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Abstract

As an important framework for safe Reinforcement Learning, the Constrained
Markov Decision Process (CMDP) has been extensively studied in the recent liter-
ature. However, despite the rich results under various on-policy learning settings,
there still lacks some essential understanding of the offline CMDP problems, in
terms of both the algorithm design and the information theoretic sample complex-
ity lower bound. In this paper, we focus on solving the CMDP problems where
only offline data are available. By adopting the concept of the single-policy con-
centrability coefficient C∗, we establish an Ω

(
min{|S||A|,|S|+I}C∗

(1−γ)3ϵ2

)
sample com-

plexity lower bound for the offline CMDP problem, where I stands for the number
of constraints. By introducing a simple but novel deviation control mechanism,
we propose a near-optimal primal-dual learning algorithm called DPDL. This al-
gorithm provably guarantees zero constraint violation and its sample complexity
matches the above lower bound except for an Õ((1 − γ)−1) factor. Comprehen-
sive discussion on how to deal with the unknown constant C∗ and the potential
asynchronous structure on the offline dataset are also included.

1 Introduction

Reinforcement Learning (RL) is an important tool for modeling the real world tasks that involve
sequential decision making. Such RL problems are often mathematically described as a Markov
Decision Process (MDP) that maximizes a cumulative sum of rewards. The safe reinforcement
learning, on the other hand, not only cares the reward maximization, but also attempts to ensure a
reasonable system performance with respect to certain safety constraints. Such safety constrained
RL problems are often formulated as the Constrained Markov Decision Process (CMDP) M =
(S,A,P, r, u, γ, ρ0), where S is a finite state space, A is a finite action space, γ ∈ (0, 1) is the
discount factor, P (s′ | s, a) stands for the transition probability from s to s′ under the action a for
∀(s, a, s′) ∈ S×A×S, and r : S×A → [−1, 1] is the reward function, (ui : S×A → [−1, 1])i∈[I]

is a set of I utility functions, ρ0 is the initial state distribution over S. The goal of CMDP is to find
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an optimal policy π to maximize the cumulative reward while satisfying a group of constraints:

maxπ J(π) := E
[+∞∑
t=0

γt · r (st, at)
∣∣∣ s0 ∼ ρ0, π] (1)

s.t. Jui (π) := E
[+∞∑
t=0

γt · ui (st, at)
]
≥ 0, for i ∈ [I] = {1, 2, ..., I} .

For the CMDP problem, there has been plenty of on-policy algorithms, see [7, 8, 20, etc.]. However,
in real world applications such as training physical robots, where safety is an important measure of
performance, the real time on-policy interaction with the environment may suffer from the potential
damages to the robots. Besides, in many non-simulating environments, the on-policy data collection
may also be time-consuming. Therefore, it is crucial to design an off-policy algorithm to solve the
CDMP problems, where plenty of historical data are already accumulated while real time interac-
tions are limited. To our best knowledge, offline CMDP algorithms are rare [12, 27, 29], and the
sample complexity guarantees are limited. In particular, a strong uniform concentrability assump-
tion is required in [12], and the model-based method [27] mainly considers the case an empirical
model is known. Thus it is still not clear how to efficiently solve offline CMDPs with model-free
approaches, and there lacks essential understanding of the information theoretic lower bound on the
sample complexity of the offline CMDP.

In this paper, we propose a Deviation-controlled Primal-Dual Learning (DPDL) method to solve
problem (1). We adopt the primal-dual strategy developed in [4, 16, 26, 35, etc.] as the main al-
gorithmic framework while several non-trivial contributions have been made beyond the existing
results. Unlike the aforementioned literatures that exclusively rely on the accessibility of a gener-
ative model, DPDL utilizes the offline data, where the distribution shift difficulties of the offline
data is tackled by a novel and effective adaptive deviation control mechanism. If the considered
CMDP instance has a finite (but potentially unknown) concentrability coefficient, DPDL provably
finds a policy with O(ϵ)-optimal reward and zero constraint violation. An information theoretical
lower bound on the sample complexity of offline CMDP is also derived in this paper, which indi-
cates that our deviation control mechanism achieves a minimax optimal complexity dependence on
I, |S|, |A|, C∗.

Main Contribution. We summarize the contributions in details as follows.

• We propose the DPDL algorithm to solve the CMDP problem (1). Suppose the CMDP in-
stance satisfies the Slater’s condition and certain prior knowledge on the concentrability coeffi-
cient C∗ is given, DPDL provably finds an ϵ-optimal policy with zero constraint violation using
Õ
(

min{|S||A|,|S|+I}C∗

(1−γ)4ϵ2

)
offline samples.

• We establish an information theoretic sample complexity lower bound of Ω
(

min{|S||A|,|S|+I}C∗

(1−γ)3ϵ2

)
for the offline CMDPs, indicating that DPDL is near optimal up to an Õ((1 − γ)−1) factor. The
necessity of the Slater’s condition for achieving zero constraint violation is also established. The
sharp dependence on the number of constraints is mainly captured by our careful construction of
the correlated actions.

• In order to handle the practical situation where C∗ is unknown, an adaptive version of DPDL is
designed with the same sample complexity as DPDL.

• Our analysis of DPDL also extends to the asynchronous case, where the offline dataset consists of
a sample trajectory generated by certain behavior policy. In this situation, the sample complexity
of DPDL is shown to be Õ

(
t2mix min{|S||A|,|S|+I}C∗

(1−γ)4ϵ2

)
. Our handling of the correlated gradient

estimators with large variance can also be beneficial to other algorithms under the asynchronous
setting.

Related Work. Recently, considerable efforts have been devoted to the online learning of CMDP.
Under the episodic and tabular setting, several works [7, 8, 20] have achieved the Õ

(√
|S|2|A|T

)
regret and cumulative constraint violation, with different dependence on the episode length H
omitted. Under proper assumptions, zero or bounded cumulative constraint violation can be
achieved [1, 17]. In terms of the number of constraints I , MOMA proposed in [34] achieves
an Õ

(√
min{|S|,I}I|S||A|/T

)
convergence on both average reward gap and constraint violation.
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Nevertheless, all the above results adopt the model-based approaches. Except for [34], they either
consider the cases where I = 1 or completely ignore the influence of I in the sample complexity.
Therefore, both deriving an efficient model-free method and obtaining the optimal dependence on I
remain open.

Another approach closely related to our paper is the primal-dual method in RL, see [4, 11, 25, 26, 35,
etc.]. Given the access to a generative model, the model-free primal-dual method developed in [4]
achieves an Õ

( I|S||A|
(1−γ)4ϵ2

)
sample complexity to find an ϵ-optimal safe policy. The deviation control

mechanism we develop enables the primal-dual approach to extend beyond the generative model.

Finally, we mention a few related works in the offline RL and safe RL. Previous offline RL algo-
rithms with sample efficiency guarantees typically assume the uniform concentrability [12, 18, etc.]
or lower bounded minimum visitation µmin [32, 33, etc.]. Recently, under the less restrictive as-
sumption of the single-policy concentrability coefficient C∗, a minimax optimal sample complexity
lower bound of Ω

( |S|C∗

(1−γ)3ϵ2
)

for discounted offline MDPs is derived in [21]. A similar Ω
(H3|S|C∗

ϵ2

)
lower bound is also derived for the episodic setting in [28]. Under both settings, offline algorithms
with Õ(|S|C∗ϵ−2) sample complexity (with different (1−γ)−1 orH factors omitted) have been dis-
covered with either model-based [15, 21, 28, 31] or model-free approaches [22, 30]. In terms of the
offline CMDP problem, the only existing results are [12, 27, 29], where [29] only provides asymp-
totic convergence, [12] relies on a much stronger uniform concentrability assumption, and [27] is a
model based method that potentially suffers an O((C∗)2) dependence. Compared to these works,
our method is model-free and has an optimal O(C∗) dependence on the concentrability coefficient.

2 Problem setup

2.1 LP formulation of CMDP problem

For any policy π, the (unnormalized) state-action occupancy measure is defined as

νπ(s, a) :=

+∞∑
t=0

γt · P (st = s, at = a | s0 ∼ ρ0, π) , for ∀(s, a) ∈ S ×A. (2)

Given any occupancy measure νπ , the policy π that generates νπ can be recovered as

π(a|s) = νπ(s, a)∑
a′ ν

π(s, a′)
, ∀(s, a) ∈ S ×A. (3)

According to [2], it is well known that the set of all state-action occupancy measures form a poly-
hedron

{
ν ∈R|S|×|A|

≥0 :
∑
a∈A(I − γPa)νa = ρ0

}
, where νa := (ν(s, a))s∈S is an |S|-dimensional

column vector, I is the |S|×|S| identity matrix, and Pa := (P(s′|s, a))s′,s is an |S|×|S| transition
matrix, see also [26]. Therefore, combined with the fact that J(π) = ⟨νπ, r⟩ and Jui (π) = ⟨νπ, ui⟩,
the CMDP problem (1) can be reformulated as an LP problem with |S|+I constraints:

max
ν∈R|S|×|A|

≥0

⟨ν, r⟩ s.t.
∑
a∈A

(I− γPa)νa = ρ0, ⟨ν, ui⟩ ≥ 0, ∀i ∈ [I]. (4)

Due to the fundamental theorem of LP, see e.g. [5], problem (4) has an optimal basic feasible
solution with at most |S|+ I positive entries, which indicates the following proposition.
Proposition 2.1. For the CMDP problem (1) with I constraints, there is an optimal policy π∗ such
that |supp(νπ∗

)| ≤ N :=min{|S|+I, |S||A|}, where supp(·) denotes the support of a vector.

This result captures the potential sparse structure of the optimal policy when I is not as large as
|S||A|, and is the key to deriving a tight complexity dependence on the number of constraints I .

2.2 Off-policy learning from demonstration

In this work, we consider the offline CMDP problems where the agent cannot interact with the
environment. Instead, the optimization is conducted using a fixed offline dataset. To standardize the
discussion, we make the following assumption on the offline dataset, see e.g. [21].
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Assumption 2.2 (Independent batch dataset). The batch dataset D consists of independent tuples
(s, a, s′, r,u), such that (s, a) ∼ µ, E [r| s, a] = r(s, a),E [ui| s, a] = ui(s, a), and s′ ∼ P(·|s, a),
where µ is called the reference distribution.

To characterize the distribution shift of an arbitrary occupancy measure νπ from the reference distri-
bution µ, we introduce the following notion of the deviation: Dπ := maxs,a

(1−γ)νπ(s,a)
µ(s,a) , where the

(1−γ)-factor normalizes νπ to be a distribution. In offline RL, it is natural to assume that the devia-
tion Dπ∗

of the optimal policy is finite. That is, the reference distribution µ fully covers supp(π∗).
Otherwise, no optimality can be guaranteed. Combining the sparse nature of the optimal solution of
(1), we introduce the following finite concentrability assumption for our problem.
Assumption 2.3. For ∀ψ ≥ 1, denote the ψ-deviated policy class as Π(ψ) :={π :νπ∈D(ψ)} where

D(ψ) :=

{
ν ∈ R|S||A|

≥0 : max
s,a

(1− γ)ν(s, a)
µ(s, a)

≤ ψ,
∑
s,a

(1− γ)ν(s, a)
µ(s, a)

≤ Nψ
}
. (5)

We assume there exists a finite ψ such that some optimal policy π∗ is contained in Π(ψ). Let C∗ be
the minimum of such ψ. We call this constant C∗ the (single-policy) concentrability coefficient.

The above assumption includes a sparsity induced constraint as a result of Proposition 2.1, its coun-
terpart in the definition of single-policy concentrability of offline MDP [21] is the deterministic
optimal policy. The explicit dependence on N in D(ψ) facilitates the derivation of the information
theoretic lower bound as well as a near-optimal algorithm.

A second remark is that if we know any upper bound ψ of the coefficientC∗, then it will be sufficient
to only consider the policies in Π(ψ). When C∗ is unknown, ψ control the risk of distribution shift.
Consequently, in this paper, we propose to solve the LP formulation (4) with a tighter feasible region
introduced by D(ψ). This will allow us to properly control the variance of the off-policy sampling
when some of µ(s, a) is extremely small or even zero. We call this strategy deviation control.

2.3 Conservatism toward constraints

We say policy π is safe if it satisfies all constraints in (1), and we say π is ϵ-safe if Jui (π) ≥ −ϵ,
for ∀i ∈ [I]. Most of the existing online CMDP algorithms guarantee O

(
1/
√
T
)

average safeness.
To ensure the true safeness (zero constraint violation) in this work, we assume the Slater’s condition
to hold throughout this paper. In fact, in Section 5, we will show that the Slater’s condition is the
necessary condition for any offline CMDP algorithm to obtain zero constraint violation.
Assumption 2.4. There exists φ > 0 and a policy π such that Jui (π) ≥

φ
1−γ , ∀i ∈ [I].

A prior knowledge of such a constant φ is assumed throughout our discussion, and we also assume
the Slater’s condition holds for Π′ := Π(C∗). Given Assumption 2.4, we leverage the idea of conser-
vative constraints proposed in [4]. Namely, instead of Jui (π) ≥ 0, we consider the conservative con-
straints Jui (π) ≥ κ when solving the CMDP problem, where κ > 0 is a properly chosen parameter
that controls the level of conservatism in the constraints. In order to keep the form of the constraints
in problem (1), we adopt a shifted utility function uκi defined by uκi (s, a) := ui(s, a)− (1− γ)κ for
∀(s, a) ∈ S ×A, ∀i ∈ [I]. Therefore, Jui (π) ≥ κ is then equivalent to Ju

κ

i (π) ≥ 0. It can be shown
that a properly selected κ will facilitate a high probability of preserving zero constraint violation,
while only introducing an extra O

(
κ
φ

)
sub-optimality gap in the reward.

3 The Deviation-controlled Primal Dual Learning (DPDL) algorithm

To solve CMDP with offline samples, we transform its LP formulation (4) to a saddle point form

max
ν∈D(ψ)

min
λ≥0,V

L(V, λ, ν) := ⟨r, ν⟩+
〈
V, ρ0 −

∑
a

(I− γPa)νa
〉
+ ⟨λ,Uκν⟩ , (6)

where D(ψ) is defined by (5), V ∈ R|S|, λ ∈ RI are Lagrangian multipliers, and the matrix Uκ is
defined as Uκ := [uκ1 , · · · , uκI ]

⊤ ∈ RI×|S||A| with uκi being the shifted utility defined in Section 2.3.
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Given the reference distribution µ, the objective function can be rewritten as an expectation:

L(V, λ, ν) = E
s0∼ρ0

[V (s0)] + E
(s,a)∼µ

s′∼P(·|s,a)

[
ν(s, a)

µ(s, a)

(
r(s, a)− (V (s)− γV (s′))+

∑
i

λiu
κ
i (s, a)

)]
.

If the reference distribution µ is known, we can directly sample a stochastic gradient of L. However,
when the reference distribution µ is unknown in practice, then the importance sampling weight
ν(s,a)
µ(s,a) is also unknown. To tackle this issue, let µ̂ be a proper estimation of the reference distribution

µ, we introduce the weights w(s, a) = µ(s,a)
µ̂(s,a) , and the diagonal matrix W = diag (w(s, a)). Then

we apply a change of variables x=W−1ν, in other words, we set x(s,a)µ̂(s,a) =
ν(s,a)
µ(s,a) for ∀s, a to enable

sampling. From now on, we will focus on the following reweighted problem
min

λ∈Λ,V ∈V
max
x∈X

Lw(V, λ, x) := L(V, λ,Wx), (7)

where the feasible regions are defined as

X :=

{
x ∈ R|S||A|

≥0 : max
s,a

x(s, a)

µ̂(s, a)
≤ ψ

1− γ
,
∑
s,a

x(s, a)

µ̂(s, a)
≤ Nψ

1− γ
,
∑
s,a

x(s, a) ≤ 4

1− γ

}
,

V :=

{
V ∈R|S| : ∥V ∥∞ ≤

8

1− γ
(1 +

2

φ
)

}
and Λ =:

{
λ ∈ RI≥0 : ∥λ∥1 ≤

8

φ

}
.

(8)

The sets X , V and Λ are chosen to be large enough so that they contain the optimal solution of the
problem (6), see detailed discussion in Appendix E. Given a sample ζ = (s0, s, a, s

′, r,u) ∼ ρ0×D,
and a point Z := (V, λ, x), we construct the unbiased gradient estimators for Lw(·) as

ĝV (Z; ζ) := Is0 +
x(s, a)

µ̂(s, a)
(γIs′ − Is) ,

ĝλ(Z; ζ) :=
x(s, a)

µ̂(s, a)
uκ,

ĝx(Z; ζ) :=
r + γV (s)− V (s′) + ⟨uκ, λ⟩

µ̂(s, a)
Is,a,

(9)

where Is is the |S|-dimensional unit vector with the s-th element being one, Is,a is the |S||A|-
dimensional unit vector with the (s, a)-th element being one, and uκ = u − κ(1 − γ)1 ∈ RI is
the shifted utility vector. Based on these estimators, we propose a stochastic mirror descent ascent
approach to solve problem (7), as stated in Algorithm 1.

The algorithm starts from a feasible solutionZ1, which, for example, can be easily chosen as V 1=0,
λ1 = 1

φI , x1 = N
|S||A|

µ̂
1−γ . In each iteration, an offline sample ζt is used to construct the unbiased

gradient estimators gtV , g
t
λ and gtx. A stochastic mirror descent ascent step (11) is then used to update

the solution Zt, where ProjV(·) denotes the Euclidean projection to the set V , and KL(Y ∥Y ′) :=∑
i Yi log

Yi

Y ′
i
−
∑
i Yi+

∑
i Y

′
i denotes the generalized KL divergence. Simple closed form solutions

are available to the V t+1 and λt+1 updates. By taking the advantage of the special structure of gtx
and the fact that xt ∈ X is feasible, the xt+1 subproblem can be reduced to the root finding of a
1-dimensional monotone function, which can be solved efficiently, see details in Appendix A.

Finally, it is worth noting that x is the approximate optimal solution to the reweighted problem.
And Wx will be the approximate solution to the original problem (6) before the change of variable.
Therefore, ideally, we should have output the policy πw(a|s) = w(s,a)x̄(s,a)∑

a′ w(s,a′)x̄(s,a′) , which is inacces-
sible in practice without knowing the reference distribution µ. In order to overcome such dilemma,
we show that by properly constructing the estimated distribution µ̂, the π output by Algorithm 1 will
be close enough to the ideal output πw.

4 The sample complexity of DPDL

4.1 Main results of DPDL

For the DPDL algorithm, the convergence and performance guarantee of the output policy π̄ are
summarized as the following theorem.
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Algorithm 1: Deviation-controlled Primal-Dual Learning algorithm (DPDL)
input : Tolerance ϵ > 0, confidential level δ > 0, conservatism level κ > 0, stepsize ηt > 0,

constants αV , αλ, αx, Ne, ς > 0, and initial feasible solution Z1 = [V 1;λ1;x1].
1 Obtain Ne samples from D, let N(s, a) be the times that the pair (s, a) appears. Compute

µ̂(s, a) = max

(
N(s, a)

Ne
, ς

)
, ∀(s, a) ∈ S ×A. (10)

for t = 1, · · · , T − 1 do
2 Sample ζt = (s0t , st, at, s

′
t, rt,ut) from ρ0 ×D;

3 Compute stochastic gradients gtV := ĝV (Z
t; ζt), gtλ := ĝλ(Z

t; ζt), and gtx := ĝx(Z
t; ζt);

4 Compute the stochastic mirror descent ascent update

V t+1 = ProjV
(
V t − ηtα−1

V gtV
)
,

λt+1 = argmin
λ∈Λ

(〈
gtλ, λ− λt

〉
+
αλ
ηt

KL(λ ∥ λt)
)
,

xt+1 = argmin
x∈X

(
−
〈
gtx, x− xt

〉
+
αx
ηt

KL(x ∥ xt)
)
,

(11)

5 Compute the average iterate x = 1
T

∑T
t=1 x

t, V = 1
T

∑T
t=1 V

t, λ = 1
T

∑T
t=1 λ

t;
6 Compute π(a|s) = x(s,a)∑

a′ x(s,a′)
, for all (s, a);

output: Policy π and the approximate solution x.

Theorem 4.1. Suppose that Algorithm 1 runs with ηt ≡ 1√
T

, κ = 5φϵ, αλ = 1
1−γ

√
ψ

log I , αV =

φ
√

ψ
|S| , αx = 1

φ(1−γ)

√
Nψ
logψ , and ψ ≥ C∗. Then for any fixed ϵ ∈

(
0, 1

10(1−γ)
]
, and T ≥

co
Nψι

φ2(1−γ)4ϵ2 , where ι = log
(
ψ|S||A|I

δ

)
and co is a universal constant, the output policy π of

DPDL satisfies the following with probability at least 1− δ

J(π∗)− J(π) ≤ O (ϵ) , and Jui (π) ≥ 0,∀i ∈ [I].

When ψ = O(C∗), DPDL needs at most Õ
(

NC∗

φ2(1−γ)4ϵ2

)
samples to find a safe O (ϵ)-optimal

policy.
Remark 4.2. When the prior knowledge of C∗ is not available, and the selected parameter ψ < C∗

but the Slater’s condition for Π(ψ) still holds, the output policy π of DPDL satisfies that

J(π) ≥ max
π∈Π(ψ)∩S

J(π)−O (ϵ) and Jui (π) ≥ −ϵapprox,∀i ∈ [I],

where S denotes the set of safe policies, and ϵapprox(ψ) := J(π∗) −maxπ∈Π(ψ)∩S J(π) in some
sense measures the “sub-optimality” of the policy class Π(ψ). In case a fixed sub-optimality gap ϵ
is given, such difficulty of unknown C∗ also appears in the guarantees provided in previous works
[15, 21, 22, 28, 30, 31].

A simple approach to resolve the difficulty of an unknown C∗ is discussed later in Section 6.

4.2 The analysis of DPDL

We break down the analysis of Theorem 4.1 into the following steps. First of all, we provide a proper
choice of Ne and ς so that µ̂ is close enough to µ. See proof in Appendix B.

Proposition 4.3. Denote ϵe = ϵ
100 , and let ς = φ(1−γ)2ϵe

2Nψ , and Ne ≥ 512Nψ
φ2(1−γ)4ϵ2e

· log
(

6|S||A|
δ

)
.

Then with probability at least 1− δ/3, the estimated reference distribution µ̂ defined by (10) satisfies
the following properties simultaneously: (1). µ(s,a)

µ̂(s,a) ≤ 2, and µ̂(s, a) ≥ ς , for all s, a; (2). For any
π ∈ Π(ψ), W−1νπ ∈ X ; (3). For any x ∈ X , ∥Wx− x∥1 ≤ φ(1− γ)ϵe.
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All the rest of our analyses are all conditioning on the success of Proposition 4.3. It is worth noting
that in Proposition 4.3, (3) clarifies the validity of constructing the output policy π with x instead of
Wx; (2) explains why the feasible region X is defined as (8); and (1), combined with the carefully
specified feasible domains, provides the proper upper bounds on the magnitude and variance of
the unbiased gradient estimators in (9). A very detailed discussion is provided in Appendix C. In
particular, for the ĝx(·) estimator, an explicit O(N ) dependence has been established for both the
magnitude and variance, which plays a crucial role in deriving the optimalO(min{|S||A|, |S|+ I})
dependence on |S|, |A| and I . Let us define the following gap to measure the performance of the
output x̄ w.r.t. problem (7):

Gap(x) := max
x∈X

min
V ∈V,λ∈Λ

Lw(V, λ, x)− min
V ∈V,λ∈Λ

Lw(V, λ, x). (12)

Based on the properly bounded gradient estimators, a high probability bound for Gap(x) is estab-
lished in the following theorem. Its proof is detailed in Appendix D.
Theorem 4.4. Suppose the constants ηt, αV , αλ, αx and κ are chosen the same as Theorem 4.1.
Then there is a universal constant co such that, as long as T ≥ co

Nψι
φ2(1−γ)4ϵ2 , the output x satisfies

Gap(x) ≤ ϵ
2 with probability at least 1− δ/3.

Given Theorem 4.4, we finalize the proof of Theorem 4.1 by properly transforming the bound on
Gap(x) to the expected reward gap and the constraint violation on the original CMDP problem (1),
which is discussed in details in Appendix E.

4.3 Extension to asynchronous setting

In some situations, an independent dataset that satisfies Assumption 2.2 may not be available. In-
stead, the dataset may have the following asynchronous structure.
Assumption 4.5. The asynchronous datasetDasync is a single sample trajectory generated by some
behavior policy πb. Namely, what we observe is a sequence {st, at, rt,ut}t≥1 generated under πb.
We assume the Markov Chain {(st, at)}t≥1 is irreducible, aperiodic and uniformly ergodic, with
the stationary distribution µ and the mixing time tmix < +∞.

The asynchronous data structure introduced here is frequently considered in RL, for example, the
asynchronous Q-learning [14]. However, to our best knowledge, this type of offline data has yet
been considered under the assumption of a finite single-policy concentrability. In this situation,
we set ζt = (s0t , st, at, st+1, rt,ut) in the DPDL method (Algorithm 1), where s0t ∼ ρ0 and
(st, at, st+1, rt,ut) is the tuple in the t-th time step of the asynchronous dataset. The sample com-
plexity of the DPDL Algorithm under Assumption 4.5 is established as follows.
Theorem 4.6. Under Assumption 4.5, we follow the choice of constants in Theorem 4.1. Then given
any fixed ϵ ∈

(
0, 1

10(1−γ)

]
, ψ ≥ C∗, and T ≥ c′o

t2mixNψι3

φ2(1−γ)4ϵ2 , the output policy π of DPDL satisfies
the following with probability at least 1− δ

J(π∗)− J(π) ≤ ϵ and Jui (π) ≥ 0,∀i ∈ [I].

Here ι = log (T |S||A|I/δ) and c′o is a universal constant. Therefore, when ψ = O(C∗), DPDL

needs at most Õ
(

t2mixNC∗

φ2(1−γ)4ϵ2

)
samples to find a safe ϵ-optimal policy.

The main framework for proving Theorem 4.6 is similar to that in Section 4.2, thus we present the
proof in the Appendix H. However, compared to the synchronous setting, a key difficulty here is
that the gradient estimators ĝV (Zt; ζt), ĝλ(Zt; ζt), and ĝx(Zt; ζt) are no longer unbiased, because
the samples {ζt}Tt=1 are obtained from a sample path. This brings further difficulties in the analysis
because the variance of the estimators can be amplified by the correlation between samples.

The basic idea to deal with this difficulty is to leverage the mixing property of the uniformly ergodic
Markov chain. Take the ĝx(·) estimator for example, the bias can be well controlled as long as
T is selected larger than the mixing time tmix of the sample path, which can be illustrated by the
following decomposition
ĝx(Z

t; ζt)−∇xLw(Zt) = ĝx(Z
t; ζt)−ĝx(Zt−τ ; ζt)+∇xLw(Zt−τ )−∇xLw(Zt)︸ ︷︷ ︸

order O(τη)

+ ĝx(Z
t−τ; ζt)−E

[
ĝx(Z

t−τ; ζt)
∣∣Zt−τ ]︸ ︷︷ ︸

zero mean

+E
[
ĝx(Z

t−τ; ζt)
∣∣Zt−τ ]−∇xLw(Zt−τ )︸ ︷︷ ︸

order O(exp(−τ/tmix))

.
(13)
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When t = Ω̃ (tmix), one can bound the bias of ĝx(Zt; ζt) by Õ (tmixη) with suitably chosen τ .

5 Lower Bound of Sample Complexity for Learning CMDP

In this section we will discuss whether the DPDL Algorithm is the near-optimal and whether the
Slater’s condition (Assumption 2.4) is necessary in achieving zero constraint violation. We answer
these questions affirmatively by establishing the following theorems.
Theorem 5.1. Suppose S ≥ 4, A ≥ 3, I ≥ 8, C ≥ 2, γ ∈ [ 12 , 1), N ≥ 1. For any learning
algorithm A, there exists a CMDPM = (S,A,P, r, (ui)i∈[I], γ, ρ0) and a reference distribution µ,
such that the following hold true.

(1) |S| ≤ 4S + 1, |A| ≤ A, and the concentrability coefficient C∗ forM and µ satisfies C∗ ≤ C.

(2) Let π̂ be the policy output by A given N offline samples from µ, and let π∗ be the optimal policy,
then at least one of the following two inequalities hold true:

EM,A[J(π
∗)−J(π̂)]≳min

{
1

1− γ
,

√
min {SA, S+I}C

(1− γ)3N

}
, and EM,A

[
violation(π̂)

]
≳ 1,

where violation(π̂) :=
∑I
i=1 [J

u
i (π̂)]−, and Jui is the utility w.r.t. the constraints Jui ≥ 0,∀i ∈ [I].

For DPDL, the constraint violation is guaranteed to be zero with high probability, then only the first
inequality is valid for our method, which indicates an Ω

( NC∗

(1−γ)3ϵ2
)

sample complexity lower bound.

Therefore, the complexity of DPDL is nearly optimal up to an Õ
(

1
1−γ

)
factor. Besides the lower

bound, we also establish the necessity of the Slater’s condition in ensuring zero violation.
Theorem 5.2. Let S,A,C, γ be the same as Theorem 5.1. For any algorithm A, there exists a CMDP
M = (S,A,P, r, (ui)i∈[I], γ, ρ0) with I = 1, |S| ≤ S, |A| ≤ A and a reference distribution µ with

C∗ ≤ C, such that EM,A[violation(π̂)] ≳ min
{

1
1−γ ,

√
SC

(1−γ)3N

}
, where π̂ is the output policy of

A given N samples from µ.

Theorem 5.2 is obtained by utilizing the same idea as Theorem 5.1. Thus we only discuss the
derivation of Theorem 5.1, while moving all the details to Appendix F.

For offline CMDPs, the fixed data distribution µ fully dominates the frequency of exploring the
state-action pairs. Therefore, intuitively, the hard CMDP instances will be the ones with a large
support supp(νπ

∗
) that widely spreads across the less frequently visited station-action pairs of µ.

Based on this intuition, we design a basic block of CMDP presented in Fig. 1, which is essentially a
constrained bandit with 2K+1 arms. The instanceM will be S replicas of the basic blocks, plus an
extra “null” state s−1 to control C∗. In this discussion, we only consider the case where I ≃ KS,
the more general construction that cover full range of I is presented in the appendix.
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j
⊖ s

j
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2
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2
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2
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1
2
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Figure 1: Transition dynamics of the jth replica under different actions, i ∈ [K].

State, action and transition. At the states sj⊕, s
j
⊖, s

j
0, there is no action to be taken. At each state

sj1, there are 2K +1 actions a1, b1, · · · , aK , bK , e. The transition dynamics of the jth replica under
different actions are illustrated in Fig. 1 where the directed arcs and the numbers associated with
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them are the transitions and the corresponding probabilities, where p = 1
2−γ and q = 2 − 1

γ are
some constants, while ϖ and θi,j ∈ {−1, 1}, ∀i, j are parameters to be designed.
Constraints and Reward. By carefully selecting the ui’s, one can construct a set of I = 2SK

constraints that indicate π(ai|sj1)≤π(bi|s
j
1)≤ 1

4K , ∀i, j. For the reward, we set r(sj1) = r(sj0) = 0,
r(sj⊕) = 1, and r(sj⊖) = −1, regardless of the actions. At any replica j, we can view ai, bi, and e
as bandit arms with (cumulative) reward cϖθi,j , − cϖ2 , and 0 respectively, for some c > 0. When
θi,j =−1, one would rather pick e . But when θi,j = 1, due to the constraint π(ai|sj1)≤π(bi|s

j
1)≤

1
4K , picking ai and bi with equal probability 1

4K will be optimal. In fact, this 1
4K upper bound forces

the support of the optimal policy to widely spread across the (i, j)’s where θi,j = 1, and the task of
learning is essentially determining whether θi,j = 1 for each (i, j).
Optimal policy. Based on the above discussion, it is not hard to see that the unique optimal policy
is π∗,θ(ai|sj1) = π∗,θ(bi|sj1)=

I{θi,j=1}
4K and π∗,θ(e|sj1)=1− 1

2K

∑K
i=1I{θi,j=1}.

Finally, with the above π∗,θ and a proper initial distribution ρ0, the occupancy measure can be
explicitly computed and a reference distribution µ with concentrability coefficient C∗ ≤ C can be
designed. Moreover, for any policy π̂, we consider θ̂i,j(π̂) :=8Kπ̂(ai|sj1)− 1, then

L(π̂; θ) :=
[
J(π∗,θ; θ)− J(π̂; θ)

]
+
+

γϖ

1− γ
violation(π̂; θ) ≥ γ2ϖ∥θ̂(π̂)− θ∥1

64KS(1− γ)
.

Namely, if θ̂(π̂) is not close enough to the underlying parameter θ, the policy π̂ will incur a con-

siderable reward gap or constraint violation. By setting ϖ = min
{√

(SK−3)C
16(1−γ)N ,

1
2

}
to be a small

enough number, any two CMDP instances with different θ parameters will be non-distinguishable,
given N samples from µ. According to [9] and [24], there exists a subset Θ ⊆ {−1, 1}SK such
that |Θ| ≥ exp(SK/8), and ∥θ − θ′∥1 ≥

SK
2 for any pair of different θ, θ′ ∈ Θ. In other words,

there will be at least exp(SK/8) CMDP instances with different enough θ parameters while being
non-distinguishable under N samples. Then the rest of the arguments will follow by applying the
generalized Fano’s inequality [3]. A detailed proof is provided in Appendix F.

6 Adaptive deviation-control framework of DPDL

We should notice that in both Theorems 4.1 and 4.6, it has been explicitly emphasized that a prior
belief ψ ≥ C∗ is required. Otherwise, both the reward and the constraints will suffer an extra loss
of ϵapprox(ψ). In this section, we propose an adaptive deviation-control framework (Algorithm 2)
to handle the practical situation where no such prior knowledge is available.

Algorithm 2: The Adaptive-DPDL framework
input : Sub-optimality ϵ, confidence level δ.

1 Initialize ψ1, default JK ≡ −∞, for K = 0, 1, 2, ...;
2 for K = 1, 2, · · · do
3 Call DPDL with ψ = ψK , obtain an approximate solution x(K) and the policy π(K);
4 if VERIFY

(
x(K); ϵ, δ

)
== TRUE then

5 Compute Ĵ(π(K)) as an O(ϵ)-accurate estimator of J(π(K)), set JK = Ĵ(π(K));

6 if −∞ < JK ≤ JK−1 +O(ϵ) then Terminate;
7 Set ψK+1 = 2ψK ;

output: Policy π(K).

At a high-level, Algorithm 2 consists of the following steps.

Verification For the output x of the DPDL, we develop a verification method VERIFY(x; ϵ, δ) that,
with probability at least 1 − δ, returns TRUE only when following two statements hold: (1). The
vector ν := Wx satisfies ∥

∑
a(I− γPa)νa − ρ0∥1 = O(ϵ), which essentially checks whether ν is

approximately a valid occupancy measure; (2). The policy π induced by x is safe. At step K, if
any one of the two statements does not hold, we immediately know ψK < C∗ due to the analysis of
Theorem 4.1. Consequently, we to double the coefficient ψK+1 ← 2ψK in the next iteration.
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Certifying performance improvement When VERIFY(x; ϵ, δ) returns TRUE, then it holds that
j0(ψ) = J(π(K))+O(ϵ), where j0(ψ) denotes the optimal value of problem (7) with κ = 0. That is,
one can estimate j0(ψ) with Ĵ(π(K)) if VERIFY(x; ϵ, δ) = TRUE. As long as VERIFY returns TRUE
for two consecutive runs, and the performance improvement is small, i.e., j0(ψK) − j0(ψK−1) =

O(ϵ), then Lemma 6.1 guarantees that the safe policy π(K) is O( C
∗

ψK
ϵ)-optimal.

Lemma 6.1. The function j0(·) is strictly increasing in the range ψ ∈ [1, C∗], and j0(ψ) = J(π∗)
for ψ ≥ C∗. For any ψ < ψ′ ≤ C∗, it holds that

J(π∗)− j0(ψ′) ≤ C∗ − ψ
ψ′ − ψ

(j0(ψ
′)− j0(ψ)) .

Detailed descriptions of VERIFY and Adaptive-DPDL are presented in Appendix G, and so does the
proof of the following theorem.
Theorem 6.2. Fixed ϵ ∈

(
0, 1

10(1−γ)
]
, δ ∈ (0, 1). Then with probability at least 1 − δ, Adaptive-

DPDL stops at step K such that ψK ≤ 4C∗ and outputs the safe policy π(K) with sub-optimality
gap J(π∗)− J(π(K)) ≤ O

(
C∗

ψK
ϵ
)

. Moreover, there exists a (problem dependent) constant ϵ0(M)

such that, if ϵ ≤ ϵ0(M), then it must hold that ψK ∈ [C∗, 2C∗) and π(K) is ϵ-optimal.

Intuitively, the Adaptive-DPDL will quickly terminate within O(log2 C∗) calls of DPDL, resulting
in a total samples complexity of Õ

(
NC∗

(1−γ)4ϵ2

)
.
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A Efficiently solving the subproblems of DPDL

In this section, we describe how to efficiently solve the subproblems (11) in the DPDL Algorithm.
In the following discussion, at most Õ(|S||A|+ I) flops are needed to compute the update.

A.1 Closed form solution for the V -update

The dual variable V is updated by the formula V t+1 = ProjV
(
V t − ηtα−1

V gtV
)
, where V is an

ℓ∞ normal ball defined as V :=
{
V ∈R|S| : ∥V ∥∞ ≤ RV

}
, RV = 8

1−γ (1 + 2
φ ). For any vector

V ∈ R|S|, the Euclidean projection V+ = ProjV(V ) can be written as a simple truncation

V+(s) =


−RV , if V (s) < −RV ,

V (s), if −RV ≤ V (s) ≤ +RV ,

+RV , if V (s) > +RV ,

for ∀s ∈ S.

This update will need O(1) flops due to the special structure of gtV .

A.2 Closed form solution for the λ-update

The dual variable λ is updated by the formula λt+1 = argminλ∈Λ

(
⟨gtλ, λ−λt⟩+

αλ

ηt
KL(λ||λt)

)
,

where Λ is the nonnegative part of an ℓ1 norm ball Λ =
{
λ ∈ RI≥0 : ∥λ∥1 ≤ RΛ

}
, RΛ = 8

φ . The
solution to this subproblem has the following closed form formula

λt+1 = λt+
1
2 min

 RΛ∥∥∥λt+ 1
2

∥∥∥
1

, 1

 ,

where λt+
1
2 = λt exp(− ηt

αλ
gtλ) is an intermediate point. This update will need O(I) flops.

A.3 Efficient implementation of the x-update

Compared to the previous two updates, the subproblem for x-update does not have a closed form so-
lution. By carefully discussing the KKT condition of the problem and utilizing the special structure
of X and gtx, we reduce the problem to finding the root of a monotonically decreasing 1-dimensional
function. If the bisection method is applied to find the root, then in total Õ(|S||A|) flops are needed.
We present the details as follows. For notational simplicity, we rewrite the subproblem as follows.
Problem. Given a set Y defined by the linear constraints

Y :=
{
y ∈ Rn : 0 ≤ yi ≤ ai,

n∑
i=1

yi ≤ B1,

n∑
i=1

ciyi ≤ B2

}
,

where B1, B2 > 0, and ci > 0 are some constants. Let y0 ∈ Y , y0 > 0, and let g ∈ Rn be a vector
that has at most 1 non-zero entry. Then the goal is to solve

y∗ = argmin
y∈Y

(
⟨y, g⟩+KL(y ∥ y0)

)
. (14)

Without loss of generality, we assume g2 = · · · = gn = 0. For problem (14), we introduce
two Lagrangian multipliers to the coupling constraints

∑n
i=1 yi ≤ B1,

∑n
i=1 ciyi ≤ B2, while

remaining the coordinately separable constraints 0 ≤ yi ≤ ai in the problem. Thus we get the
following Lagrangian function:

L(y, α, β) := y1g1 +KL(y||y0) + α
(∑

i

yi −B1

)
+ β

(∑
i

ciyi −B2

)
. (15)

By the strong convexity of KL divergence, there is a unique KKT point (y∗, α∗, β∗) of problem (14).
Note that y∗ = argminyi∈[0,ai],∀i L(y, α

∗, β∗). Because yi0 > 0, we know

lim
yi→0+

∇yiL(y, α∗, β∗) = lim
yi→0+

g1 · I{i = 1}+ α∗ + ciβ
∗ + log yi − log y0i = −∞,
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we know y∗i will not be 0. Thus we can write the KKT condition for problem (14) as
∇yiL(y∗, α∗, β∗) ≤ 0, if y∗i = ai, ∀i ∈ [n],

∇yiL(y∗, α∗, β∗) = 0, if y∗i ∈ (0, ai), ∀i ∈ [n],

α∗(∑
i y

∗
i −B1

)
= 0, β∗(∑

i ciy
∗
i −B2

)
= 0,

y∗ ∈ Y, α∗ ≥ 0, β∗ ≥ 0.

(16)

For i = 2, ..., n, the condition ∇yiL(y∗, α∗, β∗) ≤ 0 implies that y∗i ≤ y0i exp(−α∗ − ciβ
∗).

Note that α∗, β∗ ≥ 0, ci > 0, y0i ≤ ai. If y∗i < ai, then ∇yiL(y∗, α∗, β∗) = 0 indicates that
y∗i = y0i exp(−α∗ − ciβ∗). If y∗i = ai, then the only possibility is y0i = ai happen to hold and
α∗ = β∗ = 0, in this case, we still have y∗i = y0i exp(−α∗ − ciβ∗). A similar formula can also be
derived for y∗1 . Therefore, utilizing the feasibility of the point y0, we solve the first two rows of the
KKT condition and get{

y∗1(α
∗, β∗) = min

{
y01 exp(−g1 − α∗ − c1β∗), a1

}
,

y∗i (α
∗, β∗) = y0i · exp{−α∗ − ciβ∗}, for i = 2, ..., n.

(17)

Here, we write y∗i as functions of α∗, β∗ for the ease of later discussion. Next, we solve the third
row of the KKT condition (16) by considering the following cases.

Case 1: β∗ = 0, α∗ = 0. In this case, if y∗(0, 0), α∗ = 0, β∗ = 0 satisfies (16), then y∗(0, 0) is the
solution to (14). Otherwise we conclude that α∗ = β∗ = 0 is not true.

Case 2: β∗ = 0, α∗ > 0. In this case, the KKT condition tells us that
∑
i y

∗
i = B1. Together with

(17), we have the following two possible solutions to α∗α1 = ln
(
y02+···+y0n
B1−a1

)
, corresponds to y∗1 = a1,

α2 = ln
(
e−g1 ·y01+y

0
2+···+y0n

B1

)
, corresponds to y∗1 = y01 exp(−g1 − α∗).

Then if y∗(α1, 0), α
∗ = α1, β

∗ = 0 satisfies (16), we conclude that y∗(α1, 0) is the solution to (14).
If y∗(α2, 0) ∈ Y, α∗ = α2, β

∗ = 0 satisfies (16), we conclude that y∗(α2, 0) is the solution to (14).
Otherwise, we know α∗ > 0, β∗ = 0 is not possible.

Case 3: β∗ > 0, α∗ = 0. In this case, the KKT condition tells us that
∑
i ciy

∗
i = B2. Denote

ŷ01 = y01 exp(−g1), ŷ0i = y0i , i = 2, ..., n. In this case, depending on the value of y∗1 we set{
β1 = Rootβ>0

{∑n
i=2 ciŷ

0
i exp(−ciβ) = B2 − c1a1

}
,

β2 = Rootβ>0

{∑n
i=1 ciŷ

0
i exp(−ciβ) = B2

}
.

Note that in both cases, the problem is finding the positive root of a 1-dimensional monotonically
decreasing function, which can be solved efficiently. These equations should either have one unique
positive solution or no positive solution at all. If there is no positive root, then Rootβ>0 will return
FALSE. One can easily determine whether there is a positive solution. For example, due to the
monotonicity, the first equation will have a positive solution if and only if

∑n
i=2 ĉiy

0
i > B2 − c1a1.

Similar to case 2, we check the feasibility of {y∗(0, β1), α∗ = 0, β∗ = β1} and {y∗(0, β2), α∗ =
0, β∗ = β2} w.r.t. (16). If any one of them is feasible to the KKT condition, then it will be the
solution to (14). Otherwise, we know α∗ = 0, β∗ > 0 is not possible.

Case 4: β∗ > 0, α∗ > 0. In this case, the KKT condition implies that
∑
iciy

∗
i =B1,

∑
iciy

∗
i =B2.

Let us inherit the ŷ notation from Case 3. Then we need to solve the following group of equations{∑n
i=2 ŷ

0
i exp(−α3 − ciβ3) = B1 − a1,∑n

i=2 ciŷ
0
i exp(−α3 − ciβ3) = B2 − c1a1

or
{∑n

i=1 ŷ
0
i exp(−α4 − ciβ4) = B1,∑n

i=1 ciŷ
0
i exp(−α4 − ciβ4) = B2

We should notice that in both cases, as soon as we determine the value of β, then α will have a
closed form formula given β. To demonstrate how to determine β, let us take the second group
of equations for example. Taking the quotient between the two equations cancels α4, we get the
following equation of β4

f(β4) :=

∑n
i=1 ciŷ

0
i exp(−ciβ4)∑n

i=1 ŷ
0
i exp(−ciβ4)

=
B2

B1
. (18)
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By Cauchy’s inequality, we know f ′(β) < 0 holds for ∀β ∈ R if ci ̸= cj for some i, j. In details

f ′(β) =

(∑n
i=1 ciŷ

0
i exp(−ciβ)

)2 − (∑n
i=1 ŷ

0
i exp(−ciβ)

) (∑n
i=1 c

2
i ŷ

0
i exp(−ciβ)

)
(
∑n
i=1 ŷ

0
i exp(−ciβ))

2 < 0.

Hence, f is again a monotonically decreasing function, and finding its positive root can be imple-
mented efficiently. After finding β4, one immediately know α4 = ln

(∑n
i=1 ŷ

0
i exp(−ciβ4)

B1

)
.

Finally, we need to check the feasibility of {y∗(α3, β3), α
∗ = α3, β

∗ = β3} and {y∗(α4, β4), α
∗ =

α4, β
∗ = β4} w.r.t. (16). If any one of them is feasible to the KKT condition, then it will be the

solution to (14). Otherwise, we know α∗ > 0, β∗ > 0 is not possible. Due to the existence of a
KKT pair, at least one of the 4 cases will return us a solution.

B Proof of Proposition 4.3

For the analysis of Proposition 4.3 and later results, let us first introduce a vector version of the
Bernstein’s inequality, which is a direct specification of the Freedman’s inequality of matrix martin-
gale [23]. To prove the current proposition, we only need the scalar case of the following lemma.

Lemma B.1 (Vector Bernstein Inequality). Assume that {xi}ni=1 is a sequence of random vectors
in Rd, and it forms a martingale difference sequence with respect to (Ft) (i.e. E [xt| Ft−1] = 0 and
xt is Ft-measurable). If E

[
∥xt∥2

∣∣Ft−1

]
≤ σ2 and ∥xt∥ ≤ M a.s., then with probability at least

1− δ, ∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ ≤ 2σ

√
n log

(
d+ 1

δ

)
+ 2M log

(
d+ 1

δ

)
.

When the ℓ2 norm is replaced by the ℓ∞ norm, i.e., {xi}ni=1 satisfies E
[
∥xt∥2∞

∣∣Ft−1

]
≤ σ2 and

∥xt∥∞ ≤M , ∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
∞

≤ 2σ

√
n log

(
2d

δ

)
+ 2M log

(
2d

δ

)
holds with probability at least 1− δ.

To prove Proposition 4.3, we consider µ̂0(s, a) = N(s,a)
Ne

, then it is clear that µ̂(s, a) =

max(µ̂0(s, a), ς). Now, according to the Bernstein’s inequality, we construct the “failure event”

Ω :=
⋃
s,a

{
|µ(s, a)− µ̂0(s, a)| >

√
µ(s, a)

ℓ

Ne
+

ℓ

Ne

}
,

where ℓ ≥ 4 log
(

6|S||A|
δ

)
is a mild logarithmic term. We next prove the three properties listed in

Proposition 4.3 one by one.

Proof of Proposition 4.3 (1). In fact, we only need to show that P(Ω) ≤ δ
3 , and the event Ωc implies

that µ(s, a) ≤ 2µ̂(s, a),∀s, a, as long as our choice of batch size satisfies Ne ≥ 128Nψℓ
φ2(1−γ)4ϵ2e

≥
32ℓNψ

φ(1−γ)2ϵe = 32ℓ
ς .

By Bernstein’s inequality, it holds that

P

(
|µ(s, a)− µ̂0(s, a)| >

√
µ(s, a)

ℓ

Ne
+

ℓ

Ne

)
≤ δ

3|S||A|
, ∀(s, a) ∈ S ×A.

Then P(Ω) ≤ δ
3 follows directly from the union bound. Conditioning on Ωc, we have

|µ(s, a)− µ̂0(s, a)| ≤
√
µ(s, a)

ℓ

Ne
+

ℓ

Ne
≤
√
µ(s, a)

ς

32
+

ς

32
≤ µ(s, a)

4
+

ς

16
. (19)
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Hence, it holds that

µ(s, a) ≤ 4

3
µ̂0(s, a) +

ς

12
≤ 3

2
max(µ̂0(s, a), ς) ≤ 2µ̂(s, a).

From now on, the argument is all conditioning on Ωc.

Proof of Proposition 4.3 (2). Given a π ∈ Π(ψ), we have to prove that W−1νπ ∈ X .

Let ν = νπ , x =W−1ν. Then due to π ∈ Π(ψ), we have

max
s,a

x(s, a)

µ̂(s, a)
= max

s,a

ν(s, a)

µ(s, a)
≤ ψ

1− γ
,∑

s,a

x(s, a)

µ̂(s, a)
=
∑
s,a

ν(s, a)

µ(s, a)
≤ Nψ

1− γ
.

Now it remains to show
∑
s,a x(s, a) ≤

4
1−γ . Note that (19) also implies

µ̂0(s, a) ≤
5

4
µ(s, a) +

ς

16
.

Hence if µ(s, a) ≤ 1
2 µ̂(s, a), then it must hold that µ̂0(s, a) < µ̂(s, a)⇒ µ̂0(s, a) < ς, µ̂(s, a) = ς .

We define S := {(s, a) ∈ S × A : µ̂(s, a) = ς}, then for (s, a) ̸∈ S, it holds that µ(s, a) ≥
1
2 µ̂(s, a). Thus, we have∑

s,a

x(s, a) =
∑

(s,a)∈S

µ̂(s, a)
ν(s, a)

µ(s, a)
+

∑
(s,a)̸∈S

µ̂(s, a)

µ(s, a)
ν(s, a)

≤ ς Nψ
1− γ

+
∑

(s,a) ̸∈S

2ν(s, a)

≤ 3

1− γ
.

The last inequality holds as long as ς ≤ 1
Nψ .

Proof of Proposition 4.3 (3). We decompose the quantity ∥Wx− x∥1 as

∥Wx− x∥1 =
∑
s,a

|µ(s, a)− µ̂(s, a)| x(s, a)
µ̂(s, a)

=
∑

(s,a)∈S

|µ(s, a)− µ̂(s, a)| x(s, a)
µ̂(s, a)

+
∑

(s,a)̸∈S

|µ(s, a)− µ̂(s, a)| x(s, a)
µ̂(s, a)

.

From our definition of S, we see if (s, a) ∈ S, then µ̂(s, a) = ς ≥ µ̂0(s, a), and from (19) we have
µ(s, a) ≤ 2ς ⇒ |µ(s, a)− µ̂(s, a)| ≤ ς . Thus, the first part can be bounded as∑

(s,a)∈S

|µ(s, a)− µ̂(s, a)| x(s, a)
µ̂(s, a)

≤
∑
s,a

ς
x(s, a)

µ̂(s, a)
≤ ς Nψ

1− γ
.

As for the second part, we have∑
(s,a)̸∈S

|µ(s, a)− µ̂(s, a)| x(s, a)
µ̂(s, a)

=
∑

(s,a)̸∈S

|µ(s, a)− µ̂0(s, a)|
x(s, a)

µ̂(s, a)

≤
∑

(s,a)̸∈S

(√
µ(s, a)

ℓ

Ne
+

ℓ

Ne

)
x(s, a)

µ̂(s, a)

=

√
ℓ

Ne

∑
(s,a)̸∈S

√
µ(s, a)

µ̂(s, a)

√
x(s, a) · x(s, a)

µ̂(s, a)
+

ℓ

Ne

∑
(s,a) ̸∈S

x(s, a)

µ̂(s, a)
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(a)

≤
√

2ℓ

Ne

∑
s,a

√
x(s, a) · x(s, a)

µ̂(s, a)
+

ℓ

Ne

∑
s,a

x(s, a)

µ̂(s, a)

(b)

≤
√

2ℓ

Ne

√√√√∑
s,a

x(s, a)
∑
s,a

x(s, a)

µ̂(s, a)
+

ℓ

Ne

∑
s,a

x(s, a)

µ̂(s, a)

(c)

≤ 2

1− γ

√
2Nψℓ
Ne

+
Nψℓ

(1− γ)Ne
,

where the inequality (a) comes from the fact µ(s,a)µ̂(s,a) ≤ 2; (b) is due to Cauchy’s inequality, and (c) is

due to
∑
s,a

x(s,a)
µ̂(s,a) ≤

Nψ
1−γ and

∑
s,a x(s, a) ≤

4
1−γ . Therefore, because we set ς = φ(1−γ)2ϵe

2Nψ , and

Ne ≥ 128Nψℓ
φ2(1−γ)4ϵ2e

, we have ∥Wx− x∥1 ≤ φ(1− γ)ϵe,∀x ∈ X .

C The magnitude and variance of the gradient estimators

Proposition C.1. For any sample ζ ∼ ρ0×D, and any feasible solutionZ = [V ;λ;x], the stochastic
gradient estimators constructed in (9) are unbiased, and they satisfy the following bounds:2
E [ĝV (Z; ζ)] = ∇V Lw(Z)
∥ĝV (Z; ζ)∥ ≤ O

(
ψ

1−γ
)

E
[
∥ĝV(Z; ζ)∥2

]
≤O

(
ψ

(1−γ)2

)

E [ĝλ(Z; ζ)] = ∇λLw(Z)
∥ĝλ(Z; ζ)∥∞ ≤ O

(
ψ

1−γ
)

E
[
∥ĝλ(Z; ζ)∥2∞

]
≤O

(
ψ

(1−γ)2

)

E [ĝx(Z; ζ)] = ∇xLw(Z)
∥ĝx(Z; ζ)∥2x′≤O

(
ψ2N

φ3(1−γ)5ϵe

)
E
[
∥ĝx(Z; ζ)∥2x′

]
≤O

(
Nψ

φ2(1−γ)3

)
where x′∈X is an arbitrary vector.

For any sample ζ = (s0, s, a, s
′, r,u) ∼ ρ0 ×D, it is not hard to see that the estimators constructed

in (9) are unbiased. Next, we provide the bound on the norm and variance of these estimators.

For the estimator ĝV (Z; ζ) := Is0 +
x(s,a)
µ̂(s,a) (γIs′ − Is), we have

∥ĝV (Z; ζ)∥ ≤ 1 +
x(s, a)

µ̂(s, a)
(1 + γ)

(a)

≤ 1 +
2ψ

1− γ
,

E
[
∥gV (Z; ζ)∥2

]
≤

∑
s,a

µ(s, a) · 2
(
1 + 4 · x(s, a)

2

µ̂(s, a)2

)
,

≤ 2 + 8 ·
∑
s,a

µ(s, a)

µ̂(s, a)

x(s, a)

µ̂(s, a)
x(s, a)

(b)

≤ 2 +
64ψ

(1− γ)2
.

Here (a) is due to x ∈ X , which indicates that x(s,a)µ̂(s,a) ≤
ψ

1−γ for all (s, a). The inequality (b) is due

to µ(s,a)
µ̂(s,a) ≤ 2 established in Proposition 4.3, and

∑
s,a x(s, a) ≤

4
1−γ .

Similarly, for the estimator ĝλ(Z; ζ) :=
x(s,a)
µ̂(s,a)u

κ, we have

∥ĝλ(Z; ζ)∥∞ ≤
∥∥∥x(s, a)
µ̂(s, a)

uκ
∥∥∥
∞

(a)

≤ x(s, a)

µ̂(s, a)
(1 + (1− γ)κ)

(b)

≤ 2ψ

1− γ
,

E
[
∥gλ(Z; ζ)∥2∞

]
≤

∑
s,a

µ(s, a) · 4x(s, a)
2

µ̂(s, a)2
,

= 4
∑
s,a

µ(s, a)

µ̂(s, a)

x(s, a)

µ̂(s, a)
x(s, a)

(c)

≤ 32ψ

(1− γ)2
.

Here (a) follows from ∥uκ∥∞ ≤ ∥u∥∞ + (1− γ)κ, and (b) is due to (1− γ)κ = 5φϵ(1− γ) < 1,
and (c) is similar to the argument of the bound on E

[
∥gV (Z; ζ)∥2

]
.

2For vectors u, v ∈ Rn, we write ∥u∥2v :=
∑n

i=1 viu
2
i for simplicity.

17



Finally, for the estimator ĝx(Z; ζ) :=
r+γV (s)−V (s′)+⟨uκ,λ⟩

µ̂(s,a) Is,a, we have

∥ĝx(Z; ζ)∥2x′ =
x′(s, a)

µ̂(s, a)2
· |r + γV (s)− V (s′) + ⟨uκ, λ⟩|2

≤ x′(s, a)

µ̂(s, a)2

(
1 +

16

1− γ
(1 +

2

φ
) +

8(1 + κ)

φ

)2

≤ ψ

(1− γ)ς
· 642

φ2(1− γ)2

= O
(

ψ2N
φ3(1− γ)5ϵe

)
,

and as long as ζ is independent of x′ ∈ X ,

E
[
∥ĝx(Z; ζ)∥2x′

]
≤

∑
s,a

µ(s, a)x′(s, a)

µ̂(s, a)2
·
(
1 +

16

1− γ
(1 +

2

φ
) +

8(1 + κ)

φ

)2

≤
∑
s,a

µ(s, a)

µ̂(s, a)

x′(s, a)

µ̂(s, a)
· 642

φ2(1− γ)2

≤ O
(

Nψ
φ2(1− γ)3

)
.

This completes the proof of Proposition C.1.

A few notational definitions. We should notice that the above bounds on the gradient estimators
are notationally very complicated. Therefore, Let us conveniently write the above bounds as

∥gV (Zt; ζt)∥ ≤MV ,

∥gλ(Zt; ζt)∥∞ ≤Mλ,

∥gx(Zt; ζt)∥x′ ≤Mx

√
Dx,1,

and


E
[
∥gV (Z; ζ)∥2

]
≤ σ2

V ,

E
[
∥gλ(Z; ζ)∥2∞

]
≤ σ2

λ,

E
[
∥gx(Zt; ζt)∥2x′

]
≤ σ2

xDx,1,

where the constants σV , σλ, σx and MV ,Mλ,Mx are

σ2
V = Θ

(
ψ

(1− γ)2

)
, σ2

λ = Θ

(
ψ

(1− γ)2

)
, σ2

x = Θ

(
Nψ

φ2(1− γ)2

)
, (20)

MV = Θ

(
ψ

1− γ

)
, Mλ = Θ

(
ψ

1− γ

)
, Mx = Θ

(
ψ

φ(1− γ)2

√
N
φϵe

)
, (21)

and Dx,1 is a suitable upper bound on the diameter of X , namely we choose Dx,1 = Θ
(

1
1−γ

)
such

that Dx,1 ≥ supx,x′∈X ∥x′ − x∥1. Similarly, we define Dλ,1 := supλ,λ′∈Λ ∥λ′ − λ∥1 = Θ
(

1
φ

)
.

Furthermore, we also introduce the diameters of the feasible domains w.r.t. the initial solution
V 1, λ1, x1. Recall that the initial point of Algorithm 1 is chosen as

V 1 = 0 ∈ V, λ1 =
1

φI
∈ Λ, x1 =

cxµ̂

1− γ
∈ X ,

where cx = N
|S||A| ensures that x1 ∈ X . Then, we can take DV , Dλ, Dx as

D2
V := sup

V ′∈V

∥∥V ′ − V 1
∥∥2 = Θ

(
|S|

φ2(1− γ)2

)
,

Dλ := sup
λ′∈Λ

KL(λ′ ∥ λ1) = Θ

(
log I

φ

)
,

Dx ≥ sup
x′∈X

KL(x′ ∥ x1), Dx = Θ

(
logψ

1− γ

)
.
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Remark C.2. It is worth noting that, Proposition C.1 directly implies E
[
∥ĝV (Zt; ζt)∥

2
∣∣∣Zt] ≤ σ2

V ,

E
[
∥ĝλ(Zt; ζt)∥

2
∞

∣∣∣Zt] ≤ σ2
λ and E

[
∥ĝx(Zt; ζt)∥

2
xt

∣∣∣Zt] ≤ Dx,1σ
2
x for each step t.

Remark C.3. The reason why we bound the term ∥gx(Zt; ζt)∥xt instead of ∥gx(Zt; ζt)∥∞ is that,∥∥gx(Zt; ζt)∥∥∞ ≲
1

φ(1− γ)
1

µ̂(st, at)
≤ 1

φ(1− γ)ς
.

Thus, we have to take Mx,∞ = Θ
(

1
φ(1−γ)ς

)
to ensure a uniformly bound as∥∥gx(Zt; ζt)∥∥∞ ≤Mx,∞. (22)

D Proof of Theorem 4.4

To bound Gap(x), let us denote

(V ′, λ′) = argmin
V ∈V,λ∈Λ

Lw(V, λ, x), x′ = argmax
x∈X

min
V ∈V,λ∈Λ

Lw(V, λ, x), (23)

and denote Z ′ = [V ′;λ′;x′]. It is worth mentioning that V ′, λ′ are random variables that depend on
x while x′ is deterministic. For the ease of notation, we define

G(Z) :=

[
+∇V Lw(Z)
+∇λLw(Z)
−∇xLw(Z)

]
and ĝ(Z; ζ) :=

[
+ĝV (Z; ζ)
+ĝλ(Z; ζ)
−ĝx(Z; ζ)

]
.

Then, by the definition of V ′, λ′, x′ and the bi-linearity of Lw(·), we have

Gap(x) = max
x∈X

min
V ∈V,λ∈Λ

Lw(V, λ, x)− min
V ∈V,λ∈Λ

Lw(V, λ, x)

= Lw(V , λ, x′)− Lw(V ′, λ′, x)

=
1

T

T∑
t=1

(
Lw(V t, λt, x′)− Lw(V ′, λ′, xt)

)
(24)

=
1

T

T∑
t=1

〈
G(Zt), Zt − Z ′〉

=
1

T

T∑
t=1

〈
ĝ(Zt; ζt), Z

t − Z ′〉
︸ ︷︷ ︸

S1

+
1

T

T∑
t=1

〈
G(Zt)− ĝ(Zt; ζt), Zt − Z ′〉

︸ ︷︷ ︸
S2

.

Then with the estimations in Appendix C, the S1 and S2 terms can be bounded by

S1 ≲
αVD

2
V + αλDλ + αxDx

ηT
+ η

(
σ2
V

αV
+
σ2
λDλ,1

αλ
+
σ2
xDx,1

αx

)
(25)

+
ηι

T

(
M2
V

αV
+
M2
λDλ,1

αλ
+
M2
xDx,1

αx

)
and

S2 ≲ (DV σV +Dλ,1σλ +Dx,1σx)

√
ι

T
+ (DVMV +Dλ,1Mλ +Dx,1Mx)

ι

T
(26)

with probability at least 1− δ/10 respectively, as long as the stepsize satisfies

η ≤ 1

2
min

(
αλ
Mλ

,
αx

Mx,∞

)
. (27)

Due to the sophistication of the proof, we move the analysis of (25) and (26) to Appendix D.2 and
D.3 respectively.
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Finally, combining the inequalities (24), (25) and (26), and requiring that (27) holds true for η =
1/
√
T , we have with probability at least 1− δ/3

Gap(x) ≲
αVD

2
V + αλDλ + αxDx

ηT
+ η

(
σ2
V

αV
+
σ2
λDλ,1

αλ
+
σ2
xDx,1

αx

)
+

√
ι

T
(DV σV +Dλ,1σλ +Dx,1σx)

+
ι

T
(DVMV +Dλ,1Mλ +Dx,1Mx)

+
ηι

T

(
M2
V

αV
+
M2
λDλ,1

αλ
+
M2
xDx,1

αx

)
.

Note that the normalizing constants are chosen as αV = φ
√

ψ
|S| = Θ

(
σV

DV

)
, αλ = 1

1−γ

√
ψ

log I =

Θ

(
σλ

√
Dλ,1

Dλ

)
, αx = 1

φ(1−γ)

√
Nψ
logψ = Θ

(
σx

√
Dx,1

Dx

)
. Then (27) holds true for the stepsize

η = 1√
T

with T ≳ Nψι
φ2(1−γ)4ϵ2e

, and we can plug in the values of the constants α,D,M , then with
probability at least 1− δ/3 it holds that

Gap(x) ≲

√
Nψι

φ2(1− γ)4T

(
1 +

ι

T
· ψ

φ(1− γ)2ϵe

)
≲

√
Nψι

φ2(1− γ)4T
.

Choosing co to ensure Gap(x) ≤ ϵ
2 completes the proof of Theorem 4.4.

D.1 A few supporting lemmas

For the proof in the following parts of Appendix D, we introduce a few supporting lemmas.
Lemma D.1. Let {Y k}Tk=1 be generated by Y k+1=argminY ∈Y

(
η
〈
Y − Y k, gk

〉
+KL(Y ∥ Y k)

)
,

where η ≤ 1
2maxk∥gk∥∞

and Y is some convex set. Then for all Y ′ ∈ Y , it holds that

1

T

T∑
t=1

〈
Y t − Y ′, gt

〉
≤ KL(Y ′ ∥ Y 1)

ηT
+

4η

T

T∑
t=1

∥∥gk∥∥2
Y k

≤ KL(Y ′ ∥ Y 1)

ηT
+

4ηDY,1

T

T∑
t=1

∥∥gk∥∥2∞ .

where DY,1 can be any upper bound of maxY ∈Y ∥Y ∥1.

The proof of Lemma D.1 is presented in Appendix D.4.
Lemma D.2. Let {Y k}Tk=1 be generated by Y k+1 =ProjY

(
Y k − ηgk

)
, where Y is some convex

set. Then for all Y ′ ∈ Y , it holds that

1

T

T∑
t=1

〈
Y t − Y ′, gt

〉
≤
∥∥Y ′ − Y 1

∥∥2
2ηT

+
η

T

T∑
t=1

∥∥gk∥∥2 .
The proof of Lemma D.2 is similar but a lot simpler than that of Lemma D.1, and is hence omitted.
Proposition D.3 (Corollary of Bernstein’s inequality). For a sequence of random variables
X1, · · · , XN adapted to (Fn), and E [ |Xi|| Fi−1] ≤ c, |Xi| ≤ M , we have with probability at
least 1− δ, ∣∣∣∣∣ 1N

N∑
i=1

Xi

∣∣∣∣∣ ≤ 2c+ 3M
log(2/δ)

N
.

Proof. Notice that E
[
X2
i

∣∣Fi−1

]
≤ cM , and by Bernstein’s inequality∣∣∣∣∣ 1N

N∑
i=1

(Xi − E [Xi| Fi−1])

∣∣∣∣∣ ≤
√

2cM log(2/δ)

N
+ 2M

log(2/δ)

N
,
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⇒

∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≤ cN +
√
2cMN log(2/δ) + 2M log(2/δ),

holds with probability at least 1 − δ. By the AM-GM inequality,
√

2cMN log(2/δ) ≤ 1
2cN +

M log(2/δ), which completes the proof.

D.2 Bounding the term S1

First, by definition of ĝ(·), we have

S1 =
1

T

T∑
t=1

〈
ĝV (Z

t; ζt), V
t − V ′〉

︸ ︷︷ ︸
S1,V

+
1

T

T∑
t=1

〈
ĝλ(Z

t; ζt), λ
t − λ′

〉
︸ ︷︷ ︸

S1,λ

+
1

T

T∑
t=1

〈
−ĝx(Zt; ζt), xt − x′

〉
︸ ︷︷ ︸

S1,x

.

Applying Lemma D.2 with Y t = V t, gt = ĝV (Z
t; ζt) yields

S1,V ≤
αV
∥∥V ′ − V 1

∥∥2
2ηT

+
η

αV T

T∑
t=1

∥∥ĝV (Zt; ζt)∥∥2 .
Applying Lemma D.1 with Y t = λt, gt = ĝλ(Z

t; ζt), we have

S1,λ ≤
αλKL(λ′ ∥ λ1)

ηT
+

4ηDλ,1

αλT

T∑
t=1

∥∥ĝλ(Zt; ζt)∥∥2∞ ,

as long as ∥ĝλ(Zt; ζt)∥∞ ≤
αλ

2η holds for all t, and 1
η ≥

2Mλ

αλ
suffices.

Finally, applying Lemma D.1 with Y t = xt, gt = −ĝx(Zt; ζt), we obtain

S1,x ≤
αxKL(x′ ∥ x1)

ηT
+

4η

αxT

T∑
t=1

∥∥ĝx(Zt; ζt)∥∥2xt ,

as long as ∥ĝx(Zt; ζt)∥∞ ≤
αx

2η holds for all t, and 1
η ≥

2Mx,∞
αx

suffices.

Combining all the estimations above, as long as the stepsize η satisfies (27), we have

S1 ≤
αV
∥∥V ′ − V 1

∥∥2 + αλKL(λ′ ∥ λ1) + αxKL(x′ ∥ x1)
ηT

+
4η

T

T∑
t=1

(
∥ĝV (Zt; ζt)∥

2

αV
+
Dλ,1 ∥ĝλ(Zt; ζt)∥

2
∞

αλ
+
∥ĝx(Zt; ζt)∥

2
xt

αx

)
.

(28)

For the second term of S1 in (28), with the variance and magnitude bounds provided in Proposi-
tion C.1, applying Proposition D.3 to the sequences {∥ĝV (Zt; ζt)∥

2}Tt=1, {∥ĝλ(Zt; ζt)∥
2
∞}Tt=1 and

{∥ĝx(Zt; ζt)∥
2
xt}Tt=1 proves the inequality (25) with probability at least 1− δ/10.

D.3 Bounding the term S2

For the term S2, we introduce the martingale difference sequences

∆t
V := ĝV (Z

t; ζt)−∇V Lw(V t, λt, xt),
∆t
λ := ĝλ(Z

t; ζt)−∇λLw(V t, λt, xt),
∆t
x := ĝx(Z

t; ζt)−∇xLw(V t, λt, xt),
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Then S2 can be decomposed as

S2 =
1

T

T∑
t=1

(〈
∆t
V , V

′ − V 1
〉
+
〈
∆t
λ, λ

′ − λ1
〉)

︸ ︷︷ ︸
S2,c

+
1

T

T∑
t=1

(〈
∆t
V , V

1 − V t
〉
+
〈
∆t
λ, λ

1 − λt
〉
+
〈
−∆t

x, x
′ − xt

〉)
︸ ︷︷ ︸

S2,m

.

Note that the martingale part S2,m has expectation zero. However, for the first part, V ′ and λ′ are
random variables depending on x̄. Thus the correlated part S2,c may not have zero mean.

Bounding the term S2,c For the correlated part S2,c, the sequence ∆t
V and ∆t

λ are (vector-valued)
martingale difference sequences, and hence

S2,c =

〈
1

T

T∑
t=1

∆t
V , V

′ − V 1

〉
+

〈
1

T

T∑
t=1

∆t
λ, λ

′ − λ1
〉

≤
∥∥V ′ − V 1

∥∥ · 1
T

∥∥∥∥∥
T∑
t=1

∆t
V

∥∥∥∥∥+ ∥∥λ′ − λ1∥∥1 · 1T
∥∥∥∥∥
T∑
t=1

∆t
λ

∥∥∥∥∥
∞

.

The quantity
∥∥∥∑T

t=1 ∆
t
V

∥∥∥ and
∥∥∥∑T

t=1 ∆
t
λ

∥∥∥
∞

both can be bounded by applying Lemma B.1. More

specifically, with probability at least 1− δ/20, it holds that∥∥∥∥∥ 1T
T∑
t=1

∆t
V

∥∥∥∥∥ ≲ σV

√
log(|S|/δ)

T
+MV

log(|S|/δ)
T

,∥∥∥∥∥ 1T
T∑
t=1

∆t
λ

∥∥∥∥∥
∞

≲ σλ

√
log(I/δ)

T
+Mλ

log(I/δ)

T
.

Therefore, we have

S2,c ≲ (DV σV +Dλ,1σλ)

√
ι

T
+ (DVMV +Dλ,1Mλ)

ι

T
.

Bounding the term S2,m In order to bound the martingale part S2,m, we have to consider martin-
gales difference sequences3 ∆

t

V :=
〈
∆t
V , V

1 − V t
〉
,∆

t

λ :=
〈
∆t
λ, λ

1 − λt
〉
, ∆

t

x := ⟨∆t
x, x

t − x′⟩ .
We estimate the variance and magnitude as∣∣∣∆t

V

∣∣∣ ≤ 2DVMV , E
[(

∆
t

V

)2∣∣∣∣Ft] ≤ E
[∥∥V 1 − V ′∥∥2 ∥∥∆t

V

∥∥2∣∣∣Ft] ≤ D2
V σ

2
V ,∣∣∣∆t

λ

∣∣∣ ≤ 2Dλ,1Mλ, E
[(

∆
t

λ

)2∣∣∣∣Ft] ≤ E
[∥∥λ1 − λt∥∥2

1

∥∥∆t
λ

∥∥2
∞

∣∣∣Ft] ≤ D2
λ,1σ

2
λ,∣∣∣∆t

x

∣∣∣ ≤ 2Dx,1Mx, E
[(

∆
t

x

)2∣∣∣∣Ft] ≤ E

[∥∥∥∥ x′ − xt√
x′ + xt

∥∥∥∥2 ∥∥∆t
x

∥∥2
x′+xt

∣∣∣∣∣Ft
]
≤ 2D2

x,1σ
2
x.

Thus, by the Bernstein’s Inequality, the following holds with probability at least 1− δ/20:

1

T

T∑
t=1

∆
t

V ≲ DV σV

√
log(1/δ)

T
+
DVMV log(1/δ)

T
,

1

T

T∑
t=1

∆
t

λ ≲ Dλ,1σλ

√
log(1/δ)

T
+
Dλ,1Mλ log(1/δ)

T
,

1

T

T∑
t=1

∆
t

x ≲ Dx,1σx

√
log(1/δ)

T
+
Dx,1Mx log(1/δ)

T
.

3They are martingale difference sequences w.r.t. the filtration (Ft) defined by Ft = σ(ζ1, · · · , ζt−1).
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Therefore, with probability at least 1− δ/20,

S2,m ≲ (DV σV +Dλ,1σλ +Dx,1σx)

√
ι

T
+ (DVMV +Dλ,1Mλ +Dx,1Mx)

ι

T
.

Bounding the term S2 Finally, combining the bounds on S2,m and S2,c proves the inequality (26).

D.4 Basics of mirror descent

Before we provide the proof of Lemma D.1, we state a basic property of the mirror descent (see e.g.
[6]).
Lemma D.4. Under the same assumption in Lemma D.1, it holds that for any Y ′ ∈ Y ,

η
〈
Y k+1 − Y ′, gk

〉
≤ KL(Y ′ ∥ Y k)−KL(Y ′ ∥ Y k+1)−KL(Y k+1 ∥ Y k).

In particular,
KL(Y k ∥ Y k+1) + KL(Y k+1 ∥ Y k) ≤ η

〈
Y k − Y k+1, gk

〉
.

Proof of Lemma D.1. By the fact that (x− y) log x
y ≥

(x−y)2
max(x,y) , we have

KL(Y k ∥ Y k+1) + KL(Y k+1 ∥ Y k) =
〈
Y k − Y k+1, log Y k − log Y k+1

〉
≥
∑
i

(Y ki − Y
k+1
i )2

max(Y ki , Y
k+1
i )

.

Together with Lemma D.4, the estimation above yields∥∥∥∥ Y k − Y k+1

√
Y k + Y k+1

∥∥∥∥2 ≤ KL(Y k ∥ Y k+1) + KL(Y k+1 ∥ Y k) ≤ η
〈
Y k − Y k+1, gk

〉
.

By Cauchy inequality,
〈
Y k − Y k+1, gk

〉
≤
∥∥∥∥ Y k−Y k+1√

Y k+Y k+1

∥∥∥∥∥∥∥gk√Y k + Y k+1
∥∥∥, and hence∥∥∥∥ Y k − Y k+1

√
Y k + Y k+1

∥∥∥∥ ≤ η ∥∥∥gk√Y k + Y k+1
∥∥∥ = η

∥∥gk∥∥
Y k+Y k+1 ,〈

Y k − Y k+1, gk
〉
≤
∥∥∥∥ Y k − Y k+1

√
Y k + Y k+1

∥∥∥∥∥∥∥gk√Y k + Y k+1
∥∥∥ ≤ η ∥∥gk∥∥2

Y k+Y k+1 .

To further bound
∥∥gk∥∥

Y k+Y k+1 in terms of
∥∥gk∥∥

Y k , we estimate it as∥∥gk∥∥2
Y k+Y k+1 =

∑
i

(Y ki + Y k+1
i )(gki )

2

≤ 2
∥∥gk∥∥2

Y k +
∑
i

∣∣Y k+1
i − Y ki

∣∣ (gki )2
≤ 2

∥∥gk∥∥2
Y k +max

i

∣∣gki ∣∣ ∥∥∥∥ Y k − Y k+1

√
Y k + Y k+1

∥∥∥∥∥∥gk∥∥Y k+Y k+1

≤ 2
∥∥gk∥∥2

Y k + η
∥∥gk∥∥∞ ∥∥gk∥∥2Y k+Y k+1 .

Thus, as long as η ≤ 1
2∥gk∥∞

, it holds that
∥∥gk∥∥

Y k+Y k+1 ≤ 2
∥∥gk∥∥

Y k . Therefore, for all Y ′ ∈ Y ,〈
Y k − Y ′, gk

〉
≤ 1

η

[
KL(Y ′ ∥ Y k)−KL(Y ′ ∥ Y k+1)

]
+
〈
Y k − Y k+1, gk

〉
≤ 1

η

[
KL(Y ′ ∥ Y k)−KL(Y ′ ∥ Y k+1)

]
+ 4η

∥∥gk∥∥2
Y k .

Summing over k = 1, · · · , T completes the proof.

Corollary D.5. Under the same assumption in Lemma D.1, it holds that for each k,∥∥∥∥ Y k − Y k+1

√
Y k + Y k+1

∥∥∥∥ ≤ 2η
∥∥gk∥∥

Y k ,∥∥Y k+1 − Y k
∥∥
1
≤ 4η

√
DY,1

∥∥gk∥∥
Y k ≤ 4ηDY,1

∥∥gk∥∥∞ .
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Proof. From the proof of Lemma D.1 above, we see

J(Y k, Y k+1) = KL(Y k ∥ Y k+1) + KL(Y k+1 ∥ Y k) ≤ η
〈
Y k − Y k+1, gk

〉
≤ 4η2

∥∥gk∥∥2
Y k .

Then by Lemma D.6 we have

∥∥Y k+1 − Y k
∥∥
1
≤
(√
∥Y k∥1 +

√
∥Y k+1∥1

)√
J(Y k, Y k+1) ≤ 4η

√
DY,1

∥∥gk∥∥
Y k .

Lemma D.6 (Generalized Pinsker’s Inequality). For y, y′ ∈ Rn>0, we consider the generalized
Jeffery divergence between them:

J(y, y′) := KL(y ∥ y′) + KL(y′ ∥ y) =
∑
i

(yi − y′i) log
yi
y′i
.

Then it holds that

∥y − y′∥1 ≤
(√
∥y∥1 +

√
∥y′∥1

)√
J(y, y′).

Proof. Denote J = J(y, y′), Y = ∥y∥1, Y ′ = ∥y′∥1. We consider two (normalized) distributions
y = y

Y and y′ = y′

Y ′ , then

J(y, y′) =
∑
i

(yi − y′i) log
yi
y′i

=
∑
i

(Y yi − Y ′y′i)

(
log

yi
y′i

+ log
Y

Y ′

)
= Y KL(y ∥ y′) + Y ′ KL(y′ ∥ y) + (Y − Y ′) log

Y

Y ′

≥ (Y + Y ′) · 1
2
∥y − y′∥21 +

|Y − Y ′|2

max(Y, Y ′)
,

where the last inequality is due to Pinsker’s inequality and the fact (x − y) log x
y ≥

(x−y)2
max(x,y) .

Therefore, w.l.o.g. Y < Y ′, then |Y − Y ′| ≤
√
Y ′J , and√

2J

Y + Y ′ ≥ ∥y − y
′∥1 =

∥∥∥∥ yY − y′

Y ′

∥∥∥∥
1

=

∥∥∥∥y − y′Y
+
y′

Y ′

(
Y ′

Y
− 1

)∥∥∥∥
1

.

Hence, we have

∥y − y′∥1 ≤
∥∥∥∥ y′Y ′ (Y

′ − Y )

∥∥∥∥
1

+ Y

√
J

Y + Y ′

= |Y ′ − Y |+ Y

√
J

Y + Y ′

≤
√
Y ′J +

√
Y J.

E Proof of Theorem 4.1

In this section, we provide the proof of Theorem 4.1 and Remark 4.2. We should notice that if
ψ ≥ C∗, then ϵapprox(ψ) reduces to 0, and the result in Remark 4.2 actually agrees with Theo-
rem 4.1. Thus we handle them simultaneously. The key to the analysis is controlling the reward
sub-optimality gap and the constraint violation in terms of the duality gap Gap(x) that is bounded
in Theorem 4.4. Before presenting the proof, let us introduce a few notations and lemmas.
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E.1 Notations and supporting lemmas

In this proof, we will view ν as vectors in R|S||A|, and we define a matrix A as

A :=
[
1{s′=s} − γP (s′|s, a)

]
(s,a),s′

∈ R|S||A|×|S|. (29)

Given the matrix A, we conveniently write
∑
a(I−γPa)νa as A⊤ν. For the reweighted saddle point

problem (7), one can easily partially minimize over V and λ since their domains are simple normal
balls. Therefore, we define

Jκ(x) := min
V ∈V,λ∈Λ

Lw(V, λ, x) = rTWx−RV
∥∥A⊤Wx− ρ0

∥∥
1
−RΛ ∥[UκWx]−∥∞ , (30)

where we denote RV = 8
1−γ

(
1 + 2

φ

)
, RΛ = 8

φ . We also define

j(ψ) := min
V ∈V,λ∈Λ

Lw(V, λ, x) = max
x∈X
Jκ(x) (31)

as the optimal value of problem (7). Then j(ψ) has an implicit dependence on κ due to the term
∥[UκWx]−∥∞. In particular, we will write j0(ψ) for the case where κ = 0. Finally, we define π∗

κ
as the optimal policy with κ conservative constraints. That is,

π∗
κ = argmax

π
J(π) s.t. Jui (π) ≥ κ, ∀i ∈ [I].

Then the following lemmas hold true.
Lemma E.1. Let π∗ be the optimal policy, and let π∗

κ be defined above, then it holds that

J(π∗) ≥ J(π∗
κ) ≥ J(π∗)− 2κ

φ
.

Proof. The inequality J(π∗) ≥ J(π∗
κ) follows from definition. For the other inequality, we fix

a “baseline” policy π̃ satisfying the Slater’s condition, namely Jui (π̃) ≥
φ

1−γ . Let s = (1−γ)κ
φ ,

we interpolate νs := sνπ
∗
+ (1 − s)νπ̃ . νs is still an occupancy measure such that ⟨ui, νs⟩ ≥

s
〈
ui, ν

π̃
〉
≥ κ for ∀i ∈ [I], and

⟨r, νs⟩ =
〈
r, νπ

∗
〉
− s(

〈
r, νπ

∗
〉
−
〈
r, νπ̃

〉
) ≥

〈
r, νπ

∗
〉
− 2s

1− γ
= J(π∗)− 2κ

φ
.

We complete the proof by noticing J(π∗
κ) ≥ ⟨r, νs⟩.

The next lemma discusses the property of j(·).
Lemma E.2. Suppose the policy class Π(ψ) satisfies Slater’s condition, then it holds that

j(ψ) ≥ max
π∈Π(ψ)∩S

J(π)− 2κ

φ
= J(π∗)− ϵapprox(ψ)−

2κ

φ
.

Proof. Similar to the proof of Lemma E.1, we fix a π̂ = argmaxπ∈Π(ψ)∩S J(π) and a “baseline”
policy π̃ ∈ Π(ψ) satisfying the Slater’s condition. Let ν̂ := νπ̂ and ν̃ := νπ̃ be the corresponding
occupancy measures. Let s = (1−γ)κ

φ , then νs := sν̃ + (1 − s)ν̂ is still an occupancy measure for
which the corresponding policy belongs to Π(ψ). For i ∈ [I], ⟨ui, νs⟩ ≥ s ⟨ui, ν̃⟩ ≥ κ, and

⟨r, νs⟩ = ⟨r, ν̂⟩ − s(⟨r, ν̂⟩ − ⟨r, ν̃⟩) ≥ ⟨r, ν̂⟩ −
2s

1− γ
= ⟨r, ν̃⟩ − 2κ

φ
.

Now W−1νs ∈ X by Proposition 4.3, and

j(ψ) ≥Jκ(W−1νs)=⟨r, νs⟩≥⟨r, ν̂⟩−
2κ

φ
= max
π∈Π(ψ)∩S

J(π)− 2κ

φ
=J(π∗)−ϵapprox(ψ)−

2κ

φ
.

The following result is obtained from [4, Lemma 3], by replacing λ and (v, u) in [4, Lemma 3] with
our notation (1− γ)ν and (V, λ), respectively.
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Lemma E.3. For any dual optimal solution (V ∗
κ , λ

∗
κ) of the problem (4), where the constraint utili-

ties ui is replaced with the shifted utilities uκi , we have

∥λ∗κ∥1 ≤
2

φ
and ∥V ∗

κ ∥ ≤
1

1− γ

(
1 +

2

φ

)
.

For any ν ∈ R|S||A|
≥0 and any ∆ > 0, the inequality J(π∗

κ) − J (W−1ν) ≤ ∆ immediately implies
that

J(π∗
κ)− ⟨r, ν⟩ ≤ ∆,

∥∥A⊤ν − ρ0
∥∥
1
≤ 2∆

RV
, and ∥[Uκν]−∥∞ ≤

2∆

RΛ

as long as RV ≥ 2 ∥V ∗
κ ∥∞ , RΛ ≥ 2 ∥λ∗κ∥1.

Finally, we introduce the last lemma that is needed in this proof.

Lemma E.4. For any vector ν̃ ∈ R|S||A|
≥0 that is an approximate visitation measure, consider its

associate policy π̃ defined by π̃(a|s) = ν̃(s,a)∑
a′ ν̃(s,a′)

. Let νπ̃ be the true visitation measure of π̃, then∥∥ν̃ − νπ̃∥∥
1
≤ 1

1− γ
∥∥A⊤ν̃ − ρ0

∥∥
1
.

Proof. For policy π, we consider its state visitation measure νπ defined by νπ(s) =
∑
a ν

π(s, a).
Then νπ(s, a) = π(a|s)νπ(s). With the transition matrix Pπ(s′|s) =

∑
a π(a|s)P(s′|s, a), then the

constraint A⊤νπ = ρ0 is equivalent to (I − γPπ)νπ = ρ0.

Let π̃ induced by ν̃, then νπ̃ satisfies (I − γPπ̃)νπ̃ = ρ0. Let ν̃′ be defined by ν̃′(s) =
∑
a ν̃(s, a),

then ν̃(s, a) = π̃(a|s)ν̃′(s), and hence (I − γPπ̃)ν̃′ = Aν̃. Therefore,

∥νπ̃ − ν̃′∥1 =
∥∥(I − γPπ̃)−1(ρ0 −A⊤ν̃)

∥∥
1
≤
∥∥(I − γPπ̃)−1

∥∥
1

∥∥A⊤ν̃ − ρ0
∥∥
1
≤ 1

1− γ
∥∥A⊤ν̃ − ρ0

∥∥
1
.

We finalize the proof by the following equality∥∥νπ̃−ν̃∥∥
1
=
∑
s,a

∣∣∣π̃(a|s)(νπ̃(s)−ν̃′(s))∣∣∣=∑
s

(∑
a

π̃(a|s)
)
|νπ̃(s)− ν̃′(s)|=∥νπ̃ − ν̃′∥1 .

E.2 Analysis

Now we are ready to present the proof of Remark 4.2 and Theorem 4.1.

Proof. By definition of Gap(x), we have

Gap(x) = max
x∈X

min
V ∈V,λ∈Λ

Lw(V, λ, x)− min
V ∈V,λ∈Λ

Lw(V, λ, x) = j(ψ)− Jκ(x). (32)

Define ν =Wx, and define ∆ := J(π∗
κ)− Jκ(W−1ν), then we have

∆ = Gap(x) + J(π∗
κ)− j(ψ)

(i)

≤ Gap(x) + J(π∗)− j(ψ)
(ii)

≤ Gap(x) + ϵapprox(ψ) +
2κ

φ
, (33)

where (i) is because J(π∗
κ) ≤ J(π∗) and (ii) is due to Lemma E.2. Now, let νπ be the true visitation

measure of π, where π(a|s) := x(s,a)∑
a′ x(s,a′)

. Then Lemma E.4 immediately indicates that∥∥νπ − x∥∥
1
≤ 1

1− γ
∥∥A⊤x− ρ0

∥∥
1

≤ 1

1− γ

(
∥A⊤(x−Wx)∥1 + ∥A⊤Wx− ρ0∥1

)
≤ 1

1− γ

(
2 ∥x− ν∥1 +

∥∥A⊤ν − ρ0
∥∥
1

)
which further gives ∥∥νπ − ν∥∥

1
≤ 1

1− γ
( ∥∥A⊤ν − ρ0

∥∥
1
+ 3 ∥x− ν∥1

)
. (34)
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Consequently, we have

J(π∗
κ)− Jκ(W−1νπ)

(i)
= J(π∗

κ)−
〈
r, νπ

〉
+RΛ

∥∥ [Uκνπ]− ∥∥∞
(ii)

≤ J(π∗
κ)− ⟨r, ν⟩+RΛ

∥∥[Uκν]−∥∥∞ +
1 + 3

2RΛ

1− γ
(∥∥A⊤ν − ρ0

∥∥
1
+ 3 ∥x− ν∥1

)
(iii)

≤ J(π∗
κ)− Jκ(W−1ν) +

5(RΛ + 1)

1− γ
∥x− ν∥1

(iv)

≤ ∆+ 45ϵe,

where (i) is because ∥A⊤νπ − ρ0∥1 = 0, (ii) is due to the fact that
∣∣ 〈r, νπ〉− ⟨r, ν⟩ ∣∣ ≤ ∥∥νπ − ν∥∥

1

and
∣∣∥[Uκνπ]−∥∞ − ∥[Uκν]−∥∞∣∣ ≤ 3

2

∥∥νπ − ν∥∥
1
, (iii) is because of 1+ 3

2RΛ

1−γ ≤ RV , and (iv) is
because of ∥x− ν∥1 ≤ φ(1− γ)ϵe by Proposition 4.3. Finally, applying Lemma E.3 to νπ yields

J(π∗
κ)−

〈
r, νπ

〉
≤ ∆+ 45ϵe,

∥∥∥[Uκνπ]−∥∥∥∞ ≤ φ

4
(∆ + 45ϵe) .

By Lemma E.2, we have

J(π∗)−
〈
r, νπ

〉
≤ J(π∗)− j(ψ) + Gap(x) + 45ϵe ≤ Gap(x) + ϵapprox(ψ) +

2κ

φ
+ 45ϵe,

Jui (π) ≥ κ−
∥∥ [Uκνπ]− ∥∥∞ ≥ κ

2
− φ

4

(
Gap(x) + ϵapprox(ψ)

)
− 12φϵe.

(35)

Combining the above inequality with the fact that ϵe = ϵ
100 , κ = 5φϵ, Gap(x) ≤ ϵ/2 completes the

proof.

Finally, we point out a by-product of the above analysis, which is useful for the VERIFY method.
Corollary E.5. Under the same assumption of Theorem 4.1, with probability at least 1 − 2δ/3, it
holds that ∥∥A⊤ν − ρ0

∥∥
1
≤ 11

8
φ(1− γ)ϵ,

∥∥[Uκν]−∥∥∞ ≤ 11

4
φϵ (36)

for ν :=Wx.

Proof. Due to ψ ≥ C∗ and Lemma E.2, we have

J(π∗
κ)− Jκ(x) ≤ j(ψ)− Jκ(x) +

2κ

φ
= Gap(x) +

2κ

φ
≤ 11ϵ.

Applying Lemma E.3 yields∥∥A⊤ν − ρ0
∥∥
1
≤ 2 · 11ϵ

RV
≤ 11

8
φ(1− γ)ϵ, ∥[Uκν]−∥∞ ≤

2 · 11ϵ
RΛ

=
11

4
φϵ.

F Proofs for Section 5

F.1 Proof of Theorem 5.1

In this section, we provide the complete version of the construction illustrated in Section 5. Let us
define

K := min

(⌊
I

2

⌋
,

⌊
A− 1

2

⌋)
, Sc = min

(⌊
I

2K

⌋
, S

)
, Su =

{
S − Sc, if Sc < S − 3,

0, otherwise.

The CMDP instanceM that we construct consists of two groups of basic blocks. The first group
includes Sc replicas of the basic block characterized in Fig. 1, each with actions {a1, b1, ..., ak, bk, e}
and 2K constraints. The second group includes Su replicas of the basic blocks characterized by
Fig. 1 (a) and Fig. 1(c), each basic block only has two actions {a, e} and no constraint. In fact the
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construction of the second group (“unconstrained part”) is similar to the hard MDP constructed in
[21]. The transition kernel Pθ of M is parametrized by θ = (θc, θu) ∈ Θ := {−1,+1}ScK ×
{−1,+1}Su and ϖc, ϖu ∈ (0, 12 ]. The details ofM are listed as follows.

States and actions The state space S consists of Sc + Su 4-state basic blocks, plus an ex-
tra “null” state s−1. The first Sc basic blocks are exactly what we described in Section 5, we
write Sc =

⊔Sc

j=1

{
sj0, s

j
1, s

j
⊕, s

j
⊖
}

. The next Su basic blocks will be described below, we write

Su =
⊔Sc+Su

j=Sc+1

{
sj0, s

j
1, s

j
⊕, s

j
⊖
}

. By default, Su = ∅ if Su = 0. Then S = Sc
⊔
Su
⊔{

s−1

}
.

Next, we describe the detailed information of each block j.

• At sj0, sj⊕ and sj⊖, there is no action, and the transition does not depend on θ:

P
(
sj0

∣∣∣ sj0) = p, P
(
sj1

∣∣∣ sj0) = 1− p,

P
(
sj⊕

∣∣∣ sj⊕) = q, P
(
sj0

∣∣∣ sj⊕) = 1− q,

P
(
sj⊖

∣∣∣ sj⊖) = q, P
(
sj0

∣∣∣ sj⊖) = 1− q,

(37)

where p = 1
2−γ and q = 2− 1

γ . We assign reward as r(sj⊕) = 1, r(sj⊖) = −1.

• Constrained state At sj1 ∈ Sc, there are 2K + 1 actions a1, b1, · · · , aK , bK , e such that

Pθ
(
sj⊕

∣∣∣ sj1, ai) =
1 +ϖcθi,j

2
, Pθ

(
sj⊖

∣∣∣ sj1, ai) =
1−ϖcθi,j

2
,

P
(
sj⊕

∣∣∣ sj1, bi) =
1

2

(
1− ϖc

2

)
, P

(
sj⊖

∣∣∣ sj1, ai) =
1

2

(
1 +

ϖc

2

)
,

P
(
sj⊕

∣∣∣ sj1, e) =
1

2
, P

(
sj⊖

∣∣∣ sj1, e) =
1

2
.

Here we use subscript θ to emphasize the dependency of Pθ on θ.4

• Unconstrained state At sj1 ∈ Su, there are two actions a, e such that

Pθ
(
sj⊕

∣∣∣ sj1, a) =
1 +ϖuθj

2
, Pθ

(
sj⊖

∣∣∣ sj1, a) =
1−ϖuθj

2
,

P
(
sj⊕

∣∣∣ sj1, e) =
1

2
, P

(
sj⊖

∣∣∣ sj1, e) =
1

2
.

• The null state s−1 has no action or reward, and it always transits to itself.

Initial distribution In the initial distribution, ρ0(s−1) = ρ0(s
j
1) = ρ0(s

j
⊕) = ρ0(s

j
⊖) = 0,∀j. The

nonzero probabilities only spread across the {sj0}. In the case Su > 0, we choose ρ0 to be

ρ0(s
j
0) =

{
I{sj0∈Sc}

2Sc
+

I{sj0∈Su}
2Su

, if Su ̸= ∅,
1
Sc
, otherwise.

Without loss of generality, we will only deal with the case where Su ̸= ∅.

Constraints At each constrained block in Sc, for each pair of actions (ai, bi) at the state sj0 ∈ Sc,
we introduce two constraints defined by the utilities

ui,j(s
j
1, ai) = −1, ui,j(s

j
1, bi) = 1, ũi,j(s

j
1, bi) = −1.

At all the other state and actions, ui,j and ũi,j returns 0. Then we set the constraints to be

Jui,j(π) := ⟨νπ, ui,j⟩ ≥ 0, and J̃ui,j(π) := ⟨νπ, ũi,j⟩ ≥ −
ρcv1
4K

,

4Here we view θc ∈ {−1, 1}ScK as a vector indexed by (i, j) ∈ [K]× [Sc], and θi,j stands for the (i, j)-th
component of θc. Similarly, we view θu ∈ {−1, 1}Su as a vector indexed by j with Sc + 1 ≤ j ≤ Sc + Su,
and θj stands for the j-th component of θu.
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where ρc and v1 are constants specified later in (38). After suitable shifting we can make sure that
each constraint has the form Ju ≥ 0. Basically, these two constraints are equivalent to π(ai|sj1) ≤
π(bi|sj1) ≤ 1

4K . We remark that there are in total ScK ≤ I constraints.

Optimal policy First, let us calculate the visitation measure of any given policy π. According to
the proof of Lemma E.4, we set νπ be the state visitation measure and let Pπ be the state transition
matrix under policy π, then νπ will be the unique solution to (I − γPπ)νπ = ρ0. Note that the
Sc + Su basic blocks are in fact independent blocks, i.e., there are no transitions between different
blocks. The matrix (I − γPπ) is in fact a block-diagonal with Sc + Su 4 by 4 blocks and a 1 by 1
block, and we can solve the νπ block by block. Define the constants

v0 =
2

(2 + γ)
, v1 =

2γ

(2 + γ)(2− γ)
, v =

γ2

(2 + γ)(2− γ)
, ρc =

1

2Sc
, ρu =

1

2Su
, (38)

and we consider

rj(π) =

{∑
i

(
θi,jπ(ai|sj1)− 1

2π(bi|s
j
1)
)
, sj1 ∈ Sc,

θjπ(a|sj1), sj1 ∈ Su.
By a direct computation, the state visitation measure of π is given by

νπ(s
j
⊕) =

v

1− γ
1 +ϖ⋄rj(π)

2
, νπ(s

j
0) =

ρ⋄v0
1− γ

,

νπ(s
j
⊖) =

v

1− γ
1−ϖ⋄rj(π)

2
, νπ(s

j
1) =

ρ⋄v1
1− γ

,

where ⋄ stands for c if the block j belongs to Sc, and ⋄ stands for u if the block j belongs to Su.
Consequently, the cumulative reward and the utilities are

J(π; θ) =
∑
j

(
νπ(s

j
⊕)− νπ(s

j
⊖)
)
=

v

1− γ

(
ρcϖc

∑
j:sj1∈Sc

rj(π) + ρuϖu

∑
j:sj1∈Su

rj(π)
)
,

Ji,j(π; θ) = νπ(sj1, bi)− νπ(s
j
1, ai) = ρcv1

(
π(bi|sj1)− π(ai|s

j
1)
)
,

J̃i,j(π; θ) = −νπ(sj1, bi) = −ρcv1π(bi|s
j
1).

(39)

Therefore, π being safe is equivalent to requiring π(ai|sj1) ≤ π(bi|s
j
1) ≤ 1

4K for all the constrained
block j in Sc, and any 1 ≤ i ≤ K. With the above explicit expression of J(π; θ), we know that the
(unique) optimal policy π∗,θ under the transition dynamic Pθ is

π∗,θ(ai|sj1) = π∗,θ(bi|sj1) =
I{θi,j = 1}

4K
, sj1 ∈ Sc,

π∗,θ(a|sj1) = I{θj = 1}, sj1 ∈ Su.
(40)

Denote J∗
θ := J(π∗,θ; θ) the optimal safe reward and θ̃ = θ+1

2 , then

J∗
θ = J(π∗,θ; θ) =

v

1− γ

ϖcρc
∑

j:sj1∈Sc

K∑
i=1

θ̃i,j
8K

+ϖuρu
∑

j:sj1∈Su

θ̃j

 . (41)

Reference distribution Finally, we set the reference distribution µ as

µ(sj0) =
v0
C
ρ⋄, µ(sj⊕) =

3

4

v

C
ρ⋄, µ(sj⊖) =

1

2

v

C
ρ⋄, µ(sj1, e) =

v1(1− γ)
C

ρ⋄,{
µ(sj1, ai) = µ(sj1, bi) =

ρcv1(1−γ)
4KC , i ∈ [I] sj1 ∈ Sc,

µ(sj1, a) =
ρuv1(1−γ)

C , sj1 ∈ Su,

µ(s−1) = 1−
∑
j

(
µ(sj0) + µ(sj1) + µ(sj⊕) + µ(sj⊖)

)
.

As long as C ≥ 2, µ(s−1) defined above is positive. Also, for any θ, it holds that

max
s,a

νπ
∗,θ

(s, a)

µ(s, a)
≤ C

1− γ
,
∑
s,a

νπ
∗,θ

(s, a)

µ(s, a)
≤ (|S|+ I)C

1− γ
.
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We denote µθ = µ ⊗ Pθ as the probability measures of the transition pair ζ = (s, a, s′) generated
from the reference distribution µ.

Output policy as an estimator of θ Assume that an algorithm A consumes N samples generated
from µθ, and outputs a policy π̂ that is possibly dependent on the internal randomness of A. Consider
the corresponding random vector π̂c :=

(
π̂(ai|sj1)

)
i,j

and π̂u :=
(
π̂(a|sj1)

)
j
. Then, 4Kπ̂c can be

viewed as an estimator of θ̃c, and π̂u can be viewed as an estimator of θ̃u. We establish the following
lemma to characterize the error for “misspecifying” the parameter θ.
Lemma F.1. For any policy π, we define

L(π; θ) := [J∗
θ − J(π̂; θ)]+ +

γϖc

1− γ
∑
i,j

(
[Ji,j(π̂; θ)]− +

[
J̃i,j(π̂; θ)−

v1
4SK

]
−

)
= [J∗

θ − J(π̂; θ)]+ +
γϖc

1− γ
violation(π̂; θ).

(42)

Then it holds that

L(π; θ) ≥ vρcϖc

8K(1− γ)

∥∥∥4Kπ̂c − θ̃c∥∥∥
1
+
vρuϖu

1− γ

∥∥∥π̂u − θ̃u∥∥∥ . (43)

Proof. The description of J∗
θ in (41) gives

L(π̂; θ) = v

1− γ

ρcϖc

∑
i,j

(
θ̃i,j
8K
− θi,jπ(ai|sj1) +

π(bi|sj1)
2

)
+ ρuϖu

∑
j

(
θ̃j − θjπ(a|sj1)

)
+

+
γv1ρcϖc

1− γ
∑
i,j

([
π(bi|sj1)− π(ai|s

j
1)
]
−
+

[
1

4K
− π(bi|sj1)

]
−

)

≥ v

1− γ

ρcϖc

∑
i,j

δi,j + ρuϖu

∑
j

(
θ̃j − θjπ(a|sj1)

) ,

where we use the fact γv1 = 2v, and denote

δi,j =
θ̃i,j
8K
− θi,jπ(ai|sj1) +

π(bi|sj1)
2

+ 2
[
π(bi|sj1)− π(ai|s

j
1)
]
−
+ 2

[
1

4K
− π(bi|sj1)

]
−
.

Clearly θ̃j − θjπ(a|sj1) ≥
∣∣∣θ̃j − π(a|sj1)∣∣∣ for all sj1 ∈ Su. As for sj1 ∈ Sc, we consider the case

θi,j = 1 and θi,j = −1 separately.

Case 1, θi,j = −1. Directly δi,j ≥ π(ai|sj1) =
∣∣∣π(ai|sj1)− θ̃i,j

4K

∣∣∣.
Case 2, θi,j = 1. By the fact that

z

2
− x+

y

2
+ 2 [y − x]− + 2 [z − y]− ≥

z − x
2

+
3

2
[z − x]− ≥

|z − x|
2

∀x, y, z,

we can plug in x = π(ai|sj1), y = π(bi|sj1) and z = 1
4K and derive

δi,j ≥
1

2

∣∣∣∣ 1

4K
− π(ai|sj1)

∣∣∣∣ .
Consequently, (43) is established by combining the above inequalities.

We now invoke the following lemma due to [9] and [24].
Lemma F.2. For any integer n ≥ 1, there exists a subset Θn of {−1, 1}n such that |Θn| ≥
exp(n/8), and for any pair of different θ, θ′ ∈ Θn, one has ∥θ − θ′∥1 ≥

n
2 .

Fix a Θc with n = ScK and a Θu with n = Su, we consider the family of CMDPs M :=
{Mθ}θ∈Θc×Θu

. Intuitively, CMDPs from this family are hard to distinguish according to samples.
This idea can be shown mathematically by the following generalized version of Fano’s inequality
from [3, Lemma 3].
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Lemma F.3 (Generalized Fano’s inequality). Let r ≥ 2 be an integer and let P be a set of r
probability measures on (Ω,F). Assume that θ(P) is the parameter of interest with values in a
pseudo-metric space (D, d). Let θ̂ = θ̂(X) be an estimator of θ(P) based on a sample X from a
distribution P ∈ P . Assume that

d (θ(P), θ(P′)) ≥ α, ∀P,P′ ∈ P,

and

KL(P ∥ P′) =

∫
Ω

log

(
dP
dP′

)
dP ≤ β.

Then it holds that

max
P∈P

EPd
(
θ̂, θ (P)

)
≥ α

2

(
1− β + log 2

log r

)
.

It is worth noting that the estimator needs not to belong to {θ(P)}P∈P . In our problem, the underly-
ing space (Ω,F) depends on the internal randomness of A, and the probability measure on (Ω,F)
is the extension of µ⊗N

θ (µ⊗N
θ is the probability measure on Ω0 = (S ×A× S)N , the space of the

N -tuple of samples (ζ1, · · · , ζN )).

The proof of Theorem 5.1 We have already demonstrated that 4Kπ̂c can be viewed as an estimator
of θ̃c in Lemma F.1, and hence 8Kπ̂c − 1 can be viewed as an estimator of θc. We fix a θu ∈ Θu,
then Fano’s inequality (Lemma F.3) yields

max
θc∈Θc

E(θc,θu) ∥8Kπ̂a − 1− θc∥1 ≥
ScK

2

(
1−

maxθc,θ′c∈Θc
KL(µ⊗N

(θc,θu)
∥ µ⊗N

(θ′c,θu)
) + log 2

log |Θc|

)

=
ScK

2

(
1−

N maxθc,θ′c∈Θc
KL(µ(θc,θu) ∥ µ(θ′c,θu)

) + log 2

log |Θc|

)
.

For any θc, θ′c ∈ Θc, we have

KL(µ(θc,θu) ∥ µ(θ′c,θu)
) =

∑
i,j

µ(sj1, ai)KL

(
1 + θi,jϖc

2

∥∥∥∥ 1 + θ′i,jϖc

2

)

≤
∑
i,j

µ(sj1, ai)
4ϖ2

c

1−ϖ2
c

=
(1− γ)v1

2C

ϖ2
c

1−ϖ2
c

.

Then, taking ϖc = min
{√

(ScK−3)C
8(1−γ)N , 12

}
is enough to ensure

N maxθc,θ′c∈Θc
KL(µ(θc,θu) ∥ µ(θ′c,θu)

) + log 2

log |Θc|
≤ 5

6
,

which further gives maxθc∈Θc E(θc,θu) ∥8Kπ̂a − 1− θc∥1 ≥
ScK
12 , and hence

max
θc∈Θc

E(θc,θu)

[
1

ScK

∥∥∥4Kπ̂a − θ̃c∥∥∥
1

]
≥ 1

24
.

Similarly, we can take ϖu = min
{√

(Su−3)C
8(1−γ)N ,

1
2

}
to ensure that for any fixed θc ∈ Θc,

max
θu∈Θu

E(θc,θu)

[
1

Su

∥∥∥π̂u − θ̃u∥∥∥
1

]
≥ 1

24

Therefore, we obtain

max
θ∈Θ

EθL(π̂; θ)

≥ max
θ∈Θ

Eθ
[

vρcϖc

8K(1− γ)

∥∥∥4Kπ̂c − θ̃c∥∥∥
1
+
vρuϖu

1− γ

∥∥∥π̂u − θ̃u∥∥∥]
=

v

2(1− γ)
max
θc∈Θc

max
θu∈Θu

{
ϖc

8
E(θc,θu)

[
1

ScK

∥∥∥4Kπ̂c − θ̃c∥∥∥
1

]
+ϖuE(θc,θu)

[
1

Su

∥∥∥π̂u − θ̃u∥∥∥]}
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≥ v

2(1− γ)

( ϖc

192
+
ϖu

24

)
≳ min

{
1

1− γ
,

√
ScK + Su
(1− γ)3N

}
≳ min

{
1

1− γ
,

√
min {SA, S + I}

(1− γ)3N

}
.

In conclusion, for a fixed algorithm A, there exists some θ ∈ Θc × Θu, such that for the policy π̂
output by A onMθ, either

EMθ
[J∗
θ − J(π̂)] ≳ min

{
1

1− γ
,

√
min {SA, S + I}

(1− γ)3N

}
,

or
EMθ

[violation(π̂)] ≳ 1.

This completes the proof of Theorem 5.1.
Remark F.4. The family (Mθ) constructed here does not satisfy the Slater’s condition with φ =

Θ(1), but a small modification can be made to ensure a φ with constant order. Namely, at each sj0
we add two extra arms e, e′, such that r(sj0, e) = 0, r(sj0, e

′) = −1 and all utilities of e′ is 1. The
transition at sj0 is not affected by e, e′. We omit this construction in the argument above for the sake
of cleanness and simplicity.

F.2 Proof of Theorem 5.2

We further extend the idea of construction in Appendix F.1 to show that, when the Slater’s condition
does not hold, no zero constraint violation can be ensured. Intuitively, we can directly include an
extra constraint J(π) ≥ J∗ in the previous construction. However, the subtlety in such a transfer
is that, the constraint will leak information of the underlying parameters θ,ϖ. Thus, rather than
making ad hoc adaption from Appendix F.1, we present a more interesting construction for the case
I = 1, as follows.

States and actions We take the state space S = {s−1, s0, s⊕, s⊖}
⊔S
j=1

{
sj
}

, with actions and
transition dynamic specified as follows. Here we merge the states sj0, s

j
⊕, s

j
⊖ in Appendix F.1 for

notational simplicity. The transition dynamic is parametrized by θ ∈ {0, 1}S and ϖ ∈ (0, 12 ], as
follows.

• At s0, s⊕ and s⊖, there is no action, and the transition does not depend on θ:

P (s0| s0) = p, P
(
sj
∣∣ s0) = 1− p

S
, j ∈ [S],

P (s⊕| s⊕) = q, P (s0| s⊕) = 1− q,
P (s⊖| s⊖) = q, P (s0| s⊖) = 1− q,

(44)

where p = 1
2−γ and q = 2− 1

γ .

• At sj , there are two actions a, b such that

Pθ
(
s⊕| sj , a

)
=

1−ϖθj
2

, Pθ
(
s⊖| sj , a

)
=

1 +ϖθj
2

,

Pθ
(
s⊕| sj , b

)
=

1−ϖ(1− θj)
2

, Pθ
(
s⊖| sj , b

)
=

1 +ϖ(1− θj)
2

.

• The null state s−1 always transits to itself.

Utilities and rewards We assign u(s⊕) = +1, u(s⊖) = −1, and u(s0) = u(sj) = 0. No reward
is assigned toM, namely the only goal inM is to fulfill the constraint: Ju(π) ≥ 0. Basically, this
constraint requires us to determine whether θi = 1 for each i.

Optimal policy For any policy π, we define

rj(π) = θjπ(a|sj1) + (1− θj)π(b|sj1), r(π) =
1

S

S∑
j=1

rj(π).
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Then by exactly the same calculation as in Appendix F.1, we have

νπ(s0) =
v0

1− γ
, νπ(s

j) =
v1
S
,

νπ(s⊕) =
1−ϖr(π)

2

v

1− γ
, νπ(s⊖) =

1 +ϖr(π)

2

v

1− γ
.

Therefore, it holds that

Ju(π) = − v

1− γ
r(π) = − v

S(1− γ)
∥πb − θ∥1 , (45)

where we denote πb =
(
π(b|sj1)

)
j

for a policy π. Hence, there is a unique safe policy π∗,θ inMθ

that can be specified by

π∗,θ(a|sj) = 1− θj , π∗,θ(b|sj) = θj , j ∈ [S].

The formula (45) also indicates that, for π̂ outputed by an algorithm A after consuming N samples,
the vector π̂b can be viewed as an estimator of θ.

Reference distribution We take ρ0(s0) = 1. The reference distribution µ is chosen similar to
Appendix F.1, namely

µ(s0) =
v0
C
, µ(sj , a) = µ(sj , b) =

v1(1− γ)
SC

,

µ(s⊕) = µ(s⊖) =
v

C
, µ(s−1) = 1− µ(s0)− µ(s⊕)− µ(s⊖)−

∑
j

µ(sj).

As long as C ≥ 2, µ(s−1) defined above is positive. Also, for any θ, it holds that

max
s,a

νπ
∗,θ

(s, a)

µ(s, a)
≤ C

1− γ
,
∑
s,a

νπ
∗,θ

(s, a)

µ(s, a)
≤ (|S|+ 1)C

1− γ
.

Lower bound Still, we take a subset Θ of {0, 1}S such that |Θ| ≥ exp(S/8), and for any pair
of different θ, θ′ ∈ Θ it holds ∥θ − θ′∥1 ≥

S
4 . We next consider the family of CMDPs M :=

{Mθ}θ∈Θ, with the reference µθ = µ⊗ Pθ.

By Fano’s inequality (Lemma F.3), it holds that

max
θ∈Θ

Eθ ∥π̂b − θ∥1 ≥
S

4

(
1− N maxθ,θ′∈Θ KL(µθ ∥ µθ′) + log 2

log |Θ|

)
.

We also have maxθ,θ′∈Θ KL(µθ ∥ µθ′) ≤ 2ϖ2(1−γ)
C by a simple calculation. Therefore, taking

ϖ = min
{√

(S−3)C
16(1−γ)N ,

1
2

}
is enough to ensure maxθ∈Θ Eθ ∥π̂b − θ∥1 ≥

S
24 . Hence, we obtain

max
θ∈Θ

Eθ [Ju(π̂; θ)]− = max
θ∈Θ

Eθ
[

vϖ

S(1− γ)
∥π̂b − θ∥1

]
≥ vϖ

24(1− γ)
≳ min

{√
SC

(1− γ)3N
,

1

1− γ

}
.

G The Adaptive-DPDL framework

G.1 The verification method

First, let us provide the details of the VERIFY(·) method that is used in Algorithm 2.

As a remark, ∆̂p is an estimator of the residual A⊤Wx − ρ0, where A is defined in (29), that
is ED

[
∆̂p

]
= A⊤Wx − ρ0. By a direct computation, we also know ED

[
Ĵ(π)

]
= r⊤Wx and

ED
[
Ĵu

κ

(π)
]
= UκWx. Intuitively, when ∥∆̂p∥1 is small, then Wx is a good approximation

of νπ and thus Ĵ(π), Ĵu
κ

(π) are good approximations of J(π), Ju
κ

(π). With this in mind, we
present the following proposition that characterizes the VERIFY method, whose proof is moved to
Appendix G.3.
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Algorithm 3: VERIFY(x) = VERIFY(x; ϵ, δ)

input : The output x and the parameters ϵ, δ > 0 in Algorithm 1.

1 Obtain Nv offline samples
{
(st, at, s

′
t, rt,ut)

}Nv

t=1
from D;

2 Compute the estimators Ĵ(π), Ĵu
κ

(π) ∈ R and ∆̂p ∈ R|S| as

Ĵ(π) :=
1

Nv

Nv∑
t=1

rt
x(st, at)

µ̂(st, at)
, Ĵu

κ

(π) :=
1

Nv

Nv∑
t=1

uκt
x(st, at)

µ̂(st, at)
,

∆̂p(s
′) :=

∑
a

N(s′, a)

Nv

x(s′, a)

µ̂(s′, a)
− γ

∑
s,a

N(s, a, s′)

Nv

x(s, a)

µ̂(s, a)
− ρ0(s′), ∀s′ ∈ S,

where N(s,a), N(s,a,s′) are the times that (s,a) and (s,a,s′) are observed in the Nv samples.

3 if
∥∥∆̂p

∥∥
1
≤ 3

2φ(1− γ)ϵ &&
∥∥Ĵuκ

(π)
∥∥
∞ ≤ 3φϵ then

4 Return VERIFY(x) = TRUE, and return Ĵ(π) as an estimate of J(π);
5 else
6 Return VERIFY(x) = FALSE;

Proposition G.1. For the VERIFY method, if we chooseNv ≥ 64|S|ψℓ
φ2(1−γ)4ϵ2ver

, with ℓ = 4 log
(

40|S|I
δ

)
and ϵver = ϵ

10 , then with probability at least 1− δ, it holds that:

(1). If VERIFY(x) = FALSE, then ψ < C∗.

(2). If VERIFY(x) = TRUE, then Ju
κ

(π) ≥ 0, and j0(ψ)− 400ϵ ≤ Ĵ(π) ≤ j0(ψ) + 100ϵ.

Basically, this proposition states that if VERIFY(x) = FALSE, then we know ψ < C∗ with high
probability. If VERIFY(x) = TRUE, then we know that π is safe, and j0(ψ) = Ĵ(π) + O(ϵ). We
can apply Lemma 6.1 to determine whether the current policy is good enough.

G.2 The adaptive-DPDL method

In this section we will discuss the details of Algorithm 2. The key to the analysis of this section is
Lemma 6.1, whose proof is presented in Appendix G.4.

Setting of sub-routine We use ϵ′ for the input sub-optimality of Adaptive-DPDL. At each step K,
we call DPDL and VERIFY with ϵ = ϵ′

15 and δK := 6δ
π2K2 . The δK is chosen so that

∑
K δK = δ.

Exit condition In Algorithm 2, line 4 to 6, we write the exit condition as −∞ < JK ≤ JK−1 +
O(ϵ). More specifically, the exit condition can be equivalently stated as

VERIFY
(
x(K)

)
&& VERIFY

(
x(K−1)

)
&& Ĵ

(
π(K)

)
−Ĵ
(
π(K−1)

)
≤ 500ϵ. (46)

Here the third condition only needs to be checked when both VERIFY
(
x(K)

)
and VERIFY

(
x(K−1)

)
return TRUE. The constant 500 is chosen to ensure that Adaptive-DPDL will exit for ψK > 2C∗, as
will be demonstrated in the following proposition, whose proof is presented in Appendix G.5.
Proposition G.2. Suppose Algorithm 2 exits at step K. Then with probability at least 1−δ, the
following results hold. (1) π(K) is safe and ψK ≤ 4C∗. (2) It holds that J∗ − J(π(K)) ≤ O

(
C∗

ψK
ϵ
)
.

(3) There is a constant ϵ0(M) such that for ϵ′ ≤ ϵ0(M), ψK ≥ C∗.

As a remark, ϵ0 is (up to a scalar factor) the minimum performance improvement by increasing
ψ → 2ψ, and the minimum of slope of j as a function of logψ for ψ ∈ [1, C∗]. Therefore, when
Adaptive-DPDL exits at some stepK, the improvement that can be achieved by increase ψ grows as
at most ϵ0

ψK
. If in this case ψK is still far small from C∗, then the difficulty essentially comes from

a prohibitively large C∗.

Sample complexity of Adaptive-DPDL At step K, the samples needed for DPDL are
Õ
(

NψK

φ2(1−γ)4ϵ2

)
, and the samples needed for verification are Õ

(
|S|ψK

(1−γ)4ϵ2

)
. There are at most
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⌈
log2(C

∗/ψ1)
⌉
+ 1 outer steps and the ψK is twofold at each step, thus the total samples needed

are Õ
(

NψK

φ2(1−γ)4ϵ2

)
if it exits at step K. Especially, as long as ϵ ≤ ϵ0(M), Adaptive-DPDL ends

after consuming Õ
(

NC∗

φ2(1−γ)4ϵ2

)
samples and outputs a policy which is safe and O (ϵ)-optimal.

G.3 Proof of Proposition G.1

Proof. First, we provide the following lemma for the estimators ∆̂p, Ĵ(π) and Ĵu
κ

(π). The calcu-
lation of Lemma G.3 is very closed to Appendix B, and is thus omitted.
Lemma G.3. Suppose that Nv and ϵver are chosen according to Proposition G.1. Denote ν =Wx,
then with probability at least 1− δ/3, we have

max
{∥∥∆̂p − (A⊤ν − ρ0)

∥∥
1
,
∣∣Ĵ(π)− ⟨r, ν⟩ ∣∣,∥∥Ĵuκ

(π)− Uκν
∥∥
∞

}
≤ φ(1− γ)ϵver.

Proof of the case VERIFY(x) = FALSE. By Corollary E.5, it holds that when ψ ≥ C∗,

∥A⊤ν − ρ0∥1 ≤
11

8
φ(1− γ)ϵ, and ∥ [Uκν]− ∥∞ ≤

11

4
φϵ.

Combining the above inequality with Lemma G.3 indicates that ∥∆̂p∥1 ≤ 3
2φ(1 − γ)ϵ and

∥[Ĵuκ

(π)]−∥∞ ≤ 3φϵ. This contradicts the condition for returning FALSE. Therefore, we know
that ψ < C∗.

Proof of the case VERIFY(x) = TRUE. By the condition for returning TRUE, we know ∥∆̂p∥1 ≤
3
2φ(1− γ)ϵ and ∥[Ĵuκ

(π)]−∥∞ ≤ 3φϵ. Together with Lemma G.3, we have

∥A⊤ν − ρ0∥1 ≤ 1.6φ(1− γ)ϵ and
∥∥[Uκν]−∥∥∞ ≤ 3.1φϵ.

Similar to our analysis in Appendix E, we write νπ the true visitation measure of π. Then by (34),∥∥νν − ν∥∥
1
≤ 1

1− γ
(∥∥A⊤ν − ρ0

∥∥
1
+ 3 ∥x− ν∥1

)
≤ 1.63φϵ.

where the term ∥x − ν∥1 is controlled by Proposition 4.3. Due to the fact that
∣∣∥∥ [Uκνπ]− ∥∥∞ −∥∥ [Uκν]− ∥∥∞∣∣ ≤ (1+5(1− γ)φϵ)

∥∥νπ − ν∥∥
1
≤ 1.1

∥∥νπ − ν∥∥
1

for small ϵ ≤ 1
50(1−γ) , it holds that

min
i
Jui (π) ≥ κ−

∥∥ [Uκνπ]− ∥∥∞ ≥ κ− ∥∥[Uκν]−∥∥∞ − 1.1
∥∥νπ − ν∥∥

1
≥ 0. (47)

Moreover, the definition of Gap(x) gives
j(ψ)−Gap(x) = ⟨r, ν⟩ −RV

∥∥A⊤ν − ρ0
∥∥
1
−RΛ ∥[Uκν]−∥∞ ≤ j(ψ) ≤ j0(ψ),

which yields
⟨r, ν⟩ ≤ j0(ψ) +RV

∥∥A⊤ν − ρ0
∥∥
1
+RΛ ∥[Uκν]−∥∞ ≤ j0(ψ) + 100ϵ,

⟨r, ν⟩ ≥ j(ψ)−Gap(x) ≥ j0(ψ)− 400ϵ,

where we use the fact that 0 ≤ j0(ψ) − jκ(ψ) ≤ 64κ
φ = 320ϵ. The same bound for Ĵ(π) can be

derived by Lemma G.3.

G.4 Proof of Lemma 6.1

Proof. First we show that, when ψ < C∗, j0(ψ) < J∗. Otherwise, for x∗ = argmaxx∈X J0(x), it
holds that J0(x∗) = j0(ψ) ≥ J∗, i.e., for ν∗ =Wx∗,

J∗ − ⟨r, ν∗⟩+RV
∥∥A⊤ν∗ − ρ0

∥∥
1
+RΛ

∥∥[Uν∗]−∥∥∞ ≤ 0.

Applying Lemma E.3 gives
∥∥A⊤ν∗ − ρ0

∥∥
1
≤ 0,

∥∥[Uν∗]−∥∥∞ ≤ 0, J∗ − ⟨r, ν∗⟩ ≤ 0. Thus,
ν ∈ V ∩ S, and ⟨r, ν∗⟩ ≥ J∗, which imply that ν∗ is indeed an optimal solution of problem (4).
However, ν∗ ∈WX ⇒ ν∗ ∈ V(ψ)⇒ ψ ≥ C∗, a contradiction.

Now the monotonicity is easy. We still fix an optimal ν∗ ∈ V(C∗) and let x∗ := W−1ν∗. For
1 ≤ ψ′ < ψ, we write xψ′ = argmaxx∈X (ψ′) J0(x), c = ψ−ψ′

C∗−ψ′ , and we consider xψ := cx∗ +

(1− c)xψ′ ∈ X (ψ). It holds that
j0(ψ) ≥ J0(xψ) ≥ (1− c)J0(xψ′) + cJ0(x∗) = j0(ψ

′) + c(J∗ − j0(ψ)).
The proof is completed by reorganizing the above inequality.
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G.5 Proof of Proposition G.2

Proof. By Proposition G.1, if ψK ≥ 2C∗, then ψK−1 ≥ C∗. By Proposition G.1, with probability
at least 1− δ it holds that VERIFY

(
x(K)

)
= VERIFY

(
x(K−1)

)
= TRUE, and

Ĵ(π(K)), Ĵ(π(K−1)) ∈ [J(π∗)− 400ϵ, J(π∗) + 100ϵ] ,

⇒
∣∣∣Ĵ(π(K))− Ĵ(π(K−1))

∣∣∣ ≤ 500ϵ,

where we use the fact j0(ψK) = j0(ψK−1) = j0(C
∗) = J(π∗) from Lemma 6.1. Therefore, if

ψK ≥ 2C∗, Adaptive-DPDL must exit at step K.

Now, we only need to consider the case that Adaptive-DPDL ends at some step K, but ψK might
not be greater than C∗. Because VERIFY

(
x(K)

)
= VERIFY

(
x(K−1)

)
= TRUE, we combine

the exit condition (46) with Proposition G.1 and derive |j0(ψK)− j0(ψK−1)| ≤ 1000ϵ. Then by
Lemma 6.1, we have

J(π∗)− j0(ψK) ≤ 2(C∗ − ψK)

ψK
(j0(ψK)− j0(ψK−1)) .

Thus J(π∗)− J(π(K)) ≲ C∗

ψK
ϵ. Furthermore, we can define the following quantity

ϵ0 := min
1≤ψ≤C∗

(
j0(ψ)− j0(

ψ

2
)

)
> 0.

Here ϵ0 > 0 is due to Lemma 6.1. If j0(ψ) − j(ψ2 ) < ϵ0 for some ψ ≥ 1, then immediately
we have ψ ≥ C∗. If ϵ′ = 15ϵ ≤ ϵ0/100 =: ϵ0(M), Adaptive-DPDL must exit at step K with
C∗ ≤ ψK ≤ 4C∗. By Theorem 4.1, the output policy π(K) is safe and J(π∗)− J(π(K)) ≤ ϵ′.

H Convergence Analysis in Asynchronous Setting

H.1 Mixing property of Markov chain

Under the setting of the asynchronous learning (Assumption 4.5), we can observe a sequence of
state-action trajectory generated under the behavioral policy πb, namely

s1, a1, s2, a2, s3, · · · , sn, an, sn+1, · · · .

This sequence can be naturally viewed as a Markov chain (Xt)t≥1 whereXt = (st), plus a marginal
component at ∈ A. In the asynchronous setting, the reference distribution µ is the stationary
distribution µπb

of this chain product with the policy πb. As in the synchronous setting, we denote
Ft for all the history information at time t. Actually, by the Markov property and our update rule,
conditioning on Ft is equivalent to conditioning on st, Zt. According to [13, Section 4], we define
the mixing time of this Markov chain as{

E(t) := sups∈S dTV

(
µπb

,Ptπb
(·|s0 = s)

)
,

tmix := min{t : E(t) ≤ 1
4},

(48)

where Ptπb
(·|s0 = s) denotes the distribution of st given s0 = s and policy πb. By [13, Remark

4.12], it holds that

E(t) ≤ 2
−
⌊

t
tmix

⌋
.

Given the concept of the mixing time, we modify the standard Bernstein inequality for Markov chain
[10, 19, etc.] to cover the non-stationary Markov chains.
Proposition H.1. Suppose that (Xt)t≥1 is a Markov chain with invariant distribution π and mixing
time tmix < +∞. Let f be a measurable function such that Eπ [f(X)] = 0, |f(X)| ≤ M . Denote
σ2 = Eπ

[
f(X)2

]
, then for δ ∈ (0, 1), the following holds with probability at least 1− δ∣∣∣∣∣

n∑
t=1

f(Xt)

∣∣∣∣∣ ≤
√

32tmixnσ2 log
4

δ
+ 82tmixM log

4

δ
.
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The difficulty of analyzing Markovian gradients is the correlation between updates and samples. As
demonstrated in Section 4.3, in our analysis, we leverage the fact that st+τ is a sample “almost”
from µπb

and “almost” independent of st, as long as τ ≥ tmix · log factor. We further demonstrate
this idea in the following proposition, by comparing E [ ĝ(·; ζt+τ )| Ft] and G(Zt).
Proposition H.2 (Almost unbiased). For a Ft-measurable random variable Z ∈ Z := V ×Λ×X ,
it holds that

∥E [ ĝV (Z; ζt+τ )| Ft]−∇V Lw(Z)∥1 ≤
2ψ

1− γ
E(τ),

∥E [ ĝλ(Z; ζt+τ )| Ft]−∇λLw(Z)∥∞ ≤
2ψ

1− γ
E(τ),

∥E [ ĝx(Z; ζt+τ )| Ft]−∇xLw(Z)∥∞ ≤
64

φ(1− γ)ς
E(τ).

Furthermore, for any Z ′ ∈ Z , we have

|⟨Z ′,G(Z)− E [ ĝ(Z; ζt+τ )| Ft]⟩| ≤
128ψ

φ(1− γ)2
E(τ).

The following proposition indicates that, the estimator ĝ(·; ζt+τ ) is not only “nearly unbiased” con-
ditional on Ft, but it also has a well bounded moment.
Proposition H.3 (Bounded moment). For any Ft-measurable random variable Z ∈ Z , it holds that

E [∥ĝV (Z; ζt+τ )∥| Ft] ≲
C(τ)

1− γ
,

E [∥ĝλ(Z; ζt+τ )∥∞| Ft] ≲
C(τ)

1− γ
,

E
[
∥ĝx(Z; ζt+τ )∥2xt

∣∣∣Ft] ≲ C(τ)Nψ
φ2(1− γ)3

,

where C(τ) = 2 + E(τ)
ς .

Therefore, there is a universal constant cτ such that for τ ≥ ⌊cτ tmixι⌋, we have C(τ) ≤ 3 and
E(τ) ≤ 1

T (the log factor ι and the range of T are specified in Theorem H.5). We denote τ0 =
⌊cτ tmixι⌋.

H.2 Proof sketch of Theorem 4.6

Before our analysis of DPDL on Dasync, we have to first provide an analogue of Proposition 4.3.
As in the synchronous setting, we set ϵe = ϵ

100 and ς = φ(1−γ)2ϵe
2Nψ .

Proposition H.4. Given Ne ≥ c′e
tmixNψι

φ2(1−γ)4ϵ2e
samples from a trajectory generated by πb, the µ̂

constructed in (10) satisfies the following properties with probability at least 1− δ/3.
(1) For all s, a, µ(s,a)µ̂(s,a) ≤ 2, and µ̂(s, a) ≥ ς .
(2) For any π ∈ Π(ψ), W−1νπ ∈ X .
(3) For any x ∈ X , ∥Wx− x∥1 ≤ φ(1− γ)ϵe.
Now, we present the convergence guarantee of the duality gap Gap(x).

Theorem H.5. Given ϵ ∈
(
0, 1

1−γ

]
, δ ∈

(
0, 12

)
, we denote ι = log (T |S||A|I/δ). Then as long as

T ≳ τ2
0Nψι

φ2(1−γ)4ϵ2e
, with probability at least 1− δ/3 it holds

Gap(x) ≲
tmix

φ(1− γ)2

√
Nψι3
T
≤ ϵ.

Therefore, there is a universal constant c′o such that Gap(x) ≤ ϵ
2 as long as T ≥ c′o

t2mixNψι3

φ2(1−γ)4ϵ2 .
Then the proof in Appendix E can be applied directly. In conclusion, the number of samples needed
is

Õ
(

t2mixNψ
φ2(1− γ)4ϵ2

)
.
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We sketch the proof of Theorem H.5 as follows. The detailed proofs of propositions are organized
by order in the rest of this section.

Decomposition of duality gap We define the auxiliary variables V ′, λ′, x′ as in Appendix D,
(V ′, λ′) = argmin

V ∈V,λ∈Λ
Lw(V, λ, x), x′ = argmax

x∈X
min

V ∈V,λ∈Λ
Lw(V, λ, x), Z ′ = [V ′;λ′;x′].

Recall the decomposition (24), we have

Gap(x) =
1

T

T∑
t=1

〈
ĝ(Zt; ζt), Z

t − Z ′〉
︸ ︷︷ ︸

S1

+
1

T

T∑
t=1

〈
G(Zt)− ĝ(Zt; ζt), Zt − Z ′〉

︸ ︷︷ ︸
S2

.

Bounding the term S1 The proof in Appendix D.2 can be applied without change. Namely, as
long as η ≤ 1

2 min
(
αλ

Mλ
, αx

Mx,∞

)
, it holds that

S1 ≲
αVD

2
V + αλDλ + αxDx

ηT
+
η

T

T∑
t=1

(
∥ĝV (Zt; ζt)∥

2

αV
+
Dλ,1 ∥ĝλ(Zt; ζt)∥

2
∞

αλ
+
∥ĝx(Zt; ζt)∥

2
xt

αx

)
.

Bounding the term S2 In the asynchronous setting, ζ1, · · · , ζT are no longer i.i.d samples. To deal
with this issue, let us consider the following decomposition
Γt :=

〈
G(Zt)− ĝ(Zt; ζt), Zt − Z ′〉 = 〈G(Zt), Zt − Z ′〉− 〈G(Zt−τ ), Zt−τ − Z ′〉︸ ︷︷ ︸

Γt
1

+
〈
G(Zt−τ )− E

[
ĝ(Zt−τ ; ζt)

∣∣Ft−τ ] , Zt−τ − Z ′〉︸ ︷︷ ︸
Γt−τ
2

+
〈
E
[
ĝ(Zt−τ ; ζt)

∣∣Ft−τ ]− ĝ(Zt−τ ; ζt), Zt−τ − Z ′〉︸ ︷︷ ︸
Γt−τ
3

+
〈
ĝ(Zt−τ ; ζt), Z

t−τ − Z ′〉− 〈ĝ(Zt; ζt), Zt − Z ′〉︸ ︷︷ ︸
Γt
4

,

where 1 ≤ τ ≤ τ0 is a fixed integer. The quantity Γt−τ2 can be bounded by Proposition H.2, and
Γt−τ3 can be bounded as in Appendix D.3. As of Γt1, Γt4, we bound it in terms of Zt − Zt−τ . In
conclusion, with probability at least 1− δ/5, we have

1

T

T∑
t=1

Γt ≲
ψ

φ(1− γ)2
E(τ) + 1

φ(1− γ)2

√
τC(τ)Nψι

T
+

1

φ(1− γ)

T∑
t=τ+1

|xt − xt−τ | (st, at)
µ̂(st, at)

+
η

T

T∑
t=τ+1

(
∥ĝV (Zt; ζt)∥

2

αV
+
Dλ,1 ∥ĝλ(Zt; ζt)∥

2
∞

αλ

)
. (49)

The detailed analysis is presented in Appendix H.7.

Bounding the variance and magnitude of the updates It remains to bound ∥ĝV (Zt; ζt)∥,
∥ĝλ(Zt; ζt)∥∞, ∥ĝx(Zt; ζt)∥xt , and the term |xt(st, at)− xt−τ (st, at)|. For any x ∈ R|S||A|

≥0 , and
any (s, a) ∈ S ×A, we introduce the following abbreviation for the ease of notation

p(x; s, a) :=
x(s, a)

µ̂(s, a)
, q(x; s, a) :=

x(s, a)

µ̂(s, a)2
.

For any sample ζ = (s0, s, a, s
′, r,u), we also reload the notations p, q as p(x; ζ) := p(x; s, a) and

q(x; ζ) := q(x; s, a).

It is not hard to see that p(xt; ζt) and q(xt; ζt) dominate the variance of the gradient estimators (for
detailed discussion, see Appendix H.5). More specifically, we have∥∥ĝV (Zt; ζt)∥∥ ≲ p(xt; ζt),

∥∥ĝλ(Zt; ζt)∥∥∞ ≲ p(xt; ζt),∥∥ĝx(Zt; ζt)∥∥xt ≲
1

φ(1− γ)
√
q(xt; ζt).
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Then, we only need to bound
∑T
t=1 q(x

t; ζt),
∑T
t=τ+1 p(|xt − xt−τ | ; ζt) and

∑T
t=1 p(x

t; ζt)
2. By

leveraging the idea of the decomposition (13), we can derive the desired estimation, as follows.

Proposition H.6. There is a universal constant c such that for T ≥ c τ2
0Nψι

φ2(1−γ)4ϵ2e
, the following holds

for all 1 ≤ τ ≤ τ0 simultaneously, with probability at least 1− δ/10:

1

T

T∑
t=1

p(xt; ζt)
2 ≲

ψ

(1− γ)2
,

1

T

T∑
t=1

q(xt; ζt) ≲
Nψ
1− γ

,

1

T

T∑
t=τ+1

p(
∣∣xt − xt−τ ∣∣ ; ζt) ≲ τC(τ)

1− γ

√
Nψι
T

.

Conclusion Combining Proposition H.6 with the estimations of S1 and S2, we have with probabil-
ity at least 1− δ/3,

Gap(x) ≲
τC(τ)

φ(1− γ)2

√
Nψι
T

+
ψ

φ(1− γ)2
E(τ). (50)

Now, we can take τ = τ0 = ⌊cτ tmixι⌋. Then by the definition, it holds C(τ0) ≤ 3 and ϵ(τ0) ≤ 1
T ,

and hence with probability at least 1− δ/3 we have

Gap(x) ≲
tmix

φ(1− γ)2

√
Nψι3
T

.

As a remark, if we have an (empirical) estimation t̂mix such that t̂mix ≥ tmix, then by taking

η = 1√
t̂mixT

, the final bound can be improved to Gap(x) ≲ 1
φ(1−γ)2

√
t̂mixNψι3

T , as long as

T ≳ t2mix

t̂mix

Nψι3

φ2(1−γ)4ϵ2 .

H.3 Proof of Proposition H.1

In order to prove Proposition H.1, we invoke the following standard version of the Bernstein’s in-
equality. We also leverage the idea of the proof of [14, Lemma 8].
Theorem H.7 ([19, Theorem 3.9]). Suppose {Xi}i≥1 is a stationary Markov chain with invariant
distribution π and pseudo spectral gap γps. Let f be a measurable function such that Eπ [f(X)] = 0,
|f(X)| ≤M . Denote σ2 = Eπ

[
f(X)2

]
, then for all x ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣ ≥ x
)
≤ 2 exp

(
− x2 · γps
8 (n+ 1/γps)σ2 + 20xM

)
.

In particular, for uniformly ergodic chains with mixing time tmix, γps ≥ 1
2tmix

.

Proof of Proposition H.1. Without loss of generality, we assume the Markov chain (Xt) has a finite
state space X . We fix integer τ and x ≥ 0 to be specified later, and let πn be the distribution of Xn.
Theorem H.7 yields

P

(∣∣∣∣∣
n∑

i=τ+1

f(Xi)

∣∣∣∣∣ ≥ x
∣∣∣∣∣X1 ∼ π

)
≤ 2 exp

(
− x2

16tmix (n+ 2tmix − τ)σ2 + 40xtmixM

)
.

Let Bτ be the event
{∣∣∑n

i=τ+1 f(Xi)
∣∣ ≥ x}, then

|P (Bτ |X1 ∼ π)− P (Bτ |X1 ∼ π1)|

=

∣∣∣∣∣∑
x∈X

P (Bτ |Xτ+1 = x) (P (Xτ+1 = x|X1 ∼ π)− P (Xτ+1 = x|X1 ∼ π1))

∣∣∣∣∣
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=

∣∣∣∣∣∑
x∈X

P (Bτ |Xτ+1 = x) (π(x)− πτ+1(x))

∣∣∣∣∣
≤max

(∥∥[π − πτ+1]+
∥∥
1
,
∥∥[π − πτ+1]−

∥∥
1

)
=dTV(π, πτ+1) ≤ E(τ).

Therefore, we can take x =
√

32tmix(n− τ + 2tmix) log
4
δ + 80tmixM log 4

δ and τ =⌈
log2

2
δ

⌉
tmix, then

P (Bτ |X1 ∼ π1) ≤ E(τ) + P (Bτ |X1 ∼ π) ≤
δ

2
+
δ

2
= δ.

Hence with probability at least 1− δ, it holds that∣∣∣∣∣
n∑

i=τ+1

f(Xi)

∣∣∣∣∣ ≤
√

32tmix(n− τ + 2tmix) log
4

δ
+ 80tmixM log

4

δ
.

The proof is completed by noticing that |
∑τ
i=1 f(Xi)| ≤ τM ≤ 2tmixM log 4

δ and τ ≥ 2tmix.

H.4 Proof of Proposition H.2

Proof. Recall that the gradient estimators are constructed as

ĝV (Z; ζ) := Is0 +
x(s, a)

µ̂(s, a)
(γIs′ − Is) ,

ĝλ(Z; ζ) :=
x(s, a)

µ̂(s, a)
uκ,

ĝx(Z; ζ) :=
r + γV (s)− V (s′) + ⟨uκ, λ⟩

µ̂(s, a)
Is,a.

Therefore, for Z = [V ;λ;x] that is Ft measurable, we have

E [ ĝx(Z; ζt+τ )| Ft]

=E

[
rt+τ + γV (st+τ )− V (st+τ+1) +

〈
uκt+τ , λ

〉
µ̂(st+τ , at+τ )

Ist+τ ,at+τ

∣∣∣∣∣ st, Z
]

=E
[
r(st+τ , at+τ ) + γV (st+τ )− V (st+τ+1) + ⟨uκ(st+τ , at+τ ), λ⟩

µ̂(st+τ , at+τ )
Ist+τ ,at+τ

∣∣∣∣ st, Z]
=
∑
s,a,s′

P (st+τ = s, at+τ = a, st+τ+1 = s′| st)
r(s, a) + γV (s)− V (s′) + ⟨uκ(s, a), λ⟩

µ̂(s, a)
Is,a

=
∑
s,a

P (st+τ = s, at+τ = a| st)
µ̂(s, a)

(
r(s, a) + γV (s)− Es′|s,a [V (s′)] + ⟨uκ(s, a), λ⟩

)
Is,a.

For the sake of simplicity, we denote

W τ,st := diag

(
Pπb

(st+τ = s, at+τ = a| st)
µ̂(s, a)

)
= diag

(
Pπb

(st+τ = s| st)πb(a|s)
µ̂(s, a)

)
s,a

, (51)

and we follow the matrix notation introduced in Appendix E.1. Then

E [ ĝx(Z; ζt+τ )| Ft] =W τ,st(r −AV + UT
κ λ),

E [ ĝV (Z; ζt+τ )| Ft] = E
[
Is0 +

x(st+τ , at+τ )

µ̂(st+τ , at+τ )

(
γIst+τ+1

− Ist+τ

)∣∣∣∣ st, Z]
= ρ0 +

∑
s,a

Pπb
(st+τ = s, at+τ = a| st)

x(s, a)

µ̂(s, a)

(
γEs′|s,a [Is′ ]− Is

)
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= ρ0 −ATW τ,stx,

E [ ĝλ(Z; ζt+τ )| Ft] = E
[
x(st+τ , at+τ )

µ̂(st+τ , at+τ )
uκ
∣∣∣∣ st, Z]

=
∑
s,a

Pπb
(st+τ = s, at+τ = a| st)

x(s, a)

µ̂(s, a)
uκ(s, a)

= UκW
τ,stx.

Therefore, we have

∥E [ ĝV (Z; ζt+τ )| Ft]−∇V Lw(Z)∥1 =
∥∥AT (W τ,st −W )x

∥∥
1
≤ 2 ∥(W τ,st −W )x∥1

≤ 2
∑
s,a

|Pπb
(st+τ = s| st)− µπb

(s)| πb(a|s)x(s, a)
µ̂(s, a)

≤ 2ψ

1− γ
dTV

(
Pτπb

(·|st) , µπb

)
≤ 2ψ

1− γ
E(τ),

where Pτπb
(·|st) is the distribution of st+τ conditioning on st, and the last inequality is due to the

definition of E(·). Similarly, it holds that

∥E [ ĝλ(Z; ζt+τ )| Ft]−∇λLw(Z)∥∞ ≤
2ψ

1− γ
E(τ),

∥E [ ĝx(Z; ζt+τ )| Ft]−∇xLw(Z)∥∞ ≤
64

φ(1− γ)ς
E(τ).

Furthermore, for any Z ′ = [V ′;λ′;x′] ∈ Z , we have

|⟨Z ′,G(Z)− E [ ĝ(Z; ζt+τ )| Ft]⟩|
≤ ∥V ′∥∞ ∥E [ ĝV (Z; ζt+τ )| Ft]−∇V Lw(Z)∥1 + ∥λ∥1 ∥E [ ĝλ(Z; ζt+τ )| Ft]−∇λLw(Z)∥∞
+
∣∣〈r −AV + UT

κ λ, (W
τ,st −W )x

〉∣∣
≤ 128ψ

φ(1− γ)2
E(τ).

H.5 Proof of Proposition H.3

In fact, to prove Proposition H.3, let us prove a more general result stated as follows. Proposition H.3
will follow directly from the (2) and (3) of Proposition H.8. This proposition will also be useful for
our later discussion. Recall that we introduce the notation p(x; s, a) := x(s,a)

µ̂(s,a) and q(x; s, a) :=
x(s,a)
µ̂(s,a)2 , and the reloaded notation p(x; ζ) := p(x; s, a) and q(x; ζ) := q(x; s, a) for sample ζ =

(s0, s, a, s
′, r,u). Then the following proposition holds true.

Proposition H.8. (1). For all x ∈ X and ζ, it holds that

p(x; ζ) ≤ ψ

1− γ
, q(x; ζ) ≤ 1

ς
p(x; ζ) ≤ ψ

(1− γ)ς
.

(2). For all Z = [V ;λ;x] and ζ, it holds that

∥ĝV (Z; ζ)∥ ≤ 3p(x; ζ), ∥ĝλ(Z; ζ)∥∞ ≤ 2p(x; ζ),

∥ĝx(Z; ζ)∥x ≤
64

φ(1− γ)
√
q(x; ζ).

(3). For x ∈ X a (possibly random) vector that is Ft-measurable, the (asynchronous) moments of
p, q can be bounded as

E [p(x; ζt+τ )| Ft] =
∑
s,a

P (st+τ = s, at+τ = a| st)
µ̂(s, a)

x(s, a) ≤ C(τ) 4

1− γ
,
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E [q(x; ζt+τ )| Ft] =
∑
s,a

P (st+τ = s, at+τ = a| st)
µ̂(s, a)

x(s, a)

µ̂(s, a)
≤ C(τ) Nψ

1− γ
,

E
[
p(xt; ζt+τ )

2
∣∣Ft] ≤ ψ

1− γ
E
[
p(xt; ζt+τ )

∣∣Ft] ≤ C(τ) 4ψ

(1− γ)2
.

Since each step of this proposition can be proved by a direct computation similar to the one in
Appendix C, we omit the proof for succinctness.

H.6 Proof of Proposition H.4

Similar to the proof of Proposition 4.3, we consider µ̂0(s, a) =
N(s,a)
Ne

and the “failure event”

Ω :=
⋃
s,a

{
|µ(s, a)− µ̂0(s, a)| >

√
µ(s, a)

ℓ

Ne
+

ℓ

Ne

}
,

where ℓ = 100tmix log
(

12|S||A|
δ

)
. Then by the Bernstein’s inequality (Proposition H.1), it holds

that

P

(
|µ(s, a)− µ̂0(s, a)| >

√
µ(s, a)

ℓ

Ne
+

ℓ

Ne

)
≤ δ

3|S||A|
, ∀(s, a) ∈ S ×A,

which further gives P(Ω) ≤ δ
3 . The proof is completed by exactly repeating the estimations in the

proof of Proposition 4.3, conditioning on Ωc.

H.7 Bounding the term S2

By separately considering each term in the decomposition
Γt = Γt1 + Γt−τ2 + Γt−τ3 + Γt4,

the following inequalities hold true. The detailed derivations are placed at the end of Appendix H.7.
τ∑
t=1

Γt +

T∑
t=τ+1

Γt1 ≲
τψ

φ(1− γ)2
, (52)

T−τ∑
t=1

Γt3 ≲
1

φ(1− γ)2
√
TτC(τ)Nψι with probability at least 1− δ

10
, (53)

∣∣Γt4∣∣ ≲ 1

φ(1−γ)
|xt−xt−τ |(st, at)

µ̂(st, at)
+
(
1+

x′(st, at)

µ̂(st, at)

)(∥∥V t−V t−τ∥∥∞+
∥∥λt−λt−τ∥∥

1

)
. (54)

As of Γt2, by directly applying Proposition H.2 we have |Γt2| ≲
ψ

φ(1−γ)2 E(τ). Thus, to estimate

S2, it remains to bound the sum of quantities ∥V t − V t−τ∥∞, ∥λt − λt−τ∥1 and x′(st,at)
µ̂(st,at)

. For
∥V t − V t−τ∥∞ and ∥λt − λt−τ∥1, as long as η ≤ αλ

2Mλ
, we have∥∥V t+1 − V t

∥∥
∞ ≤

∥∥V t+1 − V t
∥∥ ≤ η

αV

∥∥ĝV (Zt; ζt)∥∥ ,∥∥λt+1 − λt
∥∥
1
≤ ηDλ,1

αλ

∥∥ĝλ(Zt; ζt)∥∥∞ ,

due to Corollary D.5. Therefore, it holds that

1

T

T∑
t=τ+1

(
1 +

x′(st, at)

µ̂(st, at)

)(∥∥V t − V t−τ∥∥∞ +
∥∥λt − λt−τ∥∥

1

)
≲
η

T

T∑
t=τ+1

(
1 +

x′(st, at)

µ̂(st, at)

)(
∥ĝV (Zt; ζt)∥

αV
+
Dλ,1 ∥ĝλ(Zt; ζt)∥∞

αλ

)

≲
η

T

T∑
t=τ+1

(
∥ĝV (Zt; ζt)∥

2

αV
+
Dλ,1 ∥ĝλ(Zt; ζt)∥

2
∞

αλ

)
+
η

T

(
1

αV
+
Dλ,1

αλ

) T∑
t=τ+1

(
1 +

x′(st, at)

µ̂(st, at)

)2

.
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Finally, we apply Bernstein’s inequality to bound the sequence
(
x′(st,at)

2

µ̂(st,at)2

)
t

as follows. Due to

x′(s, a)

µ̂(s, a)
≤ ψ

1− γ
, Es,a∼µ

[
x′(s, a)2

µ̂(s, a)2

]
=
∑
s,a

µ(s, a)

µ̂(s, a)

x′(s, a)

µ̂(s, a)
x′(s, a) ≤ 8ψ

(1− γ)2
,

and Proposition H.1, with probability at least 1− δ/10, it holds that
T∑

t=τ+1

x′(st, at)
2

µ̂(st, at)2
≲ T

ψ

(1− γ)2
+ tmix

ψ2

(1− γ)2
log

1

δ
≲

Tψ

(1− γ)2
.

Combining all the estimations above completes the proof of (49).

H.7.1 Derivation of inequality (52)

By definition, it holds that
τ∑
t=1

Γt +

T∑
t=τ+1

Γt1 =

T∑
t=T−τ+1

〈
G(Zt), Zt − Z ′〉− τ∑

t=1

〈
ĝ(Zt; ζt), Z

t − Z ′〉 .
For a sample ζ = (s0, s, a, s

′, r,u), we denote

L̂ζ(V, λ, x) := V (s0) +
x(s, a)

µ̂(s, a)
(r − V (s) + γV (s′) + ⟨λ,uκ⟩) .

Then, it holds that
⟨ĝ(Z; ζ), Z − Z ′⟩ = L̂ζ(V, λ, x′)− L̂ζ(V ′, λ′, x). (55)

Hence we have∣∣〈ĝ(Zt; ζt), Zt − Z ′〉∣∣ ≤ ∣∣∣L̂ζt(V t, λt, x′)∣∣∣+ ∣∣∣L̂ζt(V ′, λ′, xt)
∣∣∣ ≤ 100ψ

φ(1− γ)2
.

Similarly, it holds that∣∣〈G(Zt), Zt − Z ′〉∣∣ ≤ ∣∣Lw(V t, λt, x′)∣∣+ ∣∣Lw(V ′, λ′, xt)
∣∣ ≤ 512

φ(1− γ)2
,

and we complete the proof by combining the estimations above.

H.7.2 Derivation of inequality (53)

As in Appendix D.3, we consider the sequences

∆t
V := ĝV (Z

t; ζt+τ )− E
[
ĝV (Z

t; ζt+τ )
∣∣Ft] ,

∆t
λ := ĝλ(Z

t; ζt+τ )− E
[
ĝλ(Z

t; ζt+τ )
∣∣Ft] ,

∆t
x := ĝx(Z

t; ζt+τ )− E
[
ĝx(Z

t; ζt+τ )
∣∣Ft] .

They are no longer martingale difference sequences, because E [∆t| Ft] = 0 but ∆t is Ft+τ+1

measurable. Therefore, we invoke the following modified version of Bernstein’s inequality.
Lemma H.9 (Modified Bernstein’s Inequality). Assume {xi}ni=1 is a sequence of random vectors
in Rd, such that E [xt| Ft] = 0 and xt is Ft+τ measurable. Assume that E

[
∥xt∥2

∣∣Ft] ≤ σ2 and
∥xt∥ ≤M a.s., then with probability at least 1− δ,∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥ ≤ 2σ

√
nτ log

(
(d+ 1)τ

δ

)
+ 2Mτ log

(
(d+ 1)τ

δ

)
.

When the ℓ2 norm is replaced by the ℓ∞ norm, i.e., {xi}ni=1 satisfies E
[
∥xt∥2∞

∣∣Ft] ≤ σ2, we have∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
∞

≤ 2σ

√
nτ log

(
2dτ

δ

)
+ 2Mτ log

(
2dτ

δ

)
with probability at least 1− δ.
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We still decompose
T−τ∑
t=1

Γt3 =

T−τ∑
t=1

(〈
∆t
V , V

′ − V 1
〉
+
〈
∆t
λ, λ

′ − λ1
〉)

︸ ︷︷ ︸
Sc

+

T−τ∑
t=1

(〈
∆t
V , V

1 − V t
〉
+
〈
∆t
λ, λ

1 − λt
〉
+
〈
−∆t

x, x
′ − xt

〉)
︸ ︷︷ ︸

Sm

.

Most of the following analysis is similar to the one in Appendix D.3.

Correlated part Rewrite

Sc =

〈
T−τ∑
t=1

∆t
V , V

′ − V 1

〉
+

〈
T−τ∑
t=1

∆t
λ, λ

′ − λ1
〉

≤
∥∥V ′ − V 1

∥∥ · ∥∥∥∥∥
T−τ∑
t=1

∆t
V

∥∥∥∥∥+ ∥∥λ′ − λ1∥∥1 ·
∥∥∥∥∥
T−τ∑
t=1

∆t
λ

∥∥∥∥∥
∞

.

For each t, by Proposition H.3 (or Proposition H.8), we have

E
[∥∥∆t

V

∥∥2∣∣∣Ft] ≤ E
[∥∥ĝV (Zt; ζt+τ )∥∥2∣∣∣Ft] ≲ C(τ)ψ

(1− γ)2
,

∥∥∆t
V

∥∥ ≲
ψ

1− γ
,

E
[∥∥∆t

λ

∥∥2
∞

∣∣∣Ft] ≲ E
[∥∥ĝλ(Zt; ζt+τ )∥∥2∞∣∣∣Ft] ≲ C(τ)ψ

(1− γ)2
,
∥∥∆t

λ

∥∥
∞ ≲

ψ

1− γ
.

Thus, we can apply Lemma H.9 to derive that, with probability at least 1− δ/20,∥∥∥∥∥
T−τ∑
t=1

∆t
V

∥∥∥∥∥ ≲
1

1− γ
√
TτC(τ)ψ log(1/δ) +

ψ

1− γ
· τ log(1/δ),∥∥∥∥∥

T−τ∑
t=1

∆t
λ

∥∥∥∥∥
∞

≲
1

1− γ
√
TτC(τ)ψ log(I/δ) +

ψ

1− γ
· τ log(I/δ).

Therefore, it holds that with probability at least 1− δ/20,

Sc ≲
1

φ(1− γ)2
√
TτC(τ)|S|ψι+ τψι

1− γ
≲

1

φ(1− γ)2
√
TτC(τ)|S|ψι. (56)

Martingale part In order to bound Sm, we have to consider ∆
t

V :=
〈
∆t
V , V

1 − V t
〉
,∆

t

λ :=〈
∆t
λ, λ

1 − λt
〉
, ∆

t

x := ⟨∆t
x, x

t − x′⟩. By Proposition H.3, it holds that∣∣∣∆t

V

∣∣∣ ≲ ψ

φ(1− γ)2
, E

[(
∆
t

V

)2∣∣∣∣Ft] ≤ D2
V E
[∥∥∆t

V

∥∥2∣∣∣Ft] ≲ C(τ)ψ

φ2(1− γ)4
,∣∣∣∆t

λ

∣∣∣ ≤ ψ

φ(1− γ)
, E

[(
∆
t

λ

)2∣∣∣∣Ft] ≤ D2
λ,1E

[∥∥∆t
λ

∥∥2
∞

∣∣∣Ft] ≲ C(τ)ψ

φ2(1− γ)2
,

∣∣∣∆t

x

∣∣∣ ≤ ψ

φ(1− γ)2
, E

[(
∆
t

x

)2∣∣∣∣Ft] ≤ E

[∥∥∥∥ x′ − xt√
x′ + xt

∥∥∥∥2 ∥∥∆t
x

∥∥2
x′+xt

∣∣∣∣∣Ft
]
≲

C(τ)Nψ
φ2(1− γ)4

.

Thus, by applying Lemma H.9, the following three estimations hold with probability at least 1−δ/20
T−τ∑
t=1

∆
t

V ≲
1

φ(1− γ)2
√
TτC(τ)ψ log(1/δ) +

ψ

φ(1− γ)2
· τ log(1/δ),

T−τ∑
t=1

∆
t

λ ≲
1

φ(1− γ)
√
TτC(τ)ψ log(1/δ) +

ψ

φ(1− γ)
· τ log(1/δ),
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T−τ∑
t=1

∆
t

x ≲
1

φ(1− γ)2
√
TτC(τ)Nψ log(1/δ) +

ψ

φ(1− γ)2
· τ log(1/δ).

Therefore,

Sm ≲
1

φ(1− γ)2
√
TτC(τ)Nψι+ τψι

φ(1− γ)2
≲

1

φ(1− γ)2
√
TτC(τ)Nψι. (57)

Combining (57) with (56) completes the proof.

Proof of Lemma H.9. We reduce Lemma H.9 to the standard martingale Bernstein’s inequality
(Lemma B.1). The set [n] can be decomposed into

[n] =

τ⊔
k=1

Ik, Ik := {j ∈ [n] : j ≡ k mod τ} .

For each k, the sequence (Xj)j∈Ik
is a martingale difference sequence w.r.t. the filtration (Fj)j∈Ik

.
Hence by Lemma B.1, with probability at least 1− δ/τ , we have∥∥∥∥∥∥

∑
j∈Ik

xj

∥∥∥∥∥∥ ≤ 2σ

√
|Ik| log

(
(d+ 1)τ

δ

)
+ 2M log

(
(d+ 1)τ

δ

)
.

Summing over k = 1, · · · , τ yields that with probability at least 1− δ∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥ ≤ 2σ

√
log

(
(d+ 1)τ

δ

) τ∑
k=1

√
|Ik|+ 2Mτ log

(
(d+ 1)τ

δ

)

≤ 2σ

√
nτ log

(
(d+ 1)τ

δ

)
+ 2Mτ log

(
(d+ 1)τ

δ

)
,

where the last inequality is due to the Cauchy inequality.

The analogous ℓ∞ case can be done similarly.

H.7.3 Derivation of inequality (54)

By (55), it holds that
Γt4 =

〈
ĝ(Zt−τ ; ζt), Z

t−τ − Z ′〉− 〈ĝ(Zt; ζt), Zt − Z ′〉
=L̂ζt(V t−τ , λt−τ , x′)− L̂ζt(V ′, λ′, xt−τ ) + L̂ζt(V ′, λ′, xt)− L̂ζt(V t, λt, x′).

(58)

Then we have ∣∣∣L̂ζt(V ′, λ′, xt)− L̂ζt(V ′, λ′, xt−τ )
∣∣∣

=
|xt − xt−τ | (st, at)

µ̂(st, at)
|rt − V ′(st) + γV ′(st+1) + ⟨λ′,uκt ⟩|

≤|x
t − xt−τ | (st, at)
µ̂(st, at)

(
1 +

16

1− γ

(
1 +

2

φ

)
+

8(1 + κ)

φ

)
≤ 64

φ(1− γ)
|xt − xt−τ | (st, at)

µ̂(st, at)
.

Similarly,∣∣∣L̂ζt(V t, λt, x′)− L̂ζt(V t−τ , λt−τ , x′)∣∣∣
≤
∣∣V t(s0,t)− V t−τ (s0,t)∣∣
+
x′(st, at)

µ̂(st, at)

(∣∣V t(st)− V t−τ (st)∣∣+ γ
∣∣V t(st+1)− V t−τ (st+1)

∣∣+ ∣∣〈λt − λt−τ ,uκt 〉∣∣)
≤
∥∥V t − V t−τ∥∥∞(1 + 2

x′(st, at)

µ̂(st, at)

)
+
∥∥λt − λt−τ∥∥

1
· 128x

′(st, at)

µ̂(st, at)
.

The proof is completed by combining (58) with the estimations above.
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H.8 Proof of Proposition H.6

The proof of Proposition H.6 is separated into two steps.

Step 1. We derive bounds on
∑
p(xt; ζt+τ )

2 and
∑
q(xt; ζt+τ ) by directly applying Bernstein’s

inequality.

Step 2. We leverage the idea demonstrate in (13) again to bound
∑
p(xt; ζt)

2 and
∑
q(xt; ζt), by

bounding their difference with
∑
p(xt; ζt+τ )

2 and
∑
q(xt; ζt+τ ) respectively.

Then we finalize the proof by combining the results of Step 1 and Step 2.

H.8.1 Step 1. Bounding the asynchronous sums

First, let us present the following result for the ease of discussion.
Corollary. Assume {xi}ni=1 is a sequence of random variables, such that xt is Ft+τ measurable,
and E [ |xt|| Ft] ≤ c, |xt| ≤M a.s. Then with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

xi

∣∣∣∣∣ ≤ 2cτ + 3Mτ
log (2τ/δ)

n
.

By Proposition H.8, we have

q(xt; ζt+τ ) ≤
ψ

(1− γ)ς
, E

[
q(xt; ζt+τ )

∣∣Ft] ≤ C(τ) Nψ
1− γ

.

Applying the above corollary yields that with probability at least 1− δ/20τ0,
T−τ∑
t=1

q(xt; ζt+τ ) ≲ TC(τ)
Nψ
1− γ

+
τψ

(1− γ)ς
log
(τ0
δ

)
≲ TC(τ)

Nψ
1− γ

+
τ0Nψ2ι

φ(1− γ)3ϵe

≲ TC(τ)
Nψ
1− γ

,

where the last inequality is due to T ≳ τ2
0Nψι3

φ2(1−γ)4ϵ2e
≥ τ0ψι

φ(1−γ)2ϵe .

Similarly, we have

p(xt; ζt+τ ) ≤
ψ

1− γ
, E

[
p(xt; ζt+τ )

2
∣∣Ft] ≤ C(τ) 4ψ

(1− γ)2
.

Therefore, for each 1 ≤ τ ≤ τ0, it holds with probability at least 1− δ/20τ0
T−τ∑
t=1

p(xt; ζt+τ )
2 ≲

TC(τ)ψ

(1− γ)2
+

τψ2

(1− γ)2
log
(τ0
δ

)
≲
TC(τ)ψ

(1− γ)2
.

By taking the union bound for 1 ≤ τ ≤ τ0, we conclude that with probability at least 1− δ/10,
T−τ∑
t=1

p(xt; ζt+τ )
2 ≲

TC(τ)ψ

(1− γ)2
,

T−τ∑
t=1

q(xt; ζt+τ ) ≲
TC(τ)Nψ

1− γ
, (59)

hold simultaneously and uniformly for 1 ≤ τ ≤ τ0.

H.8.2 Step 2. Bounding the difference

Utilizing the closeness between Zt and Zt+τ , we bound the difference q(xt; ζt)− q(xt; ζt+τ ) as
T∑
t=1

q(xt; ζt)−
T−τ∑
t=1

q(xt; ζt+τ ) ≤
τ∑
t=1

q(xt; ζt) +

T−τ∑
t=1

q(
∣∣xt − xt+τ ∣∣ ; ζt+τ )

≤ τψ

(1− γ)ς
+

1

ς

T−τ∑
t=1

p(
∣∣xt − xt+τ ∣∣ ; ζt+τ ).

(60)
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We next deal with the quantity p(|xt − xt+τ | ; ζt+τ ) carefully. For any (s, a) ∈ S ×A, it holds that

p(
∣∣xt − xt+τ ∣∣ ; s, a) = |xt(s, a)− xt+τ (s, a)|

µ̂(s, a)

≤ 1

µ̂(s, a)

t+τ−1∑
t′=t

∣∣∣xt′(s, a)− xt′+1(s, a)
∣∣∣

≤ 1

µ̂(s, a)

t+τ−1∑
t′=t

√
xt′(s, a) + xt′+1(s, a)

∥∥∥∥∥ xt
′ − xt′+1

√
xt′ + xt′+1

∥∥∥∥∥
(a)

≲
η

αx

1

µ̂(s, a)

t+τ−1∑
t′=t

√
xt′(s, a) + xt′+1(s, a)

∥∥∥ĝx(Zt′ ; ζt′)∥∥∥
xt′

(b)

≲
η

αx

1

µ̂(s, a)

t+τ−1∑
t′=t

√
xt′(s, a) + xt′+1(s, a) · 1

φ(1− γ)
√
q(xt; ζt)

=
η

αx
· 1

φ(1− γ)

t+τ−1∑
t′=t

√
q(xt′ ; s, a) + q(xt′+1; s, a)

√
q(xt; ζt)

(c)

≤ η

αx
· 1

φ(1− γ)

√√√√t+τ−1∑
t′=t

q(xt; ζt)

√√√√t+τ∑
t′=t

q(xt′ ; s, a).

Here the inequality (a) is due to Corollary D.5, the inequality (b) is due to Proposition H.8, and the
inequality (c) comes from Cauchy inequality. Hence, we have

T−τ∑
t=1

p(
∣∣xt − xt+τ ∣∣ ; ζt+τ ) ≲ η

αx
· 1

φ(1− γ)

T−τ∑
t=1

√√√√t+τ−1∑
t′=t

q(xt; ζt)

√√√√t+τ∑
t′=t

q(xt′ ; ζt+τ )

≤ η

αx
· 1

φ(1− γ)

√√√√T−τ∑
t=1

t+τ−1∑
t′=t

q(xt; ζt)

√√√√T−τ∑
t=1

t+τ∑
t′=t

q(xt′ ; ζt+τ )

≤ η

αx
· 1

φ(1− γ)

√√√√τ

T∑
t=1

q(xt; ζt)

√√√√ τ∑
j=1

T−j∑
t=1

q(xt; ζt+j). (61)

Combining (61) with (60) yields
T−τ∑
t=1

q(xt; ζt)−
T−τ∑
t=1

q(xt; ζt+τ )

≲
τψ

(1− γ)ς
+

η

αx

1

φ(1− γ)ς

√√√√τ

T∑
t=1

q(xt; ζt)

√√√√T−τ∑
t=1

t+τ∑
t′=t

q(xt′ ; ζt+τ )

(62)

Similarly, it holds that for 0 ≤ j ≤ τ ,
T−j∑
t=1

q(xt; ζt+j)−
T−τ∑
t=1

q(xt; ζt+τ )

≲
τψ

(1− γ)ς
+

η

αx

1

φ(1− γ)ς

√√√√τ

T∑
t=1

q(xt; ζt)

√√√√T−τ∑
t=1

t+τ∑
t′=t

q(xt′ ; ζt+τ ).

(63)

H.8.3 Combining Step 1 and Step 2

Actually, (63) is already enough to bound
∑T
t=1 q(x

t; ζt). For simplicity, we denote

Q1 :=
c0τψ

(1− γ)ς
+

T−τ∑
t=1

q(xt; ζt+τ ), Q2 :=

T∑
t=1

q(xt; ζt), c := c0
η

αx

1

φ(1− γ)ς
,
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Q3 :=
1

τ

T−τ∑
t=1

t+τ∑
t′=t

q(xt
′
; ζt+τ ) =

1

τ

τ∑
j=1

T−τ+j∑
t=1

q(xt; ζt+τ−j),

where c0 is a universal constant hidden by the ≲ in (63). Now, (63) implies

Q2 ≤ Q1 + cτ
√
Q2Q3, Q3 ≤ Q1 + cτ

√
Q2Q3,

⇒Q2 +Q3 ≤ Q1 + cτ(Q2 +Q3).
(64)

Thus, as long as cτ0 ≤ 1
2 , we have Q2 +Q3 ≤ 2Q1. The condition cτ0 ≤ 1

2 is equivalent to

1

2c0
≥ τ0

η

αx

1

φ(1− γ)ς
= τ0 ·

√
1

T
·

(
1

φ(1− γ)

√
Nψ
logψ

)−1

1

φ(1− γ)ς
=

√
4τ20Nψ logψ

φ2(1− γ)4ϵ2e
· 1
T
.

Thus, T ≥ 16c20
τ2
0Nψ logψ
φ2(1−γ)4ϵ2e

is enough to ensure Q2 ≤ 2Q1, Q3 ≤ 2Q1 for any τ ≤ τ0. Here,
according to (59) we have

Q1 =
c0τψ

(1− γ)ς
+

T−τ∑
t=1

q(xt; ζt+τ ) ≲
c0τ0ψ

(1− γ)ς
+
TC(τ)Nψ

1− γ
≲
TC(τ)Nψ

1− γ
.

Consequently, we obtain
T∑
t=1

q(xt; ζt) ≲
TC(τ)Nψ

1− γ
,

T−τ∑
t=1

t+τ∑
t′=t

q(xt
′
; ζt+τ ) ≲ τ

TC(τ)Nψ
1− γ

.

(65)

Hence, by (61),
T∑

t=τ+1

p(
∣∣xt − xt−τ ∣∣ ; ζt) ≲ τC(τ)

1− γ
√
TNψ logψ.

We can further establish the bound for
∑T
t=1 p(x

t; ζt)
2 as

T∑
t=1

p(xt; ζt)
2 ≲

τ∑
t=1

p(xt; ζt)
2 +

T−τ∑
t=1

[
p(xt; ζt+τ )

2 + p(
∣∣xt − xt+τ ∣∣ ; ζt+τ )2]

(a)

≲ τ
ψ2

(1− γ)2
+

T−τ∑
t=1

p(xt; ζt+τ )
2 +

ψ

1− γ

T−τ∑
t=1

p(
∣∣xt − xt+τ ∣∣ ; ζt+τ )

≲
τψ2

(1− γ)2
+
TC(τ)ψ

(1− γ)2
+
τC(τ)

1− γ
√
TNψ logψ

(b)

≲
TC(τ)ψ

(1− γ)2
,

(66)

where the inequality (a) is due to p(xt; ζt) ≤ ψ
1−γ , p(|xt − xt+τ | ; ζt+τ ) ≤ 2ψ

1−γ , and the inequality

(b) is due to our requirement T ≳ τ2
0Nψι

φ2(1−γ)4ϵ2e
.

The proof is completed by taking τ = τ0 in (66) and (65).
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