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Abstract

Federated learning (FL) strives to enable privacy-preserving training of machine
learning models without centrally collecting clients’ private data. Despite its advan-
tages, the local datasets across clients in FL are non-independent and identically
distributed (non-IID), and the data-owning clients may drop out of the training
process arbitrarily. These characteristics will significantly degrade the training per-
formance. Therefore, we propose a Dropout-Resilient Secure Federated Learning
(DReS-FL) framework based on Lagrange coded computing (LCC) to tackle both
the non-IID and dropout problems. The key idea is to utilize Lagrange coding
to secretly share the private datasets among clients so that each client receives
an encoded version of the global dataset1, and the local gradient computation
over this dataset is unbiased. To correctly decode the gradient at the server, the
gradient function has to be a polynomial in a finite field, and thus we construct
polynomial integer neural networks (PINNs) to enable our framework. Theoretical
analysis shows that DReS-FL is resilient to client dropouts and provides strong
privacy guarantees. Furthermore, we experimentally demonstrate that DReS-FL
consistently leads to significant performance gains over baseline methods.

1 Introduction

Federated learning (FL) [1] is a machine learning framework in which a central server coordinates
a large number of clients to collaboratively train a shared model. The key idea of FL is to train
the model locally by individual clients and aggregate updates globally by the server. The main
target is to provide privacy protection for clients’ local samples and solve the “data islands” problem.
However, as local data are typically non-independent and identically distributed (non-IID), the model
divergence during the local update may lead to unstable and slow convergence [2, 3, 4]. With many
clients involved in the training, some of the clients could drop out of the training process unexpectedly
(due to poor connectivity, battery level, etc), and it will cause detrimental model performance [5].
Thus, effective mechanisms are needed to tackle the non-IID data distribution and client dropouts,
while preserving the privacy of local datasets, which motivates this work.

To alleviate the non-IID problem, existing methods typically follow algorithm-based approaches
[2, 6, 7, 8, 9] and add regularization terms to mitigate the model divergence. However, these methods
are not dropout-resilient evidenced by the empirical results in [10]. This can be explained by the
greatly varying data distributions among different rounds. Another fold of strategy for dealing with
the non-IID problem is data-centric approach [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], which
generates extra training samples to construct a more balanced data distribution for each client. The
common practices are to share the synthesized samples [13, 14, 15, 16] or GAN-based augmented

1In the context of this paper, we use the global dataset to denote the concatenation of the clients’ datasets.
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data [17, 18, 19, 20, 21]. However, these methods may leak private information about local datasets
and violate the privacy criterion in FL.

In this work, we develop a Dropout-Resilient Secure Federated Learning (DReS-FL) framework to
address the above problems via Lagrange coded computing (LCC) [22]. The key idea of LCC is to
encode the datasets using Lagrange polynomials that create computational redundancy across the
workers in a privacy-preserving way to tolerate client dropouts. Before the training starts, the clients
secretly share their encoded datasets with each other. This allows clients to access an encoded version
of the global dataset that solves the data heterogeneous problem. In each communication round
of federated training, the clients perform local gradient computations on the mini-batches sampled
from the encoded datasets. After collecting the uploaded computation results from surviving clients,
the server performs polynomial interpolation to decode the global gradient2 for model training.
Therefore, the training process in DReS-FL is made equivalent to centralized training and eliminates
the non-IID and dropout problems. With respect to privacy protection, the proposed framework has
two salient features:

• It guarantees the privacy of local datasets during data sharing, i.e., no private information
can be inferred from the encoded data even if a certain number of clients collude.

• It achieves the same privacy guarantee as the secure aggregation protocols, i.e., the server
learns no information about the private dataset from a single client’s computation result.

Note that to correctly decode the gradient at the server, the gradient has to be a polynomial function
in a finite field, which is a main design challenge of DreS-FL. To sum up, our main contributions are
summarized as follows:

• The proposed DReS-FL framework provides a unified approach to tackle two critical
problems of FL, namely, non-IID data distribution and client dropouts. Meanwhile, it
maintains privacy and security guarantees such that no information about local datasets can
be leaked beyond the global model parameters.

• We construct polynomial integer neural networks (PINNs) to ensure that the gradient is
a polynomial, so that cryptographic primitives can be applied for secure computation. A
PINN consists of affine transformation layers with parameters constrained in an integer set,
and it adopts the quadratic function as the activation function. The convergence analysis of
DReS-FL with PINNs is also provided.

• We conduct extensive experiments on FL benchmark datasets to demonstrate the effective-
ness of DReS-FL. It is shown that DReS-FL outperforms baseline methods under the setting
where local datasets are heterogeneous and clients may drop out of the training process
arbitrarily.

2 Related Works

Non-IID data and client dropouts. Training with heterogeneous data is a unique challenge for FL
[1], which significantly affects the convergence performance [5]. The client dropouts exacerbate
the non-IID problem as the data distributions among different rounds could vary greatly. Many
algorithm-based methods [2, 6, 7, 8, 9] attempt to mitigate the clients’ model divergence, but these
methods cannot solve the essence of the non-IID problem due to the intrinsic difference between
minimizing the local empirical loss and minimizing the global empirical loss. Another line of
work adopts data-centric methods [17, 18, 19, 20, 21] to modify the local distributions. Ideally, a
perfect data sharing mechanism should achieve that the local datasets have the same distribution
as the global dataset while maintaining the privacy guarantee. Common practices include sharing
raw datasets [11, 12], synthesized samples, [13, 14, 15, 16] or augmented data [17, 18, 19, 20, 21].
However, these works cannot fully preserve local data privacy in an information-theoretic sense
[23]. A special data-centric method is the secret coding scheme, which has been widely utilized

2The global gradient corresponds to the stochastic gradient computed from mini-batches that are uniformly
sampled from the global dataset. For simplicity, we consider that clients only perform one local stochastic
gradient descent (SGD) step in each communication round. Note that the proposed DReS-FL framework, as
discussed in Appendix D, can be extended to more general cases in which clients can run multiple local SGD
steps.
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Figure 1: The DReS-FL system model. At the beginning of training, the clients secretly share the
local datasets with each other. Then, the model parameters are iteratively trained by (1) local gradient
computations and (2) gradient decoding and model updating until convergence.

in homomorphic encryption (HE) [24, 25, 26, 27, 28, 29, 30] and multiparty computation (MPC)
techniques [31, 32, 33]. This coding scheme allows computations to be performed on encrypted
data and has been used for privacy-preserving machine learning [26, 30, 33]. However, the HE
methods often suffer from time-consuming cryptographic tools, and MPC techniques are difficult to
generalize such primitives to a large number of clients. Recently, distributed secure machine learning
frameworks [34, 35] have been proposed for logistic regression problems. They apply Lagrange
coding for secret data sharing and approximate the Sigmoid function by a polynomial function. This
paper proposes DReS-FL to further extend these works to train deep neural networks in the FL
setting.

Secure aggregation. It has been shown recently that the clients’ updates in FL may reveal substantial
information about the local datasets, and the private training data can be reconstructed through
model inversion attacks [36, 37, 38]. To prevent information leakage from the local models, secure
aggregation protocols [39, 40, 41, 42] have been developed to allow for global aggregation without
revealing the parameters of clients’ models. Even if some clients may drop out, these protocols can
still recover the aggregated results of the surviving clients. Existing protocols essentially rely on
two main principles, including a pairwise random-seed agreement for mask cancellation and secret
sharing of the random seeds to construct the dropped masks [39, 43, 40, 41, 44, 42]. However, these
approaches may suffer from severe performance degradation in non-IID settings, since the surviving
clients in each round vary greatly, and thus the aggregate gradient is biased towards different data
distributions. Different from previous works, our proposed DReS-FL framework achieves the same
privacy guarantee while solving the data heterogeneity problem.

3 System Model

We consider a federated learning framework as shown in Fig. 1 that consists of one central server
and N data-owning clients. Each client i ∈ [N ] holds a local dataset (Xi,Yi) of size mi, where
Xi ∈ Rmi×dx represents the set of input features of dimension dx and Yi ∈ Rmi×dy corresponds
to the output vector of dimension dy. Accordingly, the size of the global dataset (X,Y) which
concatenates all local datasets (Xi,Yi),∀i ∈ [N ] is denoted as m ≜

∑N
i=1mi. The clients aim

to jointly train a neural network based on their local datasets without sharing private data samples.
Particularly, the gradients are computed locally and aggregated globally. However, the local data may
be highly heterogeneous, and the clients may drop out at any time unexpectedly, which makes the
training process unstable. Our goal is to improve the convergence performance by secret data sharing
while preserving the privacy of local datasets.
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3.1 Lagrange Coded Computing for Federated Learning

The Lagrange coded computing (LCC) framework enables private computing in distributed settings
to provide resiliency and efficiency [22]. The key idea is using Lagrange coding to encode the data
for redundant distributed computing, which fits nicely with federated learning due to its dropout-
resiliency and privacy requirement. Specifically, the clients share their encoded datasets with each
other and perform gradient computation over the encoded samples. The server decodes the aggregate
gradient after receiving the uploaded computation results from clients. To provide a strong privacy
guarantee for the datasets and correctly decode the gradient at the server, the gradient function should
be a polynomial function in a finite field. However, existing neural networks cannot satisfy this
requirement, since the datasets are in the real field and the gradients are non-polynomial.

Polynomial integer neural networks. We define a class of polynomial integer neural networks
(PINNs) to ensure that the gradient is a polynomial function in a finite field Fp with a prime number
p. First, we transform the dataset (X,Y) from the real domain to the finite domain (X,Y). Besides,
a PINN consists of affine transformation layers (e.g., fully connected layers and convolutional layers)
and utilizes the quadratic function as the activation function. The model parameters of PINNs are
defined in the integer set Zp ≜ {−⌊p+1

2 ⌋, . . . , ⌊p−1
2 ⌋}. Given a feed-forward function f(X;w) and

selecting the mean squared error (MSE) as the loss function, the gradient of the input samples is a
multivariate polynomial with integer coefficients, i.e., g(X,Y;w) ≜ ∇w∥Y − f(X;w)∥22 ∈ Zdw ,
where dw represents the number of model parameters. Denoting the number of quadratic activation
layers as L, the degree of the gradient function3 g(X,Y;w) is deg(g) = 2L+1.

In particular, to avoid wrap-around when computing gradient in the finite field Fp, we assume the
prime number p is sufficiently large without leading to overflow errors in the integer set Zp.

Lagrange coding. The proposed DReS-FL framework uses Lagrange polynomials to achieve a
D-resilient, T -private, and K-efficient coding scheme. D-Resiliency means that the global gradient
can be decoded by the server in the presence of up to D client dropouts. T -privacy denotes that no
information about local datasets can be inferred from the encoded data even if up to T clients collude.
K-efficiency corresponds to the complexity of the coding scheme. Specifically, each private dataset
is split into K shards in Lagrange coding, and the size of the encoded dataset is proportional to 1/K.
Therefore, increasing the value of K reduces the communication overhead of data sharing. The
following theorem characterizes the (D,T,K)-achievable coding scheme, and its proof is available
in Section IV of [22].

Theorem 1. Given the client number N and the degree of the gradient function deg(g), a D-resilient,
T -private, and K-efficient Lagrange coding scheme is achievable, as long as

D + deg(g)(K + T − 1) + 1 ≤ N. (1)

Remark 1. As shown in Theorem 1, there is a tradeoff among resiliency (D), privacy (T ), and
efficiency (K). As the sum of T and K increases, the proposed framework tolerates fewer client
dropouts. Specifically, the maximum value of D is N − 1− deg(g) by setting T = K = 1.
Remark 2. Setting the privacy parameter T ≥ 1, the gradient computation over the encoded
samples leaks no private information according to the data process inequality. This implies that
the proposed DReS-FL framework achieves the same privacy guarantee as the secure aggregation
protocols. Specifically, the server learns no information about the private dataset from a single client’s
computation result.

4 DReS-FL Framework

DReS-FL consists of two main phases, as shown in Fig. 1. In the first phase, the private datasets are
transformed from the real domain to the finite field, and data-owning clients secretly share datasets
by Lagrange coding. Then, the server and the clients train a PINN iteratively via (1) local gradient
computations and (2) gradient decoding and model updating.

3More details about how to calculate the degree of the gradient are deferred to Appendix E.
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Figure 2: The secret data sharing scheme in the DReS-FL framework. Every client i ∈ [N ] secretly
shares the local dataset Xi to other clients j ∈ [N ]\{i} by sending the encoded samples X̃i→j . The
client j will receive X̃j ≜ [X̃T

1→j , . . . , X̃
T
N→j ]

T as an encoded version of the global dataset.

4.1 Data Transformation and Secret Sharing

To guarantee information-theoretic privacy, each client has to mask the datasets in a finite field
Fp using uniformly random matrices. Firstly, the local datasets (Xi,Yi) are converted from the
real domain to the finite field (Xi,Yi). Considering an element-wise function ϕ(z) = z + c
that transforms a real value to a non-negative number by adding a proper scalar c4, we define
X ≜ Round(2l · ϕ(X)), where the rounding operation is element-wise that quantizes each entry to
its closest integer, and l ∈ Z controls the quantization loss. We adopt the notation D to represent the
global dataset, which is the concatenation of all the local datasets (Xi,Yi) for i ∈ [N ].

After converting the private datasets to the finite field, the clients adopt a (D,T,K)-achievable
Lagrange coding to encode local data for secret sharing. First, each client i ∈ [N ] partitions its local

dataset to K shards as Xi ≜ [X
(1)T

i , . . . ,X
(K)T

i ]T and Yi ≜ [Y
(1)T

i , . . . ,Y
(K)T

i ]T . Assuming that

mi is divisible by K, we have X
(k)

i ∈ F
mi
K ×dx
p and Y

(k)

i ∈ F
mi
K ×dy
p for k ∈ [K]. A large value of K

helps to reduce the complexity in secret data sharing. Then, the clients add padding from T uniform
random masks to the data samples for privacy protection. Each client i ∈ [N ] forms the following

polynomials ui : Fp → F
mi
K ×dx
p and vi : Fp → F

mi
K ×dy
p of degree K + T − 1 to encode the local

dataset:

ui(z) ≜
∑

k∈[K]

X
(k)

i ·
∏

j∈[K+T ]\{k}

z − βj
βk − βj

+

K+T∑
k=K+1

U
(k)
i ·

∏
j∈[K+T ]\{k}

z − βj
βk − βj

, (2)

vi(z) ≜
∑

k∈[K]

Y
(K)

i ·
∏

j∈[K+T ]\{k}

z − βj
βk − βj

+

K+T∑
k=K+1

V
(k)
i ·

∏
j∈[K+T ]\{k}

z − βj
βk − βj

, (3)

where {U(k)
i }’s and {V(k)

i }’s are random noise matrices uniformly sampled from F
m
K ×dx
p and

F
m
K ×dy
p , respectively. These matrices mask the local datasets and provide a privacy guarantee

against up to T colluding workers. The clients and the server agree on K + T distinct elements
{β1, . . . , βK+T } from the finite field Fp in advance. Particularly, setting z = βk for k ∈ [K],

we reconstruct the data shard (ui(βk),vi(βk)) = (X
(k)

i ,Y
(k)

i ). All the clients use the same N
distinct elements {α1, . . . , αN} selected from Fp to encode the private datasets, where {αj}j∈[N ] ∩
{βk}k∈[K+T ] = ∅. Each client i obtains N encoded datasets (X̃i→j , Ỹi→j) ≜ (ui(αj),vi(αj))

for j ∈ [N ], where each (X̃i→j , Ỹi→j) is sent to client j from client i. All the received encoded

4The scalar c could be the absolute value of the minimum entry in dataset, which is set to 0 in the experiments.
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Table 1: Primary notations and descriptions

Notation Description Notation Description

(Xi,Yi)
Transformed dataset at client i in a
finite filed Fp

D
The global dataset that is a concate-
nation of clients’ datasets (Xi,Yi)
for i ∈ [N ]

(X
(k)
i ,Y

(k)
i ) k-th data shard at client i (X̃i→j , Ỹi→j)

Encoded dataset sent from client i
to client j

(X̃j , Ỹj)
Concatenation of received encoded
datasets (X̃i→j , Ỹi→j) for i ∈
[N ] at client j

C(t), It

Row selection matrix C(t) for data
sampling in round t and the corre-
sponding index set It

(X̃
(It)
j , Ỹ

(It)
j )

Local mini-batch sampled from
(X̃j , Ỹj) at client j in round t
based on It

(X
(k)
It

,Y
(k)
It

)
k-th global mini-batch sampled
from D in round t based on It

Algorithm 1 DReS-FL
Input: Local datasets (Xi,Yi) for i ∈ [N ], batch size b, initialized parameters w(0) ∈ Zdw

p , distinct elements
{αj}j∈[N ] and {βk}k∈[K+T ], prime number p, training round τ , learning rate η.

Output: Model parameter w(τ).
1: Clients encode the local datasets according to (2) and (3) and deliver them to other clients.
2: for t = 1, 2, . . . , τ do
3: Server sends the model parameters w(t) to the clients.
4: for j = 1, . . . , N do
5: Client j performs gradient computation on mini-batches (X̃(It)

j , Ỹ
(It)
j ).

6: Upload local computation results g̃(X̃(It)
j , Ỹ

(It)
j ;w(t)) to the server.

7: end for
8: if Server receives at least deg(g)(K + T − 1) + 1 uploads then
9: Decode K global gradients g̃(X

(k)
It

,Y
(k)
It

;w(t)) for k ∈ [K] by polynomial interpolation.

10: Convert gradients from the finite field to the integral domain g(X
(k)
It

,Y
(k)
It

;w(t)) by (6).

11: Update the model by (7) based on the aggregate gradient
∑K

k=1 g(X
(k)
It

,Y
(k)
It

;w(t)).
12: end if
13: end for

datasets at client j are represented as (X̃j , Ỹj), where X̃j ≜ [X̃T
1→j , . . . , X̃

T
N→j ]

T ∈ Fm̃×dx
p and

Ỹj ≜ [ỸT
1→j , . . . , Ỹ

T
N→j ]

T ∈ Fm̃×dy
p for j ∈ [N ]. Accordingly, the number of samples in the

encoded dataset is m̃ ≜ 1
K

∑n
i=1mi. Fig. 2 demonstrates the secret data sharing scheme.

4.2 Federated Training

Local Gradient Computation. The server randomly initializes a PINN at the beginning of the
training process, and the model parameters are constrained to an integer set Zp during the training
process. In each communication round, the server sends the model parameters to the clients, and
they compute the stochastic gradient over the mini-batches with size b. Particularly, we assume
that all the clients use the same row selection matrix C(t) ∈ {0, 1}b×m̃ for data sampling in each
round t5, and the mini-batch at each client j ∈ [N ] is determined by [X̃

(It)
j , Ỹ

(It)
j ] ≜ C(t)[X̃j , Ỹj ].

Here, It = {l(t)1 , . . . , l
(t)
b } ⊆ [m̃] is a randomly selected index set in the t-th round with li ∈ [m̃]

for i ∈ [b]. The entries of C(t) satisfy C
(t)
i,li

= 1 for i ∈ [b], and other entries are set to zero. Each

client j computes the stochastic gradient g̃(X̃(It)
j , Ỹ

(It)
j ;w(t)) ≜ g(X̃

(It)
j , Ỹ

(It)
j ;w(t)) mod p

in the finite field, and uploads the result to the server. Particularly, each g̃(X̃
(It)
j , Ỹ

(It)
j ;w(t))

amounts to an evaluation of the polynomial g̃(uIt
(z),vIt

(z);w(t)) at the point z = αj , where two
(K + T − 1)-degree polynomial functions uIt

: Fp → Fb×dx
p and vIt

: Fp → Fb×dy
p are defined as

5This can be achieved by setting the same random seed across all the clients. The weighted sampling method
has been adopted in this work, where the number of sampled data from X̃i→j is proportional to mi for i ∈ [N ].
Note that other sampling schemes can also be applied in DReS-FL.
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follows:

uIt
(z) ≜

∑
k∈[K]

X
(k)

It
·

∏
j∈[K+T ]\{k}

z − βj
βk − βj

+

K+T∑
k=K+1

U
(k)
It

·
∏

j∈[K+T ]\{k}

z − βj
βk − βj

, (4)

vIt
(z) ≜

∑
k∈[K]

Y
(k)

It
·

∏
j∈[K+T ]\{k}

z − βj
βk − βj

+

K+T∑
k=K+1

V
(k)
It

·
∏

j∈[K+T ]\{k}

z − βj
βk − βj

, (5)

with

X
(k)

It
=C(t)[X

(k)T

1 , . . . ,X
(k)T

N ]T ∈ Fb×dx
p , U

(k)
It

= C(t)[U
(k)T
1 , . . . ,U

(k)T
N ]T ∈ Fb×dx

p ,

Y
(k)

It
=C(t)[Y

(k)T

1 , . . . ,Y
(k)T

N ]T ∈ Fb×dy
p , V

(k)
It

= C(t)[V
(k)T
1 , . . . ,V

(k)T
N ]T ∈ Fb×dy

p .

Every (X
(k)

It
,Y

(k)

It
) = (uIt(βk),vIt(βk)) for k ∈ [K] is a global mini-batch selected from the

global dataset D.

Gradient Decoding and Model Updating. According to (4) and (5), the server can obtain the global
gradients g̃(X

(k)

It
,Y

(k)

It
;w(t)) for k ∈ [K] by evaluating the polynomial g̃(uIt

(z),vIt
(z);w(t)) at

the point z = βk. But, the server needs to first recover the coefficients of this polynomial, which is a
composition of the encoding polynomials (uIt

(z),vIt
(z)) and the gradient function g̃. As the degree

of the composite polynomial is deg(g)(K+T −1), the server requires at least deg(g)(K+T −1)+1
local computation results (i.e., evaluation points) to interpolate it6. This implies that the proposed
DReS-FL framework can tolerate at most D = N − deg(g)(K + T − 1)− 1 client dropouts.

After decoding the global gradients, the server converts them from the finite field to the integer set Zp

by g(X
(k)

It
,Y

(k)

It
;w(t)) = ψ(g̃(X

(k)

It
,Y

(k)

It
;w(t))), where ψ(z) is an element-wise function defined

as follows:

ψ(z) =

{
z if 0 ≤ z < p−1

2 ,
z − p if p−1

2 ≤ z < p.
(6)

As we assume that the prime number p is sufficiently large, the converted gradients do not
have overflow errors. Thus, the central sever updates the global model by w(t+1) = w(t) −
Q( η

bK

∑K
k=1 g(X

(k)

It
,Y

(k)

It
;w(t)), where η denotes the learning rate and bK represents the global

batch size7. Q(z) is a stochastic quantization function to ensure the model parameters are in the
integer set Zp after updating, which is defined as follows:

Q(z) =

{
⌊z⌋ with probability 1− (z − ⌊z⌋)
⌊z⌋+ 1 with probability z − ⌊z⌋. (7)

Besides, the probability of rounding z to ⌊z⌋ is proportional to the proximity of z to ⌊z⌋ so that the
stochastic rounding is unbiased. The overall procedure is summarized in Algorithm 1.

5 Convergence Analysis

In this section we characterize the convergence performance of PINNs, which relies on the fact
that the global gradients in the training process are unbiased. Define the empirical risk as ℓ(w) ≜
E(X,Y)∼D∥Y − f(X;w)∥22 and the corresponding gradient as ge (w) ≜ E(X,Y)∼D[g(X,Y;w)].
The variables (X,Y) are drawn from the distribution of the global dataset D. To prove that DReS-FL
guarantees convergence to the optimal model parameters, we first present the following assumptions
to facilitate the analysis.

Assumption 1. (L-smoothness) There exists a constant L > 0 such that for all w1,w2 ∈ Zdw
p , we

have ∥ge(w1)− ge(w2)∥2 ≤ L∥w1 −w2∥2.
6Note that if the server cannot receive enough results due to the client dropouts, the training protocol

continues to the next epoch without gradient decoding and model updating.
7The global batch size corresponds to the number of samples used for gradient computations in each round.
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Table 2: Test accuracy (%) of different methods. Each experiment is repeated five times. Best results
are shown in italic and second best results are in bold.

Dataset MNIST Fashion-MNIST EMNIST CIFAR-10 CIFAR-100 SVHN
FedAvg 96.17± 0.05 81.20± 0.07 71.50± 0.28 89.54± 0.09 67.71± 0.26 83.82± 0.20

FedAvg-IS 97.06± 0.10 85.94± 0.16 77.09± 0.34 89.83± 0.07 68.92± 0.14 85.27± 0.09
SCAFFOLD 71.89± 3.92 55.22± 1.83 55.15± 5.95 54.17± 9.13 29.97± 1.73 51.27± 3.43

DReS-FL (Ours) 97.38 ± 0.08 86.60 ± 0.32 78.04 ± 0.29 90.31 ± 0.19 69.15 ± 0.27 86.04 ± 0.15
Centralized 97.99 ± 0.04 89.02 ± 0.11 82.45 ± 0.23 90.37 ± 0.12 71.12 ± 0.09 86.18 ± 0.03

Assumption 2. (Unbiased and variance-bounded stochastic gradient) There exists a constant σ > 0

such that any stochastic gradient g(X
(k)

It
,Y

(k)

It
;w(t)) satisfies E

[
1
bg(X

(k)

It
,Y

(k)

It
;w(t))

]
= ge(w

(t))

and E
[
∥ 1
bg(X

(k)

It
,Y

(k)

It
;w(t))− ge(w

(t))∥2
]
≤ σ2.

Assumption 3. (Unbiased and variance-bounded rounding operation) There exists a constant γ > 0
such that for any z ∈ R, the stochastic quantization operation Q(·) satisfies E [Q(z)] = z and
E
[
∥Q(z)− z∥2

]
≤ γ2z2.

With the above preparations, we have the following theorem which ensures the convergence. The
proof is deferred to Appendix A.
Theorem 2. (Convergence) Denote w∗ as the first-order optimal solution. With Assumption 1-3,
selecting the learning rate as η = O

(
1/
√
τ ′
)

such that Ψ ≜ 1 − ηL/2 − ηγ2L/2 > 0, after τ ′

times of model updates, we have:

1

τ ′

τ ′∑
t=1

E
[
∥ge(w(t))∥2

]
≤ ℓ(w(0))− ℓ(w∗)

ητ ′Ψ
+
η2Lσ2

2bKΨ
(γ2 + 1). (8)

6 Experiments

6.1 Experimental Setup

Dataset. We evaluate our proposed algorithm on several benchmark datasets: MNIST [45], Fashion-
MNIST [46], EMNIST (Balanced) [47], CIFAR-10 [48], CIFAR-100 [48], and SVHN [49]. Specifi-
cally, the extra training samples in the SVHN dataset are not utilized. To simulate the non-IID data
distribution, we assume there are N = 20 clients in the learning system and adopt the skewed label
partition [50] to shuffle the datasets. Specifically, we sort a dataset by the labels, divide it into N
shards, and assign one shard to each client. To simulate the client dropouts in the training process, we
consider an extreme scenario, where the dropout rate of each client is set to 0.99 with a probability
of 0.5 or is uniformly sampled from [0, 0.1] otherwise. More details of the datasets are deferred to
Appendix B.

Model structures. We adopt a multi-layer perception (MLP) with two hidden layers for the image
classification tasks on MNIST, Fashion-MNIST, and EMNIST datasets. Each hidden layer contains
64 neurons. For CIFAR-10, CIFAR-100, and SVHN datasets, we resize the input images from
32 × 32 to 224 × 224 and adopt the convolutional layers of a pretrained VGG model to extract
25088-dimensional features. To classify the extracted features, we select a two-layer MLP model
with 4096 hidden units each. The baseline methods train the neural networks on the real field and
select the rectified linear unit (ReLU) function as the activation function. In each communication
round, clients perform one SGD step for the local model update.

DReS-FL. Our method adopts the same size PINNs to replace MLPs in the federated training, and
the degree of gradient is deg(g) = 8. Particularly, the extracted features from the last convolutional
layer of VGG19 are secretly shared with other clients. We set the parameters K = 1 and T = 1 in
the Lagrange coding, and the minimum number of clients needed to decode the global gradient is 9.

Baselines. In the experiments, data-centric approaches [11, 15, 17, 33, 34, 35] are not compared
since some of them [11, 15, 17] lack strong privacy guarantees while others [33, 34, 35] cannot
support federated neural network training with multiple clients. We select algorithm-based methods
as baselines, including FedAvg [1], FedAvg with importance sampling (FedAvg-IS) [51, 52], and
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Figure 3: Test accuracies on different datasets.

SCAFFOLD [2], since these methods can be easily combined with secure aggregation methods8.
Particularly, we assume that the FedAvg-IS method knows the dropout distribution, and the local
computation results are weighted by the participation probability (i.e., 1 - dropout probability) to
mitigate bias in aggregation. Besides, we also select the centralized training scheme as a performance
upper bound, where the server can access all the clients’ datasets for model training.

6.2 Performance Evaluation
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Figure 4: Test accuracy of
SCAFFOLD on MNIST.

The experimental results are shown in Table 2 and Fig. 3. The
FedAvg method achieves worse performance than the centralized
training scheme. This is attributed to the non-IID data and client
dropouts. The FedAvg-IS method improves the test accuracy com-
pared with FedAvg, but there is still a noticeable performance gap
with the centralized training scheme. It shows that using the knowl-
edge of dropout distribution can partially compensate for the biases
in the aggregated models, but the local data distributions are still
heterogeneous and degrade the performance. Besides, SCAFFOLD
has a low accuracy on all the settings. As the frequency of updating
local control variates is low, the estimation of the update direction
is highly inaccurate such that the model does not converge as shown
in Fig. 4. These results are consistent with the findings in [10]. Our
DReS-FL method is superior to all the baseline methods as the server can obtain global gradients after
polynomial interpolation. In addition, DReS-FL achieves comparable performance to the centralized
training scheme on some datasets, which demonstrates the effectiveness of our proposed framework
in solving the non-IID and dropout problems.

7 Conclusions

This paper proposed a Dropout-Resilient Secure Federated Learning (DReS-FL) framework via
Lagrange coded computing (LCC) to simultaneously solve the data heterogeneity and dropout
problems of FL, while providing privacy guarantees for the local datasets. The polynomial integer
neural networks (PINNs) have been constructed to ensure that the server can correctly decode the

8Note that the secure aggregation mechanism has not been applied in the experiments, since the quantization
step in secure aggregation may degrade the performance of the baselines.
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global gradient without privacy leakage. Extensive experimental results validated the effectiveness
of the proposed method. Potential limitations of our method include that the degree of the gradient
in a PINN increases exponentially with the number of layers, which hinders training a deep model
for complex tasks. Besides, performing multiple local SGD steps largely increases the finite field
size as the range of results grows exponentially with the number of multiplications, and thus it will
lead to substantial communication overhead in model transmission. Despite some limitations, we
believe DReS-FL is a promising framework for many practical FL application scenarios given its
effectiveness in resolving both the non-IID and client dropout problems, while with strong privacy
guarantees.
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