
Temporal Latent Bottleneck: Synthesis of Fast and
Slow Processing Mechanisms in Sequence Learning

Aniket Didolkar 1, Kshitij Gupta 1, Anirudh Goyal 1, Nitesh B. Gundavarapu 5

Alex Lamb 2, Nan Rosemary Ke 3, Yoshua Bengio 1,4

Abstract

Recurrent neural networks have a strong inductive bias towards learning tempo-
rally compressed representations, as the entire history of a sequence is represented
by a single vector. By contrast, Transformers have little inductive bias towards
learning temporally compressed representations, as they allow for attention over
all previously computed elements in a sequence. Having a more compressed rep-
resentation of a sequence may be beneficial for generalization, as a high-level
representation may be more easily re-used and re-purposed and will contain fewer
irrelevant details. At the same time, excessive compression of representations
comes at the cost of expressiveness. We propose a solution which divides compu-
tation into two streams. A slow stream that is recurrent in nature aims to learn a
specialized and compressed representation, by forcing chunks ofK time steps into
a single representation which is divided into multiple vectors. At the same time,
a fast stream is parameterized as a Transformer to process chunks consisting of
K time-steps conditioned on the information in the slow-stream. In the proposed
approach we hope to gain the expressiveness of the Transformer, while encourag-
ing better compression and structuring of representations in the slow stream. We
show the benefits of the proposed method in terms of improved sample efficiency
and generalization performance as compared to various competitive baselines for
visual perception and sequential decision making tasks.

1 Introduction
The interplay between fast and slow mechanisms for information processing and perception has been
studied in both cognitive science and machine learning [5, 35]. In the brain, short-term and long-term
memory have developed in a specialized way. Short-term memory is allowed to change very quickly
to react to immediate sensory inputs and perception. It also tends towards high capacity storage of
all pieces of information which may be relevant for future reasoning [42, 3, 4]. By contrast, long-
term memory changes slowly [45, 41], is highly selective and involves repeated consolidation. It
contains a set of memories that summarize the entire past, only storing details about observations
which are most relevant [28, 6].

Deep Learning has seen a variety of architectures for processing sequential data [36, 57, 18]. For
example. recurrent neural networks compress information about a sequence into a single hidden
state. Transformers get rid of the recurrent state by dynamically capturing information between
positions using multi-head dot product attention [61]. Transformers have become the dominant
architecture across a wide range of domains including vision [25], natural language [24, 54, 11,
69, 20, 55], and reinforcement learning [13, 40]. They have eclipsed recurrent neural networks
[36, 57, 18] in almost all sequence processing domains due to their high representational capacity
and scalability. Despite their wide applicability, it is well known that Transformers are very data

01 Mila, University of Montreal, 2 Microsoft Research, New York, NY, 3 Google Deepmind, 4 CIFAR
Fellow, 5 Google Research, Corresponding authors: adidolkar123@gmail.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

 Chunk l-1 Chunk l Chunk l + 1

Sequence

C
ro

ss
 A

tt
en

ti
on

 +
 F

FN

Cross Attention + FFN

Self Attention + FFN

Self Attention + FFN

Cross Attention + FFN

Self Attention + FFN
. . .

.

Figure 1: Perceptual module + Temporal Latent Bottleneck Model. F denotes the perceptual
module or the fast stream which is a Transformer. I represents the temporal latent bottleneck state
(consisting of a set of vectors) that are updated using a recurrent function denoted by G. The given
sequence is first divided into chunks of size K and each chunk Xl is processed by F which consists
of interleaved SELF ATTENTION + FFN (denoted in blue) and CROSS ATTENTION + FFN (denoted
in green) layers. The CROSS ATTENTION + FFN layers allow the representation of F to be condi-
tioned on top-down information from I. The representations of the temporal latent bottleneck state
is updated using the outputs of F by a recurrent function G, which consists of a CROSS ATTENTION
+ FFN layer as shown in the circle.
hungry and work well mainly at scale. This can be attributed to their inductive bias towards modeling
all possible pairwise interactions in the sequence which results in no consolidation of information.
This lack of selectivity in the attention mechanism also leads to a high computational complexity
which scales quadratically with input size. Additionally, modeling all possible pairwise interactions
maybe extremely wasteful and may result in capturing unnecessary information not useful for the
downstream task [29, 39]. The goal of this work is to design an architecture for autoregressive
modeling that has an inductive bias towards learning temporally compressed representation that
retains the benefits of Transformers while preserving long-range interactions.

For learning temporally compressed representations, we start by dividing the computation of the
Transformer into two streams of processing - a fast stream and a slow stream. Inspired by the idea
of long-term and short-term memory, we want the fast stream to have a short-term memory with
a high capacity that reacts quickly to sensory input. We refer to this fast stream as the perceptual
module and implement it using a Transformer since they are known to have high representational
capacity. On the other hand, we want the slow stream to have a long-term memory which updates
at a slower rate and summarizes the most important information in the input sequence. We refer to
this slow stream as the Temporal Latent Bottleneck.

Implementation-wise, we divide the input into fixed size chunks (Figure 1). The fast stream operates
within each chunk while the slow stream consolidates and aggregates information across chunks up-
dating itself once per chunk. This leads to information asymmetry between fast and slow stream as
the fast stream contains fine-grained local information while the slow stream contains coarse-grained
distant information. Such kind of information asymmetry has shown to improve generalization and
adaptation performance of learned policies in the context of RL [30, 27]. The fast and slow streams
interact with each other though bottleneck of attention. The division of computation into a fast and
slow stream eliminates the need for capturing all possible pairwise interactions and thus introducing
selectivity in the attention mechanism resulting in a much lower computational complexity which is
not quadratic in the input size. We show that the limited capacity of the slow stream and consoli-
dation of information by a recurrent neural network prevents the model from capturing unnecessary
information not useful for the downstream task. We evaluate the proposed model in a number of
domains showing that it consistently outperforms competent baselines showing improved general-
ization to scenarios not seen during training.

2 Methodology

We now present the proposed approach in detail. Our model jointly leverages the strengths of Trans-
formers [61] and recurrent neural networks [18, 36].

2.1 Desiderata for Fast and Slow Streams of Processing

We give the detailed description of the proposed model in the next section. Here, we give an
overview of our architecture and discuss some of its key properties. Given an input sequence, it

2

Algorithm 1: PyTorch-style pseudocode for proposed model
C(query, key, value): Cross Attention + FFN layer
S(query, key, value): Self Attention + FFN layer
L: Num. Layers
R: Num. C per S
X: Input sequence of length T. shape: [B x T x D]
I: The Temporal Bottleneck
K: Chunk Size

X = torch.chunk(X, K, dim = 1) # List of length bT/Kc with each element
of size [B x K x D]

for Xc in X:
for l in range(L):

Xc = Sl(Xc, Xc, Xc)
if l % R == 0:

Xc = CbL/lc(Xc, I, I)
I = C(I, Xc, Xc)

is first divided into chunks of size K. Each chunk is processed by perceptual module represented by
a Transformer (denoted as F). While processing each chunk, F is also conditioned on information
from the Temporal Latent Bottleneck module G. The slow stream is a recurrent stream which has
its own state consisting of a set of N vectors (or slots) also called temporal latent bottleneck state
denoted as I in Figure 1. In the following sections, we use the term temporal latent bottleneck to re-
fer to the temporal latent bottleneck state I. This state is updated once per chunk using information
from the perceptual module through a cross attention mechanism.

The perceptual module operates within each chunk while the temporal latent bottleneck operates
across chunks slowly updating itself after each chunk has been processed by the perceptual module.
Thus, the only way the perceptual module gets information about inputs beyond its own chunk
is through the temporal latent bottleneck. An added advantage of this is that the computational
complexity of the attention mechanism in the proposed model is O(T

K (K2 + KN)) while that of
a Transformer is O(T 2), where T is the length of the sequence, K is the chunk size, and N is
the number of temporal latent bottleneck state vectors. Since K << T and N << T , we can
see that T

K (K2 + KN) < T 2. Therefore the proposed model has a much lower computational
complexity compared to a Transformer. Furthermore, the capacity of the temporal latent bottleneck
is limited and much smaller than that of the perceptual module. This encourages the temporal latent
bottleneck to represent the most salient information about the past while the perceptual module
represents only local information. This creates an information asymmetry between the two streams.
This information asymmetry leads to the perceptual module having a fine grained view of the nearby
inputs but a very coarse grained view of the distant past. This is very different from the usual self-
attention which attends to all tokens in the sequence at the same level of granularity.

An advantage of having a compressed representation of the past is that it allows the model to forget
irrelevant information. For example, if an agent is navigating in a large maze, it does not need to have
fine grained knowledge of its actions from the distant past. In the case of a Transformer, it would
attend to every step from the past (including steps from the distant past) which may be irrelevant
in the present context thus wasting its capacity in modeling irrelevant details. Another important
component of the proposed model is top-down attention which conveys contextual information from
the high-level Temporal Latent Bottleneck module to the processing of low-level perceptual mod-
ule. Past works [52, 26, 34, 23] have shown that top-down attention improves generalization and
adaptation performance of the learned model. One difference between these works and the proposed
model is that in their case the multiple streams operate at the same temporal granularity while in our
case the streams operate at a different time scales (because of information asymmetry). Through
our experiments, we show the advantage of the proposed architecture over these works. Next, we
describe the detailed implementation of the proposed model.

2.2 Computational Steps
We denote the input X as a sequence of T tokens - X = [x0, x1, x2, . . . , xt]. We chunk this input
into chunks of size K resulting in bT/Kc chunks. We refer to lth chunk as Xl. We represent the

3

state of the temporal latent bottleneck I (i.e. the slow stream) as a set of M d-dimensional vectors.
As mentioned previously, we denote the temporal latent bottleneck module as G and the perceptual
module as F . G updates the temporal latent bottleneck state while F processes chunks Xl to form
the latent representation X̄l -

Perceptual Module X̄l = F(Xl, Il) (1)

Temporal Latent Bottleneck Module Il+1 = G(Il, X̄l) (2)

Preliminaries. The central components of our model are the key value attention mechanism [7, 61]
and the FFN module [61]. We use two forms of the attention mechanism -(1) Self Attention [61]: In
this the query and key vectors refer to the same set of vectors; (2) Cross Attention [29, 39, 31]: In
this the query and key vectors refer to seperate sets of vectors.

Perceptual ModuleF . As mentioned previously, the perceptual module refers to the fast stream that
acts directly on the input. The perceptual module operates on each chunk separately. Therefore, at
any time the input to the perceptual module are the tokens corresponding to a particular chunk Xl =
[xl×K , xl×K+1, . . . , xl×K+K]. The perceptual module is a Transformer with self attention layers,
cross attention layers, and FFNs. It has 2 kinds of layers - (1) SELF ATTENTION + FFN; (2) CROSS
ATTENTION + FFN. The SELF ATTENTION + FFN layers process the input tokens and the CROSS
ATTENTION + FFN layers integrate top-down information from the temporal latent bottleneck state
I as follows -

Xl = ATTENTION(LN(Xl),LN(I),LN(I)) +Xl

Xl = FFN(LN(Xl)) +Xl (3)

We include one CROSS ATTENTION + FFN layer per R SELF ATTENTION + FFN layers. The
diagramatic representation of the perceptual module is presented in Figure 1 (in the processing of
chunk Xl). In the figure, we set R = 1.

Temporal Latent Bottleneck Module G. The temporal latent bottleneck (TLB) module represents
the slow stream that operates on the temporal latent bottleneck state I. I is updated using infor-
mation from a particular chunk processed by the perceptual module. This update happens once for
each chunk of the perceptual module resulting in bT/Kc updates for I. Since the temporal latent
bottleneck state I updates at a lower frequency than the perceptual module, it is expected to cap-
ture more stable and slowly changing features while the perceptual module captures faster changing
features resulting in multiple scales of information representation. An update to the temporal la-
tent bottleneck state I consists of a cross attention operation where the queries come from I and
the keys and values come from the output of the perceptual module. This cross attention operation
is followed by an FFN update to I. Consider the perceptual module outputs for a chunk l to be
X̄l = [x̄l×K , . . . , x̄l×K+K]. The update operation is implemented as follows:

Ī = ATTENTION(LN(Il),LN(X̄l),LN(X̄l)) + Il
Il+1 = FFN(LN(Ī)) + Ī (4)

The temporal latent bottleneck module introduces the notion of recurrence in our model. We show
the details of this module in Figure 1 (inside the circle).

Perceptual Module + Temporal Latent Bottleneck Model. We now present our complete archi-
tecture integrating both the perceptual module and the temporal latent bottleneck together. Given a
sequence of tokens X = [x0, x1, x2, . . . , xt]. We chunk this input into chunks of size K resulting
in bT/Kc chunks. The chunks are processed sequentially one after the other. For a chunk k, it
is first processed using the perceptual module conditioned on information from the temporal latent
bottleneck state. The outputs of the chunk are used to update the temporal latent bottleneck state
I. The resultant temporal latent bottleneck state is then used to process the next chunk. The full
model is presented in Figure 1. We use a Transformer as the perceptual module in our experiments.
Thus our main contribution is introducing a temporal latent bottleneck into Transformers and show-
ing its advantages through a variety of experiments. We also present the detailed algorithm for the
proposed approach in Algorithm 1.

The proposed model is similar to a parallel work called Block Recurrent Transformers [37]. There
are few differences between our work and theirs. First, they use a sliding window attention, while

4

we divide the input into chunks. In their paper, they perform cross attention and self attention in
parallel while we find that doing them sequentially and performing cross attention once per R self
attention steps yields better results. We defer the rest of the discussion on related works to Appendix
Section 6

3 Experiments
Table 1: Image Classification. Here we com-
pare the performance of the proposed VIT + TLB
model against VIT and SWINV2 on CIFAR10
and CIFAR100 datasets for 64 × 64 images and
128 × 128 images. Note that the model is trained
only on the 64 × 64 sized images and then trans-
ferred to 128×128 sized images. Results averaged
across 3 seeds.

CIFAR10 CIFAR100
MODEL 64 × 64 128 × 128 64 × 64 128 × 128

VIT 93.75 73.18 69.53 47.4
SWIN V2 97.66 84.9 79.95 58.59

VIT + TLB 94.79 84.38 79.17 59.19

Our goal is to show the wide applicability and
benefits offered by the temporal latent bottle-
neck, which we refer to as TLB. We demon-
strate that the proposed model outperforms
competitive baselines across many domains in-
cluding vision, reinforcement learning, and nat-
ural language. Our main goal is to show
that the proposed approach has high expres-
sive power like Transformers while also being
sample efficient unlike Transformers. Thus our
main baselines are based on the original Trans-
former architecture. For example, we compare
against ViT [25] in image classification, Deci-
sion Transformer [13] in Reinforcement Learning, and Vanilla Transformer in rest of the tasks. We
also compare against some representative baseline that offer some of the key properties that our
model offers. For example, we compare against state-of-the art Swin Transformer [50] which is a
strong baseline for image classification and is also hierarchical similar to the proposed model. We
also compare against Transformer LS [70] which also processes long-term and short-term informa-
tion using different attention streams. Furthermore, we also compare against Feedback Transformer
[26], which also introduces top-down communication into Transformers. Another key point of the
proposed model is that any position cannot attend to any information from the future beyond its
chunk since the temporal latent bottleneck only summarizes the past, not the future. Meanwhile, all
the baselines we consider have bidirectional context i.e. they can attend to all of the past and the
future. We observe that despite this limitation, the proposed model outperforms all the considered
baselines.

3.1 Temporal Latent Bottleneck For Perception

Table 2: Here we show the performance of the
proposed ViT + TLB model against two baselines
- One with no access to the past and One with no
top-down information (i.e. high level to low level
communication). We can see that the model suf-
fers a drop in performance for both the baseline
thus showing the importance of past information
and top-down communication. Results averaged
across 3 seeds.

CIFAR10
MODEL PAST TOP 64 × 64 128 × 128

INFO DOWN

VIT + TLB X X 94.79 84.38
NO PAST INFO. × × 91.30 72.92

NO TOP-DOWN CONDN X × 93.75 83.59

Image Classification. Recently, Transformers
have been widely applied for visual perception
and have shown strong performance improve-
ments over CNNs in tasks such as image clas-
sification, semantic segmentation, instance seg-
mentation, etc. In this work we focus on image
classification using Transformers. For a model
to do well on image classification, it should
learn to only focus on the relevant information
and ignore other details (eg. background infor-
mation). Self attention does not inherently have
this inductive bias of ignoring irrelevant infor-
mation since it models all pairwise interactions
between the inputs. We posit that adding a lim-
ited bandwidth temporal latent bottleneck into
the Transformer will allow the model to focus only on the most important information in the image
which should enable the model to perform well.

Results. We test our hypothesis on the CIFAR10 and CIFAR100 [47] image classification datasets.
We also test the generalization abilities of the models by comparing their performance on images of
higher resolution (128× 128) than seen during training (64× 64). We use ViT [25] and Swin Trans-
former V2 (denoted as Swin V2) [50] as our baselines. Swin Transformer V2 has a key strength of
generalizing to higher resolution images than those seen during training, making it a strong baseline.
The input image is split into patches of size 4 × 4 and fed in rastor order to all the models. For the
proposed model we use ViT as the perceptual module and add a temporal latent bottleneck module

5

to it. We call this model VIT + TLB. To predict the classification scores, we take the mean across
the final temporal latent bottleneck state vectors and pass the resulting representation through an
MLP. We present the results for this experiment in table 1. We can see that VIT + TLB outperforms
VIT for all cases and performs competitively to Swin Transformer V2. For further hyperparameter
details, we refer the reader to Appendix section 7.1.

Figure 2: We want to analyze the in-
formation which is being used to influ-
ence the processing of Temporal Latent
Bottleneck. To calculate this, we cal-
culate the attention scores for different
patches and we mask out all the patches
that are not in the top 30% of the atten-
tion scores. We can see that for both
the images it recovers the foreground al-
most perfectly which shows it learns to
focus on the most important information
required to solve the downstream task.

Quantitative Analysis. One essential component of our
model is top-down conditioning. Top down information
helps in integrating information from the past as well as
high-level information into the perceptual module. We
hypothesize that both these kinds of information are im-
portant for the model to perform well. To test this, we
design two baselines - (1) VIT + TLB (NO PAST INFO):
In this baseline, we do not allow the TLB to communicate
to the perceptual module, therefore the perceptual mod-
ule has no information about the past; (2) VIT + TLB
(NO TOP-DOWN CONDN): In this baseline, we have a
separate temporal latent bottleneck module at every layer,
therefore the perceptual module has access to past infor-
mation but does not have access to any high-level infor-
mation through top-down feedback. We show the results
for this ablation in Table 2. We can see that the perfor-
mance of both the baselines is worse than the proposed
VIT + TLB model. This shows that both high-level infor-
mation through top-down feedback and information from
the past is important for the model to perform well.

Qualitative Analysis. To get a better understanding of
what the temporal latent bottleneck is doing, we visualize the parts of the image where the temporal
latent bottleneck pays most attention while it is being updated by the perceptual module. We present
this visualization in Figure 2. We can see that the temporal latent bottleneck learns to pay the
most attention to the foreground in each case. This further confirms our hypothesis that the limited
capacity bottleneck focuses on the most important information required to solve the downstream
task.

Figure 3: Self Supervised Learning Results of
linear probing on the CIFAR 10 dataset for models
pretrained on the STL 10 dataset. We can see that
the proposed SiT + TLB approach outperforms
SiT.

Self Supervised Learning. Many recent
works have used Vision Transformers for self-
supervised learning [8, 2, 32, 12, 49, 48]. Here
we show a proof-of-concept that introducing a
temporal latent bottleneck in Vision Transform-
ers results in better self-supervised representa-
tions. We consider the SiT model from [2] for
this experiment. They use 3 objectives to pre-
train their model - (1) The Reconstruction Ob-
jective - Reconstructs the input image, (2) The
Rotation Prediction Objective - Predicts the ro-
tation angle from [0◦, 90◦, 180◦, 270◦], and (3)
The Constrastive Objective (similar to SimCLR
[14]). For the proposed approach, we introduce
a temporal latent bottleneck into SiT resulting
in the SiT + TLB model. SiT also uses addi-
tional trainable contrastive and rotation tokens
as input for calculating the contrastive and rota-
tion objectives respectively. For SiT + TLB, we
take the mean across the temporal latent bottleneck state vectors and use the resulting representation
for computing the rotation and contrastive objectives. We use a chunk length of 20 for the SiT +
TLB model. We pretrain the model for 400 epochs and evaluate the pretrained model at different
epochs using linear probing.

Results. To evaluate the model, we pretrain the model on the STL10 dataset [22] and evaluate
the learned representation using linear probing on the CIFAR10 dataset [47]. We present the re-

6

0 20000 40000 60000 80000 100000
Timesteps

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

BossLevel

0 10000 20000 30000 40000 50000
Timesteps

MultiTask
Transformer Transformer + TLB

Figure 4: Single Task BabyAI. (Left) Here we compare the performance of Transformer and Trans-
former + TLB on the BossLevel task from BabyAI. We can see that while both the models con-
verge to a similar success rate, Transformer + TLB converges faster than Transformer. Multi Task
BabyAI. (Right) Here we compare the performance of Transformer and Transformer + TLB on 8
tasks from the BabyAI suite of environments. A single model is trained for all the 8 tasks. We can
see that Transformer + TLB converges faster and achieves a better performance than Transformer.
sults for this experiment in Figure 3. We can see that the proposed approach outperforms SiT thus
showing the effectiveness of the proposed architecture for self-supervised learning. For additional
experimental results and details, we refer the reader to Appendix section 7.2.

3.2 Temporal Latent Bottleneck for Sequential Decision Making

Transformers have recently been used for sequential decision making in reinforcement learning tasks
such as Atari and BabyAI [13, 38]. These works deploy Transformers in the offline RL setting where
a large number of trajectories are available either through another trained agent or an expert agent.
The Transformer is trained as an autoregressive generative model that predicts actions conditioned
on the past context. We incorporate the temporal latent bottleneck module into the Transformer and
explore its benefits in the RL setting. We test the proposed model in the BabyAI [15] and Atari [9]
benchmarks. We describe our setups in detail below.

Instruction Based Decision Making: BabyAI. BabyAI [15] provides a suite of environments
where the agent has to carry out a given instruction in a partially-observable maze. These instruc-
tions include competencies such as going to an object in the maze, placing an object beside another
object in the maze, opening a door with a key, etc. Some environments in the benchmark contain
instructions that combine multiple competencies sequentially. For example, pick up a red ball and
open the door in front of you after you pick up the grey ball on your left and pick up a red box.
Each environment in Baby AI benchmark has a different type of instruction that tests a different
competency. The BossLevel is the most complicated environment that contains instructions from all
competencies. For more details regarding the various environments from the BabyAI benchmark,
we refer the reader to Appendix section 7.4.

We train our models with behavior cloning using expert trajectories from an oracle. For evaluation,
we test the model by directly deploying it in the environment. We report the success rate which mea-
sures whether the agent successfully carried out the given instruction or not. We use a Transformer
[61] as the baseline in these experiments. For the proposed model, we introduce a temporal latent
bottleneck into the Transformer-based perceptual module. For the baseline Transformer model, we
append the language instruction to the sequence of states allowing the model to attend to the lan-
guage instruction at each layer. For the proposed model, the language instruction is appended to
each chunk, allowing each chunk to attend to it.

Results. We consider two settings - Single task and Multi task. In the single task setting, we
evaluate the proposed approach on individual environments from the BabyAI benchmark while in
the multi-task setting we train a single model on 8 different environments.

Single Task. We present the results for BossLevel in Figure 4 (left) and present the results for
the other tasks in Appendix Figure 9. We can see that while Transformer and Transformer + TLB
achieve almost similar performance at convergence. However, Transformer + TLB is much more
sample efficient, converging much faster. We posit that the temporal latent bottleneck module pro-
hibits the model from paying attention to unnecessary information which allows it to converge faster.

7

Multi Task. We present the results for the multi task setting in Figure 4 (right). We train the model
on 8 environments - PutNext, Unlock, Synth, GoToSeq, SynthLoc, GoToImpUnlock, BossLevel.
We evaluate the model on the same 8 environments. We report the average success rate across 8
games. We can see that the Transformer + TLB model converges faster and also outperforms the
Transformer. We refer the reader to the appendix for more details regarding the model and training.

Table 3: Atari. Here we show that adding a tem-
poral latent bottleneck into decision Transformer
improves performance across various atari games.
Results are averaged across 10 seeds.

GAME DT DT + TLB
BREAKOUT 71.51±20.58 87.63±16.24

PONG 13.68±2.00 14.71±1.78

QBERT 3268±1773.07 5019.75±1647.13

SEAQUEST 1039.11±122.90 1248.22±86.62

Atari. [13] recently introduced the Decision
Transformer (DT) which learns to play various
games in the Atari benchmark from suboptimal
trajectories of a learned agent. Decision Trans-
former models the offline RL problem as a con-
ditional sequence modelling task. The model
uses a causal mask and supervised training to
match the actions in the offline dataset condi-
tioned on the future expected returns and the
past history. This is done by feeding into the
model the states, actions, and the return-to-go
R̂c =

∑C
c′=c rc, where c denotes the timesteps. This results in the following trajectory repre-

sentation: τ =
(
R̂1, s1, a1, R̂2, s2, a2, R̂3, s3, a3, . . .

)
, where ac denotes the actions and sc de-

notes the states. At test time, the start state s1 and desired return R̂1 is fed into the model and
it autoregressively generates the rest of the trajectory. Experimental results show that DT can
leverage the strong generalization capabilities of Transformers and achieve the desired returns in
a wide variety of tasks in Atari and OpenAI Gym, outperforming previous approaches in offline RL.

Table 4: Long Range Dependencies. Here we
compare the performance of the proposed model
against the recently proposed long-short Trans-
former model [70] and the vanilla Transformer
model [61]. We can see that the proposed model
outperforms both the baselines thus showing the
superiority of the proposed model in modelling
long-range and hierarchical dependencies. Re-
sults averaged across 5 seeds.

MODEL LISTOPS TEXT
CLASSIFICATION

TRANSFORMER 37.64±0.0001 64.0±0.0001
TRANSFORMER LS 37.5±0.0002 65.5±0.0003

TRANSFORMER + TLB 38.2±0.0001 82.08±0.44

We use the same setup as used in [13] for
our experiments. We set the context length
to a fixed number C. During training, C
timesteps from an episode are sampled and fed
into the model resulting in a trajectory of length
3C (considering 3 modalities - returns-to-go,
states, and actions). Each modality is processed
into an embedding of size d. The state is pro-
cessed using a convolutional encoder into an
embedding of size d. The resulting trajectory
is fed into the decision Transformer. The out-
puts corresponding to the states sc are fed into
a linear layer to predict the action ac to be taken
at timestep c. For the proposed model, we in-
corporate a temporal latent bottleneck module
into the Decision Transformer.

Results. We present our results in Table 3. The
model is trained on 1% of the Atari DQN-replay dataset [1] (500K transitions for each game). We
use the same 4 games used in [13]: Pong, Seaquest, Qbert, and Breakout. We can see that the
proposed model outperforms Decision Transformer in all the considered games thus showing the
effectiveness of the proposed model. More details regarding the model and training can be found in
the appendix section 7.5.

3.3 Temporal Latent Bottleneck for Long Range Dependencies

Here, we test the effectiveness of the proposed model in modelling long range dependencies. We
apply the proposed model on the ListOps and text classification tasks from the Long Range Arena
(LRA) benchmark [60]. Both these tasks have very long sequences ranging from 1K to 4K tokens.
Thus, for a model to do well, it has to learn to capture dependencies across very long time scales.
Additionally, all these tasks have an inherent hierarchical structure. For example, Listops consists of
nested list operations which makes it hierarchical. For text classification, the inputs consist of text in
the form of bytes. Therefore, the model has to learn to compose bytes into characters and characters
into words. We hypothesize that the multi-scale hierarchical nature of the proposed model will be
extremely useful in modelling such hierarchical information.

8

Results. For this experiment, we use the same setup as[70]. For the proposed model, we use a
Transformer as the perceptual model and implement the temporal latent bottleneck as described
in Section 2.2. We take the mean across the temporal latent bottleneck state vectors and use the
resulting representation for classification. We compare the model against the long-short Transformer
(LS) model [70], which is a recently proposed model for the long range arena benchmark, and the
vanilla Transformer model [61]. We present the results in Table 4. We can see that the proposed
model outperforms both the baselines in both the tasks thus showing its usefulness in modeling long
range dependencies. For further details, we refer the reader to Appendix section 7.3.

0 20000 40000 60000 80000
Num. Samples

15

20

25

30

35

Ac
cu

ra
cy

Model
Transformer LS
Transformer +TLB

(a) ListOps

0 1000 2000 3000 4000 5000
Num. Training Steps

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Model
Transformer LS
Transformer + TLB

(b) Text Classification

Figure 5: (a) Here we show the performance on ListOps as
a function of the number of samples in the dataset. We do
only one pass over the entire data and find that Transformer
+TLB takes much fewer samples to converge as compared
to the baseline Transformer LS. (b) Here we show the con-
vergence curves of both the Transformer + TLB model and
the Transformer LS model on the text classification task. In
this case, we do not perform only one pass over the dataset
since we observe that both models do not reach convergence
in a single pass. Therefore, we report the number of train-
ing steps on the x-axis. We can see that the proposed model
achieves much higher score than the baseline.

In Fig. 5, we plot the convergence
curves for ListOps and Text Classifi-
cation. For ListOps (Figure 5(a)), we
plot the convergence curves against
the number of samples i.e. we do
only one pass over the dataset hence
the model does not see any exam-
ple more than once. We can see
that the proposed Transformer + TLB
model is much more sample effi-
cient than the baseline Transformer
LS model. For Text Classification
(Figure 5(b)), we plot the conver-
gence curves against the number of
training steps. We find that doing
only one pass over the dataset does
not work well for both the baseline
and the proposed model hence we
use number of training steps on the
x-axis. We can see that while ini-
tially both models converge at a simi-
lar pace, the proposed model achieves
a much higher performance.

Table 5: Text Classification - Performance Ab-
lation Here, we compare the wall-clock time and
memory during the training and inference phase
of the text classification task w.r.t baseline trans-
former model.

CHUNK 1000 100 40 20 10

SIZE

INFERENCE SPEED 3.5X 3.6X 3.3X 2.2X 1.2X

INFERENCE MEMORY 0.09X 0.08X 0.12X 0.08X 0.1X

TRAINING SPEED 4.4X 4.4X 2.2X 1.4X 0.7X

TRAINING MEMORY 0.14X 0.08X 0.49X 0.40X 0.42X

We measure the wall-clock time and memory
required for text classification task as we vary
the chunk size in Table 5. All TLB models have
an increased memory efficiency and supports
faster inference speeds with respect to the base-
line transformer model. The training speeds
also get better with increased chunking. The
only exception is very small chunk sizes, where
the training is slower than the baseline because
of increased temporal unrolling. However, as
shown in Figure 5, such models are very sample
efficient resulting in lesser training steps over-
all.

Analysis. Here we perform an ablation to show
that the Temporal Latent Bottleneck does not
only contain short-term information but also
summarizes information from long term past.
To test this hypothesis we design a baseline in which the current chunk attends to the previous few
chunks instead of attending to the temporal latent bottleneck. We find that this baseline achieves a
performance of 32.10±0.019% compared to the proposed models 38.2±0.0001% on the ListOps task.
This shows that the Temporal Latent Bottleneck contains information about the long-term past.
Additionally, here also we perform an experiment to probe the importance of top-down communi-
cation (i.e. high level to low level feedback). To do this we use the same Transformer + TLB (No
Top-Down Condn) baseline used in Table 2. We find that this baseline achieves a performance of
37.57±0.003% which is lower than the performance of the proposed Transformer + TLB model which

9

Figure 6: Copying Task. Here we com-
pare the performance of the proposed Trans-
former + TLB model to the Feedback Trans-
former model on the copying task. We can
see that the Transformer + TLB achieves per-
fect accuracy for all the studied sequence
lengths while the the performance of Feed-
back Transformer starts dropping after se-
quence length 400.

Sequence Feedback Transformer +
Length Transformer TLB

100 11800 6200
200 16600 9100
300 35100 12700
400 NA 14600
500 NA 13600
600 NA 19300

Table 6: Copying Sample Efficiency Abla-
tion. Here we present the number of unique
samples required for the models to reach to
perfect accuracy on the copying task. NA
indicates that the model does not reach per-
fect accuracy. We can see that in all cases
the Transformer + TLB model is more sam-
ple efficient than the Feedback Transformer
model.

achieves 38.2±0.0001% which further shows that top-down information from high-level to low-level
is important for the model to perform well.

We perform additional experiments to give us more insight into the behavior of the proposed model.
We present these experiments in Appendix Section 7.3. We also compare the model to additional
efficient transformer baselines for all LRA tasks in Appendix Table 9.

Temporal Latent Bottleneck for Copying Task. Here, we study the copying task used in [36]. In
the copying task, the model receives a sequence of 10 digits followed by blank inputs for a large
number of steps, and then the model is asked to output the sequence of digits it received initially.
Therefore, the model has to remember the original sequence of digits across long time scales. We
can control the sequence length of this task by controlling the length of the blank input.

The main motive behind studying this task is comparing the model to the Feedback Transformer
model introduced in [26] which also has top-down attention similar to the proposed model but does
not represent information at multiple scales. We compare both the models on the copying task
for sequence lengths 100, 200, 300, 400, 500, and 600. We present the results for this task in
Figure 6. We can see that while both Transformer + TLB and Feedback Transform perform well for
low sequence lengths, the performance of Feedback Transformer drops for longer sequence lengths
above 400 while the proposed Transformer + TLB model still achieves perfect accuracy at long
sequence lengths. We also compare the sample efficiencies to achieve perfect accuracy for both the
models. We present this result in Table 6. We can see that the proposed Transformer + TLB is more
sample effecient than the baseline Feedback Transformer achieving perfect accuracy in much lesser
number of samples in each case. For further details we refer the reader to Appendix Section 7.6.

4 Conclusion
We have developed an approach aimed at introducing selectivity in the interactions across time-steps
in a transformer by splitting processing into two streams: (a) a slow stream that is updated in a recur-
rent manner and (b) a fast stream that processes the visual input. The two streams are parameterized
independently and interact with each other via attentional bottleneck. The information processed by
the fast stream is used to change the state of the slow stream, and the information in the slow stream
is used by the fast stream as contextual information to process the input. Through our experiments
we show that the proposed approach works well across wide range of domains and problems. One
limitation of the proposed model is that the chunk size is fixed and treated as a hyperparameter which
requires some domain knowledge. Future work should explore methods for dynamic chunking.

5 Acknowledgement

The authors would like to thank Compute Canada for providing the computational resources used in
this project. The authors also gratefully acknowledge the funding from Samsung, IBM and CIFAR.

10

References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. Striving for simplicity in off-

policy deep reinforcement learning. CoRR, abs/1907.04543, 2019.

[2] Sara Atito Ali Ahmed, Muhammad Awais, and Josef Kittler. Sit: Self-supervised vision trans-
former. CoRR, abs/2104.03602, 2021.

[3] Richard C Atkinson and Richard M Shiffrin. The control of short-term memory. Scientific
american, 225(2):82–91, 1971.

[4] Emanuel Averbach and Abner S Coriell. Short-term memory in vision. The Bell System
Technical Journal, 40(1):309–328, 1961.

[5] Jimmy Ba, Geoffrey E. Hinton, Volodymyr Mnih, Joel Z. Leibo, and Catalin Ionescu. Us-
ing fast weights to attend to the recent past. In Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 4331–4339, 2016.

[6] Alan Baddeley, Vivien Lewis, Margery Eldridge, and Neil Thomson. Attention and retrieval
from long-term memory. Journal of Experimental Psychology: General, 113(4):518, 1984.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2015.

[8] Hangbo Bao, Li Dong, and Furu Wei. Beit: BERT pre-training of image transformers. CoRR,
abs/2106.08254, 2021.

[9] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012.

[10] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document trans-
former. CoRR, abs/2004.05150, 2020.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. CoRR, abs/2005.14165, 2020.

[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. CoRR,
abs/2104.14294, 2021.

[13] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. CoRR, abs/2106.01345, 2021.

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple frame-
work for contrastive learning of visual representations. CoRR, abs/2002.05709, 2020.

[15] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Sa-
haria, Thien Huu Nguyen, and Yoshua Bengio. Babyai: First steps towards grounded language
learning with a human in the loop. CoRR, abs/1810.08272, 2018.

[16] Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Sa-
haria, Thien Huu Nguyen, and Yoshua Bengio. Babyai: First steps towards grounded language
learning with a human in the loop. CoRR, abs/1810.08272, 2018.

[17] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509, 2019.

11

[18] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statisti-
cal machine translation. CoRR, abs/1406.1078, 2014.

[19] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Be-
langer, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. CoRR,
abs/2009.14794, 2020.

[20] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson,
Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier
Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David
Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shiv-
ani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie
Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm:
Scaling language modeling with pathways, 2022.

[21] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural
networks. CoRR, abs/1609.01704, 2016.

[22] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Geoffrey Gordon, David Dunson, and Miroslav Dudı́k, editors, Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
volume 15 of Proceedings of Machine Learning Research, pages 215–223, Fort Lauderdale,
FL, USA, 11–13 Apr 2011. PMLR.

[23] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,
abs/1901.02860, 2019.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020.

[26] Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Ad-
dressing some limitations of transformers with feedback memory, 2021.

[27] Alexandre Galashov, Siddhant M Jayakumar, Leonard Hasenclever, Dhruva Tirumala,
Jonathan Schwarz, Guillaume Desjardins, Wojciech M Czarnecki, Yee Whye Teh, Razvan
Pascanu, and Nicolas Heess. Information asymmetry in kl-regularized rl. arXiv preprint
arXiv:1905.01240, 2019.

[28] Philip Goelet, Vincent F Castellucci, Samuel Schacher, and Eric R Kandel. The long and the
short of long–term memory—a molecular framework. Nature, 322(6078):419–422, 1986.

[29] Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim
Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, and Yoshua Bengio. Coordina-
tion among neural modules through a shared global workspace. CoRR, abs/2103.01197, 2021.

[30] Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the
information bottleneck. arXiv preprint arXiv:1901.10902, 2019.

12

[31] Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Ben-
gio, and Bernhard Schölkopf. Recurrent independent mechanisms. CoRR, abs/1909.10893,
2019.

[32] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick.
Masked autoencoders are scalable vision learners. CoRR, abs/2111.06377, 2021.

[33] Salah Hihi and Yoshua Bengio. Hierarchical recurrent neural networks for long-term depen-
dencies. In D. Touretzky, M. C. Mozer, and M. Hasselmo, editors, Advances in Neural Infor-
mation Processing Systems, volume 8. MIT Press, 1995.

[34] Felix Hill, Olivier Tieleman, Tamara Von Glehn, Nathaniel Wong, Hamza Merzic, and Stephen
Clark. Grounded language learning fast and slow. arXiv preprint arXiv:2009.01719, 2020.

[35] Geoffrey E. Hinton and David C. Plaut. Using fast weights to deblur old memories. In IN
PROCEEDINGS OF THE 9TH ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE
SOCIETY, pages 177–186. Erlbaum, 1987.

[36] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997.

[37] DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam Neyshabur. Block-
recurrent transformers, 2022.

[38] Donald Joseph Hejna III, Pieter Abbeel, and Lerrel Pinto. Improving long-horizon imitation
through language prediction, 2022.

[39] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao
Carreira. Perceiver: General perception with iterative attention, 2021.

[40] Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence
modeling problem. CoRR, abs/2106.02039, 2021.

[41] Annette Jeneson and Larry R Squire. Working memory, long-term memory, and medial tem-
poral lobe function. Learning & memory, 19(1):15–25, 2012.

[42] John Jonides, Richard L Lewis, Derek Evan Nee, Cindy A Lustig, Marc G Berman, and Kather-
ine Sledge Moore. The mind and brain of short-term memory. Annu. Rev. Psychol., 59:193–
224, 2008.

[43] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. CoRR, abs/2006.16236, 2020.

[44] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
CoRR, abs/2001.04451, 2020.

[45] Janet L Kolodner. Maintaining organization in a dynamic long-term memory. Cognitive sci-
ence, 7(4):243–280, 1983.

[46] Jan Koutnı́k, Klaus Greff, Faustino J. Gomez, and Jürgen Schmidhuber. A clockwork RNN.
CoRR, abs/1402.3511, 2014.

[47] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

[48] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai, Lu Yuan, and
Jianfeng Gao. Efficient self-supervised vision transformers for representation learning. CoRR,
abs/2106.09785, 2021.

[49] Zhaowen Li, Zhiyang Chen, Fan Yang, Wei Li, Yousong Zhu, Chaoyang Zhao, Rui Deng,
Liwei Wu, Rui Zhao, Ming Tang, and Jinqiao Wang. MST: masked self-supervised transformer
for visual representation. CoRR, abs/2106.05656, 2021.

13

[50] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao,
Zheng Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer V2: scaling up capacity
and resolution. CoRR, abs/2111.09883, 2021.

[51] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Bain-
ing Guo. Swin transformer: Hierarchical vision transformer using shifted windows. CoRR,
abs/2103.14030, 2021.

[52] Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan, Guillaume La-
joie, Michael Mozer, and Yoshua Bengio. Learning to combine top-down and bottom-up sig-
nals in recurrent neural networks with attention over modules. CoRR, abs/2006.16981, 2020.

[53] Michael C Mozer. Induction of multiscale temporal structure. In J. Moody, S. Hanson, and R. P.
Lippmann, editors, Advances in Neural Information Processing Systems, volume 4. Morgan-
Kaufmann, 1991.

[54] Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018.

[55] Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford,
Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driess-
che, Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl,
Sumanth Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya,
David Budden, Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena
Martens, Xiang Lorraine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya,
Domenic Donato, Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen,
Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir
Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James
Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger, Iason Gabriel, William Isaac,
Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff
Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scal-
ing language models: Methods, analysis; insights from training gopher, 2021.

[56] Jürgen Schmidhuber. Neural sequence chunkers. Technical report, 1991.

[57] M. Schuster and K.K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

[58] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. CoRR, abs/2005.00743, 2020.

[59] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention.
CoRR, abs/2002.11296, 2020.

[60] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. CoRR, abs/2011.04006, 2020.

[61] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[62] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. CoRR, abs/2006.04768, 2020.

[63] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. CoRR, abs/2102.12122, 2021.

[64] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang.
Cvt: Introducing convolutions to vision transformers. CoRR, abs/2103.15808, 2021.

14

[65] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan, and Jian-
feng Gao. Focal self-attention for local-global interactions in vision transformers. CoRR,
abs/2107.00641, 2021.

[66] Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating
convolution designs into visual transformers. CoRR, abs/2103.11816, 2021.

[67] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. CoRR, abs/2007.14062, 2020.

[68] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu Yuan, Lei Zhang, and Jianfeng
Gao. Multi-scale vision longformer: A new vision transformer for high-resolution image en-
coding. CoRR, abs/2103.15358, 2021.

[69] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

[70] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandku-
mar, and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and
vision. CoRR, abs/2107.02192, 2021.

Checklist

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Appendix Section 7

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] All the datasets we use are openly

available
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

15

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A] The datasets we use do not contain any sensitive in-
formation.

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

	Introduction
	Methodology
	Desiderata for Fast and Slow Streams of Processing
	Computational Steps

	Experiments
	Temporal Latent Bottleneck For Perception
	Temporal Latent Bottleneck for Sequential Decision Making
	Temporal Latent Bottleneck for Long Range Dependencies

	Conclusion
	Acknowledgement

