
TrojanZoo and our BackdoorBench in two main aspects. 1) Codebase: although both benchmarks
adopt the modular design to ensure easy extensibility, TrojanZoo adopts the object-oriented program-
ming (OOP) style, where each module is defined as one class. In contrast, BackdoorBench adopts the
procedural oriented programming (POP) style, where each module is defined as one function, and
each specific algorithm is implemented by several functions in a streamline. 2) Analysis and findings.
TrojanZoo has provided very abundant and diverse analysis of backdoor learning, mainly including
the attack effects of trigger size, trigger transparency, data complexity, backdoor transferability to
downstream tasks, and the defense effects of the tradeoff between robustness and utility, the tradeoff
between detection accuracy and recovery capability, the impact of trigger definition. In contrast,
BackdoorBench provides several new analysis from different perspectives, mainly including the ef-
fects of poisoning ratios and number of classes, the quick learning of backdoor, trigger generalization,
memorization and forgetting of poisoned samples, as well as several analysis tools. In summary, we
believe that BackdoorBench could provide new contributions to the backdoor learning community,
and the competition among different benchmarks is beneficial to the development of this topic.

3 Our benchmark

3.1 Implemented algorithms

We have implemented 8 backdoor attack and 9 backdoor defense algorithms as the first batch of
algorithms in our benchmark. We hold two criteria for choosing methods. First, it should be classic
(e.g., BadNets) or advanced method (i.e., published in recent top-tier conferences/journals in machine
learning or security community). The classic method serves as the baseline, while the advanced
method represents the state-of-the-art, and their difference could measure the progress of this field.
Second, the method should be easily implemented and reproducible. We find that some existing
methods involve several steps, and some steps depend on a third-party algorithm or a heuristic strategy.
Consequently, these methods involve too many hyper-parameters and are full of uncertainty, causing
the difficulty on implementation and reproduction. Such methods are not included in BackdoorBench.

As shown in Table[I] the eight implemented backdoor attack methods cover two mainstream threat
models, and with diverse triggers. Among them, BadNets[15], Blended[3]] and LC[44]] (label



Table 1: Categorizations of 8 backdoor attack algorithms in BackdoorBench, according to threat
models and different kinds of trigger characteristics.

Attack Threat model Trigger characteristics
algorithm D-P T-C \Y In-V [ Local Global] Add  N-Add [ Ag Sp
BadNets [15] v v v v v
Blended [5] v v v v v
LC [44] v v v v v
SIG [2] v v v v v
LF [54] v v v v v
SSBA [29] v v v v v
Input-aware [35] v Ve v v v
WaNet [36] v v v v v

a) Threat model: D-P — data poisoning, ¢.e., the attacker can only manipulate the training data;
T-C — training controllable, i.e., the attacker can control the training process and data;
b) Trigger characteristics:
b.1) Trigger visibility: V — visible; In-V — invisible;
b.2) Trigger coverage: Local — the trigger is a local patch; Global — the trigger covers the whole sample;
b.3) Trigger fusion mode: Add — additive, i.e., the fusion between the clean sample and the trigger is additive;
N-Add — non-additive, i.e., the fusion between the clean sample and the trigger is non-additive;
b.4) Trigger fusion mode: Ag — agnostic, i.e., the triggers in all poisoned samples are same;
Sp — specific, i.e., different poisoned samples have different triggers.

Table 2: Categorizations of 9 backdoor defense algorithms in BackdoorBench, according to four
perspectives, including input, output, defense stage and defense strategy.

Defense Input Output Defense stage | Defense P X . .

algorithm H B-M S.CD PD | SM  CD ‘ T Post-T | strategy ‘ Motivation/Assumption/Observation

FT v v v v 5 Fine-tuning on clean data could mitigate the back-
door effect

“FP[30] v v v v 2+5 Poisoned and clean samples have different activa-

tion paths

NAD [27] v v v v 5 Fine-tuning on clean data could mitigate the back-
door effect

NC [52] v v v v 1 + 4 + | Trigger can be reversed through searching a short-

5 cut to the target class

ANP [53] v v v v 2+5 The backdoor related neurons are sensitive to ad-
versarial neuron perturbation

AC [3] v v v v 3+5 Samples labeled the target class will form 2 clus-
ters in the feature space of a backdoored model

Spectral [49] v v v v 3+5 The feature representations of poisoned and clean
samples have different spectral signatures

ABL [28] v v v v 3+5 Poisoned samples are learned more quickly than
clean samples during the training

DBD [20] v v v v 3+6 Poisoned samples will gather together in the fea-
ture space due to the standard supervised learning

a) Input: B-M — a backdoored model; S-CD — a subset of clean samples; P-D — a poisoned dataset;
b) Output: S-M — secure model; C-D — clean data, i.e., the subset of clean samples in the input poisoned data;
c) Defense stage: In-T — in-training, i.e., defense happens during the training process;
Post-T — post-training, i.e., defense happens after the backdoor has been inserted through training;
d) Defense strategy: 1 — backdoor detection, i.c., determining a model to be backdoored or clean;
2 — backdoor identification, i.e., identifying the neurons in a backdoored model related to the backdoor;
3 — poison detection, i.e., detecting poisoned samples;
4 — trigger identification, i.e., identifying the trigger location in a poisoned sample;
5 — backdoor mitigation, i.e., mitigating the backdoor effect of a backdoored model;
6 — backdoor inhibition, i.e., inhibiting the backdoor insertion into the model during the training.

consistent attack) are three classic attack methods, while the remaining 5 are recently published
methods. The general idea of each method will be presented in the Supplementary Material.

The basic characteristics of 9 implemented backdoor defense methods are summarized in Table 2]
covering different inputs and outputs, different happening stages, different defense strategies. The
motivation/assumption/observation behind each defense method is also briefly described in the last
column. More detailed descriptions will be presented in the Supplementary Material.

3.2 Codebase

We have built an extensible modular-based codebase as the basis of BackdoorBench. As shown in Fig.
[1] it consists of four modules, including input module (providing clean data and model architectures),
attack module, defense module and evaluation and analysis module.
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Figure 1: The general structure of the modular based codebase of BackdoorBench.

Attack module In the attack module, we provide two sub-modules to implement attacks of two
threat models, i.e., data poisoning and training controllable (see Table |I[), respectively. For the first
sub-module, it provides some functions of manipulating the provided set of clean samples, including
trigger generation, poisoned sample generation (:.e., inserting the trigger into the clean sample), and
label changing. It outputs a poisoned dataset with both poisoned and clean samples. For the second
sub-module, given a set of clean samples and a model architecture, it provides two functions of
learning the trigger and model parameters, and outputs a backdoored model and the learned trigger.

Defense module According to the outputs produced by the attack module, there are also two sub-
modules to implement backdoor defenses. If given a poisoned dataset, the first sub-module provides
three functions of poisoned sample detection (i.e., determining whether a sample is poisoned or clean),
trigger identification (1.e., identifying the location in the poisoned sample), backdoor inhibition (i.e.,
training a secure model through inhibiting the backdoor injection). If given a backdoored model, as
well as a small subset of clean samples (which is widely required in many defense methods), the
second sub-module provides three functions of backdoor detection (i.e., determining whether a model
has a backdoor or not), badckdoor identification (i.e., identifying the neurons in the backdoored
model that are related to the backdoor effect), backdoor mitigation (i.e., mitigating the backdoor
effect from the backdoored model).

Evaluation and analysis module 1) We provide three evaluation metrics, including clean accuracy
(C-Acc) (i.e., the prediction accuracy of clean samples), attack success rate (ASR) (i.e., the prediction
accuracy of poisoned samples to the target class), robust accuracy (R-Acc) (i.e., the prediction
accuracy of poisoned samples to the original class). Note that the new metric R-Acc satisfies that
ASR + R-Acc < 1, and lower ASR and higher R-Acc indicate better defense performance. 2)
Moreover, we provide five analysis tools to facilitate the analysis and understanding of backdoor
learning. #-SNE provides a global visualization of feature representations of a set of samples in a
model, and it can help us to observe whether the backdoor is formed or not. Gradient-weighted class
activation mapping (Grad-CAM) and Shapley value map are two individual analysis tools to
visualize the contributions of different pixels of one image in a model, and they can show that whether
the trigger activates the backdoor or not. We also propose the frequency saliency map to visualize the
contribution of each individual frequency spectrum to the prediction, providing a novel perspective of
backdoor from the frequency space. The definition will be presented in Supplementary Material.



Neuron activation calculates the average activation of each neuron in a layer for a batch of samples.
It can be used to analyze the activation path of poisoned and clean samples, as well as the activation
changes w.r.t. the model weights’ changes due to attack or defense, providing deeper insight behind
the backdoor.

Protocol We present a standardized protocol to call above functional modules to conduct fair and
reproducible backdoor learning evaluations, covering every stage from data pre-processing, backdoor
attack, backdoor defense, result evaluation and analysis, etc. We also provide three flexible calling
modes, including pure attack mode (only calling an attack method), pure defense mode (only calling
a defense method), as well as a joint attack and defense mode (calling an attack against a defense).

4 Evaluations and analysis

4.1 Experimental setup

Datasets and models We evaluate our benchmark on 4 commonly used datasets (CIFAR-10 [23],
CIFAR-100 [23], GTSRB [17]], Tiny ImageNet [25]) and 5 backbone models (PreAct-ResNet1 1‘

16l], VGG-19 P|[43]] (without the batchnorm layer), EfficientNet-B3 E] [47], MobileNetV3-Large
éllS], DenseNet-161 | [19]). To fairly measure the performance effects of the attack and defense
method for each model, we only used the basic version of training for each model without adding
any other training tricks (e.g., augmentation). The details of datasets and clean accuracy D of normal
training are summarized in Table 3]

Table 3: Dataset details and clean accuracy of normal training.

Training/ . Clean Accuracy
Datasets Classes Testing Si Image Size

esting Size PreAct-ResNet18 [I6] VGG-19 [45] EfficientNet-B3 [47] MobileNetV3-Large [I8] DenseNet-161{10'
CIFAR-10 [23 10 50,000/10,000 | 32 x 32 93.90% 91.38% 64.69% 84.44% 86.82%
CIFAR-100 {23 100 | 50,000/10,000 | 64 x 64 70.51% 60.21% 48.92% 50.73% 57.57%
GTSRB (17 43 39,209/12,630 | 32 x 32 98.46% 95.84% 87.39% 93.99% 92.49%
Tiny ImageNet [25 200 | 100,000/10,000 | 64 x 64 57.28% 46.13% 41.08% 38.78% 51.73%

Attacks and defenses We evaluate each pair of 8 attacks against 9 defenses in each setting, as well
as one attack without defense. Thus, there are 8 x (9 + 1) = 80 pairs of evaluations. We consider 5
poisoning ratios, i.e., 0.1%, 0.5%, 1%, 5%, 10% for each pair, based on all 4 datasets and 5 models,
leading to 8, 000 pairs of evaluations in total. The performance of every model is measured by the
metrics, 7.e., C-Acc, ASR and R-Acc (see Section . The implementation details of all algorithms,
and the results of the DBD defense [20] will be presented in the Supplementary Material.

4.2 Results overview

We first show the performance distribution of various attack-defense pairs under one model structure
(i.e., PreAct-ResNet18) and one poisoning ratio (i.e., 5%) in Figure [2| In the top row, the perfor-
mance is measured by clean accuracy (C-Acc) and attack success rate (ASR). From the attacker’s
perspective, the perfect performance should be high C-Acc and high ASR simultaneously, i.e., located
at the top-right corner. From the defender’s perspective, the performance should be high C-Acc and
low ASR simultaneously, i.e., located at the top-left corner. It is observed that most color patterns
locate at similar horizontal levels, reflecting that most defense methods could mitigate the backdoor
effect while not harming the clean accuracy significantly. In the bottom row, the performance is
measured by robust accuracy (R-Acc) and ASR. As demonstrated in Section[3.2] ASR + R-Acc < 1.
From the defender’s perspective, it is desired that the reduced ASR value equals to the increased
R-Acc, i.e., the prediction of the poisoned sample is recovered to the correct class after the defense.
It is interesting to see that most color patterns are close to the anti-diagonal line (i.e., ASR + R-Acc

“https://github.com/VinAIResearch/Warping-based_Backdoor_Attack-release/blob/main/classifier_models/preact_resnet.py
*https://pytorch.org/vision/0.12/_modules/torchvision/models/vgg.html#vegg19
*https://pytorch.org/vision/main/_modules/torchvision/models/efficientnet.htmlefficientnet_b3
Shttps://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py
Shttps://pytorch.org/vision/main/_modules/torchvision/models/densenet.htmldensenet161
"Note that to fairly measure the effects of the attack and defense method, we train all victim models from

scratch without further training tricks, which explains the low clean accuracy of some models.
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Figure 2: Performance distribution of different attack-defense pairs. Each color pattern represents
one attack-defense pair, with attacks distinguished by patterns, while defenses by colors.

= 1) on CIFAR-10 (the first column) and GTSRB (the third column), while most patterns are from
that line on CIFAR-100 (the second column) and Tiny ImageNet (the last column). We believe it is
highly related to the number of classes of the dataset. Given a large number of classes, it is more
difficult to recover the correct prediction after the defense. These figures could provide a big picture
of the performance of most attacks against defense methods. Due to the space limit, the results of
other settings will be presented in the Supplementary Material.

4.3 Effect of poisoning ratio

Here we study the effect of the poisoning ratio on the backdoor performance. Figure (3| visualizes the
results on CIFAR-10 and PreAct-ResNet18, w.r.t. each poisoning ratio for all attack-defense pairs,
and each sub-figure corresponds to each defense. In sub-figures (1,6,7), ASR curves increase in most
cases, being consistent with our initial impression that higher poisoning ratios lead to stronger attack
performance. However, in other sub-figures, there are surprisingly sharp drops in ASR curves. To
understand such abnormal phenomenon, we conduct deep analysis for these defenses, as follows.

Analysis of FT/FP/NAD/NC The curves for FT, FP [30], NAD [27] (its plots will be presented in
Supplementary Material) and NC[52] are similar since they all use fine-tuning on a small subset
of clean data (i.e., 5% training data), thus we present a deep analysis for FT as an example. As
shown Figure ] we compare the performance of 5% and 10%. We first analyze the changes in the
average neuron activation (see Section [3.2)) before and after the defense. As shown in the top row,
the changes between Poisoned+No Defense (green) and Poisoned+FT (purple) in the case of 5%
are much smaller than those in the case of 10%. It tells that the backdoor is significantly affected
by FT. We believe the reason is that when the poisoning ratio is not very high (e.g., 5%), the model
fits clean samples very well, while the fitting gets worse if the poisoning ratio keeps increasing after
a threshold ratio. We find that the clean accuracy on the 5% clean data used for fine-tuning by the
backdoored model before the defense is 99% in the case of 5% poisoning ratio, while 92% in the
case of 10% poisoning ratio. It explains why their changes in neuron activation values are different.

Analysis of ABLL. The ABL [28]] method uses the loss gap between the poisoned and clean samples
in the early training period to isolate some poisoned samples. We find that the loss gap in the case of
high poisoning ratio is larger than that in the case of low poisoning ratio. Take the LC [44] attack
on CIFAR-10 as example. In the case of 5% poisoning ratio, the isolated 500 samples by ABL
are 0 poisoned and 500 clean samples, such that the backdoor effect cannot be mitigated in later
backdoor unlearning in ABL. In contrast, the isolated 500 samples are all poisoned in the case of 10%
poisoning ratio. The t-SNE visualizations shown in the second row of Figure @ also verify this point.
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Figure 3: The effects of different poisoning ratios on backdoor learning.

Analysis of ANP The ANP [53] prunes the neurons that are sensitive to the adversarial neuron
perturbation, by setting a threshold. As suggested in [53]], this threshold is fixed as 0.2 in our
evaluations. We find that when the poisoning ratio is high, more neurons will be pruned, thus the
ASR may decrease. For example, given the SIG [2] attack, the pruned neurons by ANP are 328 and
466 for 5% and 10% poisoning ratios, respectively. As shown in the last row of Figure poisoned
samples still gather together for 5%, while separated for 10%.

In summary, the above analysis demonstrates an interesting point that attack with higher poisoning
ratios doesn’t mean better attack performance, and it may be more easily defended by some defense
methods. The reason is that higher poisoning ratios will highlight the difference between poisoned
and clean samples, which will be utilized by adaptive defenses. This point inspires two interesting
questions that deserve further exploration in the future: how fo achieve the desired attack performance
using fewer poisoned samples, and how to defend weak attacks with low poisoning ratios. Moreover,
considering the randomness due to weight initialization and some methods’ mechanisms, we repeat
the above evaluations several times. Although some fluctuations occur, the trend of ASR curves is
similar to that in Figure|3] More details and analysis are presented in Supplementary Material.

4.4 Effect of model architectures

As shown in Figure [5] we analyze the influence caused by model architectures. From the top-left
sub-figure, it is worth noting that, under the same training scheme, not all backdoor attacks can
successfully plant a backdoor in EfficientNet-B3, such as BadNets, LC, SSBA, and WaNet. In
contrast, PreAct-ResNet18 is easy to be planted a backdoor. Besides, we find that most defense
methods fail to remove the backdoors embedded in the PreAct-ResNet18 and VGG-19, except ANP.
However, ANP is less effective on EfficientNet-B3 attacked by SIG. From the second sub-figure in
the first row, we notice that FT is an optimal defense method for MobileNetV3-Large, which could
effectively decrease the ASR. In most cases, NC and ANP can remove the backdoors embedded in
DenseNet-161. The above analysis demonstrates that one attack or defense method may have totally
different performance on different model architectures. It inspires us to further study the effect of
model architecture in backdoor learning and to design more robust architectures in the future.
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Figure 4: The changes of neuron activation values due to the FT defense (Top row), and the changes
of t-SNE visualization of feature representations due to the ABL defense (Middle row) and the ANP
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Figure 5: The effects of different model architectures using different defense and attack methods.

4.5 Contents in supplementary material

Due to the space limit, we have put several important contents in the Supplementary Material. Here
we present a brief outline of the Supplementary Material to facilitate readers to find the corresponding
content, as follows:

* Section A: Additional information of backdoor attack and defense algorithms:



— Section A.1: Descriptions of backdoor attack algorithm;
— Section A.2: Descriptions of backdoor defense algorithms;
— Section A.3: Implementation details and computational complexities.

* Section B: Additional evaluations and analysis:

— Section B.1: Full results on CIFAR-10;

— Section B.2: Results overview;

— Section B.3: Effect of dataset;

— Section B.4: Effect of poisoning ratio;

— Section B.5: Sensitivity to hyper-parameters;

— Section B.6: Analysis of quick learning of backdoor;
— Section B.7: Analysis of backdoor forgetting;

— Section B.8: Analysis of trigger generalization of backdoor attacks;
— Section B.9: Evaluation on vision transformer;

— Section B.10: Evaluation on ImageNet;

— Section B.11: Visualization.

* Section C: BackdoorBench in Natural Language Processing;
* Section D: Reproducibility;

¢ Section E: License.

5 Conclusions, limitations and societal impacts

Conclusions We have built a comprehensive and latest benchmark for backdoor learning, including
an extensible modular-based codebase with implementations of 8 advanced backdoor attacks and
9 advanced backdoor defense algorithms, as well as 8,000 attack-defense pairs of evaluations and
thorough analysis. We hope that this new benchmark could contribute to the backdoor community in
several aspects: providing a clear picture of the current progress of backdoor learning, facilitating
researchers to quickly compare with existing methods when developing new methods, and inspiring
new research problems from the thorough analysis of the comprehensive evaluations.

Limitations Until now, BackdoorBench has mainly provided algorithms and evaluations in the
computer vision domain and supervised learning. In the future, we plan to expand BackdoorBench
to more domains and learning paradigms, e.g., natural language processing (NLP), Speech, and
reinforcement learning.

Societal impacts Our benchmark could facilitate the development of new backdoor learning al-
gorithms. Meanwhile, like most other technologies, the implementations of backdoor learning
algorithms may be used by users for good or malicious purposes. The feasible approach to alleviate
or avoid adverse impacts could be exploring the intrinsic property of the technology, regulations, and
laws.
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