
Appendix

A Proof of Theorem 2

For simplicity, we denote g(t) = 1
bK

∑K
k=1 g(X

(k)

It
,Y

(k)

It
;w(t)) in this section. The server updates

the global model by w(t+1) = w(t)−Q(ηg(t)) in each round t after receiving deg(g)(K+T−1)+1
uploads from clients. We first provide an important lemma to show that the model update Q(ηg(t))
on the server is an unbiased estimate of ηge(w(t)).
Lemma 1. (Unbiased and variance-bounded model update) In the t-th round, the model update
Q(ηg(t)) has the following properties:

E
[
Q(ηg(t))

]
=ηge(w), (9)

E
[
∥Q(ηg(t))− ηge(w)∥2

]
≤(γ2 + 1)η2

σ2

bK
+ γ2η2

∥∥∥ge(w(t))
∥∥∥2 . (10)

Proof. According to Assumption 2-3, we directly obtain that E
[
Q(ηg(t))

]
= E

[
ηg(t)

]
= ge(w).

Since the batch sampling and rounding operation cause independent errors, the variance is upper
bounded as follows:

E
[∥∥∥Q(ηg(t))− ηge(w

(t))
∥∥∥2]

= E
[∥∥∥Q(ηg(t))− ηg(t)

∥∥∥2]+ E
[∥∥∥ηg(t) − ηge(w

(t))
∥∥∥2]

(a)

≤ γ2E
[∥∥∥ηg(t)

∥∥∥2]+ E
[∥∥∥ηg(t) − ηge(w

(t))
∥∥∥2]

= γ2η2
[
E
[∥∥∥g(t) − ge(w

(t))
∥∥∥2]+

∥∥∥ge(w(t))
∥∥∥2]+ η2E

[∥∥∥g(t) − ge(w
(t))

∥∥∥2]
(b)

≤ (γ2 + 1)η2
σ2

bK
+ γ2η2

∥∥∥ge(w(t))
∥∥∥2 ,

where (a) follows Assumption 3. (b) is due to Assumption 2 and the independence of mini-batch
sampling noises among clients.

With Lemma 1, we prove Theorem 2 as follows:

Proof. The model update in the t-th iteration can be expressed as w(t+1) = w(t) − Q(ηg(t)).
According to the Taylor’s expansion, we have:

E
[
ℓ(w(t+1))

]
− E

[
ℓ(w(t))

]
≤ −E

〈
ge(w

(t)), Q(ηg(t))
〉
+
L

2
E
[∥∥∥Q(ηg(t))

∥∥∥2]
(c)
= −E

〈
ge(w

(t)), ηge(w
(t))

〉
+
L

2
E
[∥∥∥Q(ηg(t))

∥∥∥2]
(d)
= −ηE

[
∥ge(w(t))∥2

]
+
L

2
E
[∥∥∥Q(ηg(t))− ηge(w

(t))
∥∥∥2]+

L

2
E
[∥∥∥ηge(w(t))

∥∥∥2]
(e)

≤ −
(
η − η2L

2

)
E
[
∥ge(w(t))∥2

]
+
L

2

(
(γ2 + 1)η2

σ2

bK
+ γ2η2E

[
∥ge(w(t))∥2

])
= −

(
η − η2L

2
− η2γ2L

2

)
E
[
∥ge(w(t))∥2

]
+
η2Lσ2

2bK
(γ2 + 1),

where (c) follows Lemma 1, (d) holds according to the fact that
E
〈
∇Q(ηg(t))− ηge(w

(t)), ge(w
(t))

〉
= 0, and (e) is due to Assumption 2-3. If it holds

14



Table 3: Details of the datasets
MNIST Fashon-MNIST EMNIST CIFAR-10 CIFAR-100 SVHN

No. of classes 10 10 47 10 100 10
No. of

training samples 60,000 60,000 112,800 50,000 50,000 73,257

No. of
test samples 10,000 10,000 18,800 10,000 10,000 26,032

Image size 28× 28 28× 28 28× 28 32× 32 32× 32 32× 32

License
Creative Commons
Attribution-Share
Alike 3.0 License

MIT
License

Apache
License 2.0

MIT
License

MIT
License

CC0:Public
Domain License

Table 4: Hyperparameters for our DReS-FL method

Parameters MNIST Fashion-MNIST EMNIST CIFAR-10 CIFAR-100 SVHN
Maximum L2-norm
for gradient clipping 2× 104 2× 104 5× 106 2× 104 1× 109 2× 104

Prime number p 2200 − 75 2200 − 75 2440 − 33 2440 − 33 2440 − 33 2440 − 33
Parameter l in

data transformation 4 4 4 2 2 2

that η − η2L
2 − η2γ2L

2 > 0, we summarize the above inequality over t = 1, 2, . . . , τ ′ to conclude the
proof.

B Additional Experimental Details

All experiments are performed by Pytorch on an Intel Xeon Gold 6246R CPU @ 3.40 GHz and a
Geforce RTX 3090. Some details of the datasets are summarized in Table 3. We adopt mini-batch
SGD with a batch size of 64 to optimize the models in federated training. The communication round
is set to be 7× 104, and the clients perform one local SGD step in each round. The learning rate is
initialized as 0.1, and it will decay with a factor of 0.65 after every 1500 rounds. Other parameters in
our DRes-FL framework are summarized in Table 4.

C Complexity Analysis and Comparison

In this part, we analyze the communication and computational complexities of the proposed DReS-FL
framework with respect to the parameters (N,T,K, τ, dw, bg). Parameter N is the number of clients,
and T denotes the privacy threshold in Lagrange coding [22]. Parameter K denotes the number of
shards in the local datasets. A large value ofK reduces the communication and computation overheads
in the proposed DReS-FL framework. In the federated training, the parameter τ corresponds to the
number of communication rounds. Parameters dw and bg denote the model size and the global batch
size, respectively. Before training starts, each client’s computation cost for Lagrange coding and
communication complexity for data sharing are O(N log2(K + T ) log log(K + T )) and O(N/K),
respectively. In each round of federated training, the local computation complexity is O(dwbg/K),
and the model uploading cost is O(dw). Besides, the communication overhead of the server for
model distributing is O(Ndw), and the model decoding complexity by polynomial interpolation is
O(R log2R log logRdw), where R denotes the minimum uploads needed for gradient decoding.

Different from our method, secure aggregation approaches [39, 53, 40, 42, 44, 41] generate random
masks to protect the local model parameters. In each round, clients first share coded masks with each
other, which allows for aggregating the masked models at the server. As some clients may drop out of
the training process unexpectedly, the surviving clients upload the shared information belonging to the
dropped clients to reconstruct the aggregated model. The main drawback of such approaches is that
the clients need to generate new masks in each round, and their computational and communication
complexities increase linearly with the number of training rounds. In comparison, the data sharing
phase of our method only introduces extra costs for one time, which is independent of the training
rounds. In the scenario that the number of training rounds is very large, the proposed DReS-FL
method achieves lower computational and communication costs than the secure aggregation protocols.

15



Table 5: Computational complexity comparison

Preparation Iterative training (τ rounds)
Lagrangian

coding
Generating coded

random masks
Local model

update
Global model
aggregation

FedAvg — — O (τdwbg/N) O(τNdw)
FedAvg with
LightSecAgg — O

(
τdwN2 logN

R−T

)
O (τdwbg/N) O

(
τdwR logR

R−T

)
DReS-FL O(N2 log2(K + T )

log log(K + T ))
— O (τdwbg/K)

O(τdwR log2R
log logR)

Table 6: Communication complexity comparison

Preparation Iterative training (τ rounds)

Data sharing
Coded masks

sharing among
clients

Local model
uploading

Coded masks
uploading

Global model
downloading

FedAvg — — O(τdw) — O(τNdw)
FedAvg with
LightSecAgg — O

(
τN2dw

R−T

)
O(τdw) O

(
τdwR
R−T

)
O(τNdw)

DReS-FL O(N2/K) — O(τdw) — O(τNdw)

The detailed comparisons among FedAvg, FedAvg with LighSecAgg [41], and our DReS-FL method
are summarized in Table 5 and 6.

D Model Extension

Our DReS-FL framework can be extended to more general cases in which clients can run s (s ≥ 1)
local SGD steps each round. Denote the computation results after s local SGD steps in round
t as ∆w̃j(s;w

(t)) for j ∈ [N ]. Specifically, ∆w̃j(s = 1;w(t)) ≜ g̃(X̃
(It)
j , Ỹ

(It)
j ;w(t)) and

∆w̃j(s = 2;w(t)) ≜ g̃(X̃
(It+1)
j , Ỹ

(It+1)
j ;w(t) − η

bK g̃(X̃
(It)
j , Ỹ

(It)
j ;w(t))). By carefully selecting

the learning rate η such that η
bK ∈ Fp, the function ∆w̃j(s;w

(t)) is still a polynomial in the finite field
Fp. Therefore, the central server can recover the desired model update by polynomial interpolation at
the cost of low dropout-resiliency caused by the high degree of ∆w̃j(s;w

(t)).

E Degree of Gradient in PINN

Given a data sample as (x,y), the feedforward process of a PINN with L quadratic activation layers
h is as follows:

z′
0 → z1 → z′

1 → z2 → z′
2 → · · · → zL → z′

L → zL+1,

where z′
0 ≜ x, z′

l = h(zl), and zl = Wlz
′
l−1 + bl for l ∈ 1 :L + 1. zL+1 is the output of PINN,

and the loss function is the squared error between y and zL+1, i.e., ℓ = ∥y − zL+1∥22. The notations
Wl and bl correspond to the weight matrix and bias vector in PINN. With the above preparation, we
derive the gradients as follows:

∂ℓ

∂zL+1
= 2(zL+1 − y)T ,

∂z′
l

∂zl
= 2diag(zl),

∂zl
∂Wl[j]

= Iz′
l−1[j],

∂zl
∂zl−1

= Wl,

where Wl[j] is the j-th column in Wl, and z′
l−1[j] is the j-th element in the vector z′

l−1. According
to the chain rule of gradient, the gradient of the loss function with respect to the weight Wl[j] is

∂ℓ

∂Wl[j]
=

∂ℓ

∂zL+1

∂zL+1

∂z′
L

∂z′
L

∂zL
· · · ∂zl+1

∂z′
l

∂z′
l

∂zl

∂zl
∂Wl[j]

,

=2(zL+1 − y)TWL+12diag(zL) · · ·Wl+12diag(zl)z
′
l−1[j].

16



Note that the mappings from input z′
0 to z′

l and zl+1 are polynomials with degree 2l. Therefore, the
degree of the gradient ∂ℓ

∂Wl[j]
is

deg

(
∂ℓ

∂Wl[j]

)
= 2L + 2L−1 + · · ·+ 2l−1 + 2l−1,

= 2L+1.

17


	Proof of Theorem 2
	Additional Experimental Details
	Complexity Analysis and Comparison
	Model Extension
	Degree of Gradient in PINN

