Table 1: Probability mass functions and cumulative distributions of integer-valued stochastic programs,
where z is assumed in the domain of X (p).

X (p) Parameter P(X(p) = z) P(X(p) < x) 0pP(X(p) <)
Ber(p)  Probability px+ (1—-p)(1—-2) (1—p)+pz x—1

Geo(p) Probability p(1—p)* 1—(1-p)* (1l —p)r!
Pois(p) Rate p®/(ePx!) Sheoe PpR /Kl —pttL/(eP(x + 1))

In the supplement, we:

* provide a number of examples of stochastic derivatives and present hand-worked examples
of how they compose (Appendix [A)),

* prove our formal statements regarding stochastic derivatives (Appendix [B)),

* provide an introduction to the particle filter methodology, and show how smoothed stochastic
derivatives leads to unbiased differentiation of the resampling step (Appendix [C)),

* provide details about the hardware used for the experiments of the main text and the software
dependencies of StochasticAD. j1 (Appendix D).

A Examples of stochastic derivatives

In this section, we present examples of stochastic derivatives for a number of stochastic programs.

Example A.1 (Integer-valued stochastic programs). The Bernoulli, Binomial, Geometric, and Poisson
distributions are all discrete, and in fact (nonnegative) integer-valued. Suppose X (p) follows one
of these distributions, parameterized using the inversion method [31]] over the interval [0, 1]. We
present a worked derivation of the stochastic derivative of X (p), following the construction used in
Theorem 2.4

We construct a stochastic derivative (§,w,Y") at input p satisfying Definition Since X (p) is
parameterized via the inversion method, dX (¢) € {—1,0, 1} for small enough e. Thus, for small
enough ¢, the conditional distribution of d X (¢) given X (p) = x is:

P(X(p+e)=z+1and X(p) = x)

PX(e)=1|X(p)=2)= X () = 2) , (A1)
PdX(e)=-1|X(p)=x)= PX(p + 5)P(;(p) 1:&;; Xp) = x), (A.2)

and dX (¢) = 0 otherwise. According to the inversion method, X (p)(w) = x for w between
P(X(p) < x—1)and P(X(p) < x). Taking the derivative of the above quantities as e — 0 therefore
yields:

P(dX(e) = 1] X(p) = x)

w4 = ling - : (A3)
dp(X(p) <z
- d;()(((lgf):_m) li P00 <) <o), (A4)
and
w_ o= lim P(dX(e) = —61 | X(p) = x)’ AS)
LP(X(p) <z 1)
=5 P(X(p) = 7) e 0,P(X(p) <z —1) >0}, (A.6)

where the ¢ included on the right hand sides is an abuse of notation to express their dependence
on the direction of the limit, and 1{C'} = 1;¢; for a condition C. By the differentiability of
P(dX (e) # 0), dX (¢)/e almost surely approaches 0, so 6 = 0. A simple choice for the bound B
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Table 2: Stochastic derivatives of integer-valued stochastic programs
Conditionally on X (p) = x

X(p) w— w4

Ber(p) —1/p-1{x =1ande < 0} 1/(1=p)-1{x =0ande > 0}
Bin(n,p) —z/p-1{z >0ande < 0} (n—2z)/(1—p)-1{z <nande > 0}
Geo(p) x/(p(l=p))-1{x >0ande >0} —(z+1)/p-1{e <0}

Pois(p) —z/p-1{x > 0and e < 0} 1{e > 0}

€ {—1,1}. We may now form w as the almost sure limit
of P (A B(e) €= X(p)) and Y as the limit of the conditional distribution
of X (p) + dX (e) given X (p) and dX (¢) # 0. By the above, w is given conditionally on X (p) = =
as

w=wy +w_, (A7)

while the probability distribution of Y is given conditionally on X (p) = x as

w4

NY:m—1uwm:xy:a£%l? (A.9)

Table[Z]lists the weights w and w_ for the Bernoulli, Binomial, Poisson, and Geometric distributions,
derived using the parameterizations given in Table[T] Using w and w_, we can easily express w and
Y as above. Note that w, and w_ for a Binomial variable X (p) ~ Bin(n, p) may be derived via
representation as the sum of Bernoulli variables, with the primal evaluation X (p) = x corresponding
to the sum of x Bernoulli successes and n — = Bernoulli failures.

The stochastic derivative for a Binomial variable Bin(n, p) has weight w of order n and Y determin-
istically either 1 or —1 depending on the chosen direction of the derivative. Therefore, the derivative
estimator w(Y — X (p)) has variance of order n. In contrast, the score method gives an estimator

X(p)(X(p) — np)
p(1—p)

(A.10)

which is also unbiased, but its variance

ﬁlfp+0m% (A11)

is growing with cubic rate in n.

Example A.2 (Differentiably parameterized continuous stochastic programs). For continuous stochas-
tic programs, our method reduces to the standard reparameterization trick. Specifically, for a differen-
tiably parameterized continuous stochastic program X (p), the stochastic derivative w.r.t a parameter
p of the distribution has the form (4,0, 0). To satisfy Definition a natural choice of bound is
B = |0] + 1, so that A% (e) = {|dX (¢)| < €|d| + e} simply requires that the higher-order correction
to the derivative linearization be smaller than € when applied at a point at distance € from p.

For instance, the stochastic derivative of X (p) ~ Exp(p) w.r.t. p, the scale of the Exponential

distribution, is
({Q@ (A.12)
p

conditionally on X (p) = x. Such rules are already implemented in the Julia AD ecosystem in
Distributions.jl [1] and DistributionsAD. j1 [2], and may be used without modification as
the continuous case is a special case of our formalism.

Example A3 (Categorical variable).  Consider a categorical variable
Categorical, (p1, p2, ps, - - -, Pn) assuming fixed outputs a = aq,aq,...,a, with probabil-
ities p1,p2,P3,--.,Pn > 0. Assume that pi,po,ps,...,p, implicitly depend on a single
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parameter p, to fit our definition of stochastic derivative w.r.t. a single parameter, and let
X(p) ~ Ca‘tegorica‘la(plvp27p37 oo 7pn)~

Suppose X (p) is parameterized via the inversion method with outputs ordered as aq, as, . .. a,.
Similar logic to Example[A.1] then yields that its stochastic derivative is of the form (0, w,Y") with
Y € {az—1,a241},and

w-P(Y:azH):er:M-1{5~Zappi<0}, (A.13)
Pz i=1

—1

’Zle Oppi

wo =+—
Pz

w-P(YZCLl-_l):

x—1
~1{€'Zappi>0}. (A.14)
=1

In theory, a;, aq, . .., a, can be arbitrary discrete objects such as arrays or strings, as the categorical
variable could represent an intermediate value of the program that is ultimately converted into a
number. (Interpreted strictly, our formalism requires an embedding into Euclidean space; one can
imagine a trivial embedding a; + ¢ which is then provided to a learned embedding.) In handling
such cases, one must be careful to speak in terms of alfernate outputs rather than perturbations to the
output. Our formalism of stochastic derivatives can already accommodate this idea, as Y takes on the
alternate values rather than the values of the perturbations.

We now consider some general stochastic programs. Their stochastic derivatives arise automatically
from composition and need not be hand-derived, but we do so to illustrate Theorem [2.6]

Example A.4 (Bernoulli plus Exponential). Consider the program

Xi1(p) ~ Ber(p), (A.15)
Xa(p) ~ Exp(p), (A.16)
X(p) = X1(p) + Xa(p) ~ Ber(p) + Exp(p). (A.17)

Then, X (p) has right (left) stochastic derivative,
(“,wl,n) (A.18)
p

conditionally on X;(p) = x; and X2(p) = x2, where w; and Y} are given conditionally on the
Bernoulli output X (p) = x4 fore > 0 (¢ < 0) by Table[2]

Example A.5 (Cubing a geometric). Consider the program

X1(p) ~ Geo(p), (A.19)
X(p) = X1(p)*. (A.20)

We know from Example that X (p) has right (left) stochastic derivative (0, w1, Y7) with w;
and Y, given by Table2|for £ > 0 (¢ < 0). In particular, ¥; € {z; — 1,21 + 1} conditionally on
X1(p) = x;. Thus, intuitively, when propagating through the cube function we only care about
the discretely spaced alternate values (z; — 1)® and (21 + 1)3; the conventional derivative 327 is
irrelevant as the input to the cube function is integer-valued. Indeed, by Theorem [2.6|the stochastic
derivative of X (p) reads

(0w, Y7), (A21)
where Y2 € {(xq —1)3, (z; +1)3}.
Example A.6 (Parameter-scaled Bernoulli). Consider the program,

Xi(p) ~ Ber(p), (A.22)
X(p) =p- X1(p). (A.23)

By Theorem 2.6] the stochastic derivative of X (p) reads,
(X1(p), w1, pY1), (A.24)

where w; and Y7 are given for X (p) by Table
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Example A.7 (Two-step random walk). Consider the program,

Xi1(p) ~ Ber(p), (A.25)
Ber(p) ifz1=0

Xofan) ~ {Ber(Qp) ifz; =1. (A-26)

X(p) = X1(p) + (X2 0 X1)(p). (A.27)

This represents a two-step random walk, where there is a transition 0 — 1 with probability p, a
transition 1 — 2 with probability 2p, and self loops otherwise. In this example, let us focus on a
particular primal evaluation where X (p) = 0 and X5 (X (p)) = 0, so that X (p) = 0, and consider
only the right stochastic derivative for simplicity. Conditionally on X (p) = 0, X;(p) has a right
stochastic derivative (d1, w1, Y1) given by

1
(0, . 1) , (A.28)
L—p
using Table 2| Similarly, conditionally on X2(X;(p)) = X2(0) = 0, X5 has right stochastic
derivative (02, wo, Y3) given by
1
(0, —_, 1> . (A.29)
L=p

Let us now turn our attention to the stacked program [ X (p); (X2 o X1)(p)]. By Theorem the
stacked program has right stochastic derivative (0, w, Y12) where conditionally on X (p) = 0 and
X2(0) =0,
Vi, - {[1; X5(1)]  with probability  1/2,
[0;1] with probability 1/2,
and w = %. Note that conditionally on X5(0) = 0, X2(1) has a chance
a f’fp chance of flipping to 1, so that the first case expands into two events

(A.30)

1 2p of also being 0, but

[1;1]  with probability 52—,
Yio = {[1;0] withprobability 5725y, (A31)

[0;1]  with probability 1/2.
Finally, the expression for X (p) may be thought of as a unary sum function operating on this stacked
program, with stochastic derivative (0, w, Y") where conditionally on X (p) = 0 and X5(0) =0
{2 with probability

Y =
1 with probability

2(1 p)’ (A.32)
1-2 .
T P) +1/2.

Finally, we present an example using smoothed stochastic derivatives to rederive a popular gradient
estimator.

Example A.8 (Recovering the straight-through gradient estimator of [6]). The straight-through
gradient estimator formally assigns a derivative of 1 to the hard-thresholding function HT = 1 ),

such that a Bernoulli variable Ber(p) ~ HT(p — U[0, 1]) is assigned a derivative of 1. Now, let 4,
and d g be the left and right smoothed stochastic derivatives of Ber(p). By Table|2|and Definition
for the right-sided (¢ > 0) case,
0r =1/(1—p) - Lz =0}, (A.33)
and for the left-sided (¢ < 0) case,
6, =1/p-1{z =1} (A.34)
By linearity of expectation applied to Definition any affine combination of 52 and 8; is also a
valid smoothed stochastic derivative. In particular,
1=(1~-p) 0L +p Or, (A.35)
is a valid smoothed stochastic derivative of a Bernoulli variable, which explains why the straight-
through estimator provides a low-bias estimate. Note that a constant-valued affine combination of

the left and right smoothed stochastic derivatives is not possible in general, e.g. it is not possible for
Geometric and Poisson random variables, in which cases smoothed stochastic derivatives generalize

the straight-through estimator (mixing 5, r and 5, 1, may still be useful in these cases to reduce bias.)
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B Proofs

B.1 Preliminaries

Recall from the main text,

Deﬁnition A stochastic program X (p) is a stochastic process with values in a Euclidean space
E, whose index set I is either an open subset of a Euclidean space or a closed real interval.

Throughout the formalism, we let X (p) denote such a stochastic program, where I = [a,b] C Ris a
closed interval. As noted in the main text, it is sufficient to consider this case because sensitivities of
stochastic programs Z with more general index sets can be understood for an input u by studying
at p = 0 the directional perturbation X (p) = Z(u + pv) in a direction v, where X (p) is then a
stochastic program with index set a closed interval containing 0.

As in the main text, we use the shorthand
dX(e)=X(p+e)— X(p). (B.1)

A number of statements and propositions have identical forms for right and left stochastic derivatives,
only differing in the direction of the limits. To accomodate this, we often use the notation £ — 0/~
to indicate that statements and proofs for right and left stochastic derivatives can both be read off by
choosing the appropriate side of the limit for all expressions, where objects such as w have different
definitions depending on the chosen reading ¢ — 0% ore — 0.

For clarity, we remark upon the (standard) notation,
W=E[U|V], (B.2)

where U and V are both random variables defined on a sample space (2. In this setting, W is itself
also a random variable defined on Q. In particular, for a particular sample w € Q, W(w) is the
conditional expectation E [U | V = V(w)]. In the language of o-algebras, E [U | V] is equivalent to
E[U | o(V)], where (V) is the sub-o-algebra generated by V.

B.2 Unbiasedness of stochastic derivatives

We first prove a general result regarding when a class of events A(e) allows for the pathwise gradient
estimator § to be applied when the probability space is restricted to A¢(e).

Proposition B.1. Suppose dX (¢)/c — 6 almost surely, and |dX (¢)| < B|e| holds given the event
A¢(e), where B > |0| is integrable. Then, for any function f: E — R with bounded derivative,

im e [[&X@+e) — f(X(p)

e—0+/— 15

Lac(e)

X(pﬂ CEF(XG)S| XM B3

Proof. Since dX (¢)/e — ¢ almost surely and B > ||, |[dX (¢)| < Ble| holds almost surely as
€ — 0. S0 1 4¢(,) — 1 almost surely as € — 0. By the chain rule,

f(X(p+e) - f(X(p)
9

Lace) = (X (p))o. (B.4)
almost surely as ¢ — 07/~ Furthermore,

fX(p+e)) = [(X(p)

€

1
Lace)| < ZIf llooldX (€)[Lace) (B.5)
< B||f'|lec =: G- (B.6)

By assumption EG < oo. The proposition follows by the dominated convergence theorem for
conditional expectations. O
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As in the main text, define
Ap(e) = {|dX (¢)| > Ble|} B.7)
and recall

Deﬁnition(Stochastic derivative). Suppose X (p) € FE is a stochastic program with index set I a
closed real interval. We say that the triple of random variables (§, w,Y"), withw € Rand Y € E, is
a right (left) stochastic derivative of X at the input p € I if dX (¢)/e — ¢ almost surely as ¢ — 0,
and there is an integrable random variable B > |d| such that for all bounded functions f: F — R
with bounded derivative it holds almost surely that

Efw(F(Y) - F(X() | X()] = lim E|LEETE) = JXP)

e—0+/— 5

Lage

X (p)] , 23

with limit taken from above (below), where P (Ap(g) | X (p)) /¢ is dominated by an integrable
random variable for all e > 0 (¢ < 0).

Using Proposition we may show that outside the event Ap (), the sensitivity is well-described
by the pathwise gradient estimator, allowing us to prove Proposition[2.3]

Proposition 2.3 (Unbiasedness). If (6, w,Y’) is a stochastic derivative of X (p) at p, it holds that

dE[pr(M] =E[6 +w(Y — X(p))]. &3

Proof. Let B be the associated bound. Since dX (¢)/e — ¢ almost surely as ¢ — 0 and A% (e)
implies dX (¢)/e < Be, Proposition[B.1|applied to Ap(e) with f as identity implies

E[X(erE)X(p)

lim
e—0+/—

while Eq. (2.4) of Definition[2.2]also applied with f as identity gives

. Lag ()

X@]Haxwm (B.5)

lim E [X(pﬂg —X0y X(p)] =E(Y -X@) | XE)]. B9
Summing Eq. (B.8) and Eq. (B.9), we have
i & [ XD x| e w0 - X0) [ XG), @10

and applying the tower property of conditional expectations, we obtain

dE[fp(M] =, m E [X(p - Ei - X(p)} =E[f+w(Y - X(p))] =E[X(p)],  (B.1D)
as desired. 0

B.3 Construction of stochastic derivatives for elementary programs

We now give a technical condition under which a stochastic derivative can be constructed for
an elementary stochastic program, in which we characterize w as the derivative of the conditional
probability of Ap(e) given X (p), and Y as realization of the weak limit of the conditional distribution
of X(p + ¢) given X (p) and Ap(e).

Assumption B.2. We assume that X (p) is almost surely differentiable, so that d X (¢) /e — ¢ almost
surely as € — O for some §, and that we may find an integrable random bound B > |d| such that

* for the quantity
w(e) =P (Ap(e) | X(p), (B.12)
w(e) /e is dominated in € by an integrable random variable and converges almost surely to a
random variable w as ¢ — 01/~

19



* the conditional distribution of X (p + ¢) given X (p) and Ag(e) converges in distribution to
the distribution of a random variable Y as ¢ — 01/~. Specifically, Y must satisfy

Efw- f(V) | X(p)] = lm Efw: f(X(p+9) | X(p).Ap()]  (B13)
for all bounded continuous functions f: £ — R.

Given Assumption we may construct a stochastic derivative for X (p).

Theorem Given a stochastic program X (p) satisfying Assumption there exists a right
stochastic derivative (6, wg, Yg) with wg > 0 at any p € [a,b) and a left stochastic derivative
(6,wr,Yr) withwyp < 0atany p € (a,b].

Proof. Construct (0, w,Y") via Assumption (taking the limit from above for the case of right
stochastic derivatives, and the limit from below for the case of left stochastic derivatives). For
bounded f with bounded derivative, write

£ [f(X(p+€)) — f(X(p)

3

Lag(e)

B

X (p)] (B.14)

— & [w 7000+ ) - 1) 2222 | x)]

w(e)

cE (M w) g - o) 29 x| mas)

3

Note that E[14, ) | X(»)] = P(Ap(e) | X(p)) = w(e). Thus, as e — 07/~ the first term
approaches

E[w(f(X(p+e)>—f( 1AB(E ‘X ] (B.16)
=Ew(f(X(p+e) - f(X )) | X(p), Ap(e)] (B.17)
= Elw (f(Y) - f(X(p))) | X(p)} (B.18)

by Assumption[B.2] Now, using the X (p)-measurability of w(e) and w, we may bound the magnitude
of the second term as

(M - 0) o+ o) - sxom 222 | x| ®.19)
<l | - |- £ | 2229 x| ®.20)
=2 fl|oc - ’w(g) ~wl, (B21)

which approaches 0 almost surely as ¢ — 01/~ by the almost sure convergence of w(e) /s to w.
Thus,

Efw(f(¥) — f(X(p) | X(p)] = lim E [

e—0+/—

f(X(p+e)) - f(X(p)

€

1age)

X(p)] . (B.22)

Additionally, P (Ag(e) | X(p)) /e is dominated in £ by an integrable random variable and
dX(e)/e — ¢ almost surely by assumption. So (d,w,Y) is a stochastic derivative of X at p.
Finally, note that w(g)/e > 0 for e > 0 while w(e)/e < 0 for ¢ < 0, by the non-negativity of w(e).
So applying Assumption with limits from above for p € [a, b) indeed produces a right stochastic
derivative, while applying Assumption with limits from below for p € (a, b] produces a left
stochastic derivative. O

B.4 Composition of stochastic derivatives

We now provide a proof of the chain rule for stochastic derivatives.
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Theorem (Chain rule). Consider independent stochastic programs X; and X5 and their com-
position X5 o X;. Suppose that X; has a right (left) stochastic derivative at p € R given by
(61, w1,Y7) with bound B;, and X, has a right stochastic derivative (d2,ws,Y2) in the direc-
tior!| 8, = & /01| with bound Bs given conditionally on its input X (p), where with dX5(v) =
X2(X1(p) + v) — X2(X1(p)) the event

Ay(e) = {|dXy(v)| > Ba|v| for some v satisfying |v| < £} (B.23)

has P (gg (e) ‘ X1(p), X2 (p)) /€ dominated in € by an integrable random variable W, and d X»(v)

is almost surely differentiable with respect to v. Then, if By By and |6;|W are integrable, the
stacked program [X7; X5 o X] has a right (left) stochastic derivative at p given by (8, w,Y") where
§ = [61;]61]d2],

. - w1
Y1; Xo (Y5 with probabilit _
[Y1; X2(Y1)] p Y o T 0o

Yy = 161w 2.7)
X1(p);Ya]  with probability — -2
[X1(p); Yo p Yot

and w = wy + |01 |we, with associated bound B = B; + By Bs.

Proof. We prove the case of right stochastic derivatives, as the case of left stochastic derivatives is
analogous. Let X = X5 o X as a shorthand. Now, for ¢ > 0 consider the events

Ai(e) = {|dX1(g)| > Bie}, (B.24)
AQ(E) = {|dX2(E(51)| > |51|B2€}, (B.25)
A(e) = {|JdX (¢)| > B1Bse). (B.26)

Intuitively, the events A (g), Aa(e), and A(e) represent large jumps in X1, X2, and X respectively.
Throughout the proof, we let f denote a bounded function with bounded derivative.

Step 1: The composed program is almost surely differentiable.

Since X1(p) and dX5(v) are almost surely differentiable, the chain rule implies that X (p) =
X2(X1(p)) is almost surely differentiable, with derivative |6 |02, i.e. dX(g)/e — |d1|02 almost
surely as ¢ — 0. Additionally, the directional perturbation ¢ — X5(X7(p) + €d1) is also almost
surely differentiable by the almost-sure differentiability of X (p) and the definition of d2, with the
same derivative |01 |d2.

Step 2: No large jump in X; or X, implies no large jump in X.

Given AS () and A5(]6y]), we have
[dX(e)] = [dX2(dX: ()] (B.27)
< B1Bse, (B.28)

which implies A°(¢). We now remark that A, (|6, |) and A, (¢) may be interchanged when consid-
ering the sensitivity of the directional perturbation £ — Xo(X1(p) + €d1). To see this, note that

A5(elr]) € A5(e) = {|X2(Xa(p) + 261) — X (p)] < |51|Bae). (B.29)
Thus, since X (X7 (p)+ed7) is almost surely differentiable, we may apply the dominated convergence
argument of Proposition to both Ay(e) and Az (e|dy]), obtaining

= gli%ﬂ E[f'(Xa(X1(p))d2]01] | X1(p), X (p)] (B.31)

'when 6, = 0, we may choose d; arbitrarily, as d2, w2 and Y ultimately have no contribution to the
stochastic derivative in this case.
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By a similar argument, it holds that A;(¢) U Ay(e|6;|) may be interchanged with A(c) when
considering the sensitivity of Xo o X;. Specifically, since X2(X7(p)) is almost surely differentiable
and both A (e) N A5(g|d1]) and A5(e) bound |[dX ()| by By Bae, we may apply Propositionﬂfor
X = X5 o X to both event classes, obtaining

= sl_ighr E[f(X2(X1(p)))d2]01] | X1(p), X (p)] (B.34)

Step 3: A large jump in both X; and X5 has negligible probability.

Note that A; (¢) and Ay(|d|) are independent conditional on X (p). Therefore, in the limit, we
have

P (A1(e) N Aafeldn) | X2 (0), X (7))

- (B.36)
_ P(A1(€)€| X1(r) 5 (jz(swl\) ‘ Xl(P%X(p)) (B.37)
o (B.38)

almost surely as ¢ — 0™ by the domination of P (41 () | X1(p)) /& by an integrable random variable
and that P (;{g (e]d1]) ‘ X1(p), X(p)) — 0. By boundedness of f this implies

f(X(p+e)) = f(X(p)

3

lim E{

e—0t

14 () Aa(els)) ‘ Xl(p),X(p)] =0, (B.39)

almost surely, so the sensitivity of X is negligible under A (¢) N Az (e|6y]).

Step 4: Sensitivity of X (p) given a large jump in X is described by wy, Y7.

The random variable
Z(y) = E[f(X2(y)) | X1(p), X(p)] (B.40)

is X1(p), X (p) measurable and almost surely continuous, and the function f in the characterization
Eq. (2.4) can be taken as bounded and almost surely continuous in X;(p) by an extension of the
Portmanteau theorem [47]). It follows, as X (p) and X; (p + ¢) are independent given X (p), that

lim E [Z alp “)2 —ZX0ED, e, x (p)] (B4
=Efw (Z(Y1) — Z(Xa1(p))) | X1(p), X2(p)], (B.42)
so that
iy e[ D IO, ) B4
=Efw (f(X2(Y1)) — f(X(p)) | X1(p), X ()] (B.44)

Step 5: Sensitivity of X (p) given a large jump in X5 is described by ws, Y.

Using Eq. 1} given A§(e]01]) N AS(e) it holds that
|[dX ()]
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is dominated by an integrable random variable. Therefore, since dX;(¢)/e — §; almost surely,

- lmE [f(XQ(Xl(p) + i(sl)) — f(X(p)) 13 (62 (o) Xl(p)x(p)} (B.47)

by dominated convergence. Putting this together with Eq. (B-32), by definition of w5 and Y5,

E (|61 w2 (f(Y2) = F(X(P)) | X1(p). X (p)] (B.48)
= lim E :f(Xz(Xl (p) + ?51)) — f(X()) 1w | Xi0), X(p)} (B49)
= lim E :f(Xz(Xl (p) + i&))) — f(X(»)) L ‘ X (0), X(p)} B50)
}%E_ﬂXﬂXMﬂ+?O»_ﬂX@»hmMmmm@-&@%X@ﬂ B51)
~ lm E [ F(Xa(Xa(p) + d)g(l(s))) — f(X(»)) Lt s | X1(0), X(p)] B.52)
i € if(X(p+e)i SN ‘ X1 (0). X(p)] | .53

where we freely neglect (or add back in) 1, .y 7, .5, ) in the conditional expectation by Eq. @

Step 6: (4, w,Y") is a stochastic derivative of the stacked program [ X (p); X (p)].

Since 07 is an almost-sure derivative of X;(p) and |d1|d2 is an almost-sure derivative of X (p),
d = [d1;|01]92] is an almost sure derivative of [ X7 (p); X (p)].

Given A(e), |[dX (e)| > ByBae, and given A;(¢), |[dX;(¢g)| > Bje. Thus we may choose the
bound B = B;Bs + Bj for the stacked program, so that Ag(e) C A;(e) U A(e). Now, since

A(g) C Ay(e) U Ay(e]6y)),
P (A(e) |X;(p),x(p)) L PO )Efl(p),X(p)) ) P (Ez(slall) LXl(p),X(p)) B.54)
< P (Ai(e) | fl(ﬁ)aX(p)) (5w, (B.55)

where P (Ai(e) | X1(p), X(p)) /e and [6;|W are integrable by assumption.  Therefore,
P(Ag(e) | X1(p), X(p)) is also dominated by an integrable random variable, as desired.

Now, let f operate on the stacked program, and for convenience write f(z1;22) = f([z1;22]). Asa
shorthand, let X (p) = [X1(p); X (p)]. With w and Y as given in the statement,

E[w(f(Y) - f(X1(p); X(p)) | X1(p), X (p)] (B.56)
= E [w1(f (X1(p); X2(Y1)) — f(X1 ) | X1(p), X(p)]

+ E [|61 w2 (f(Y1; X2(Y1)) — p)) | X1(p), X (p)] (B.57)

= i E f(X(p+s)i fx ( )) (1A1(5) +15 60 ‘Xl X(p)] (B.58)

~ lim :f(X(p+s)i Iy ‘ X X(p)] (B.59)

:gliI&E 'f(Y(p+s)i SX 14, (e)uAce) Xl(P)aX(P)] (B.60)

— lim E [X e 52 SXEDy o ). x <p)} . (B.61)
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where we use Eq. in the penultimate equality, and the last equality follows from applying

Propositionto both Ap(¢) and A, () U A(e) as in Eq. (B.33), noting that A% () bounds |dX (¢)|
by Be and that A{(¢) N A5(e) C A% (e). We conclude that (9, w,Y") is a valid stochastic derivative

of X(p) = [X1(p); X(p)].
O

B.5 Unbiasedness of pruning strategy

In the main text, we note that we can employ a pruning strategy so that we only ever track one
alternative path (i.e. one sample from the stochastic derivative component Y') and yet still obtain an
unbiased estimate. The following shows that the pruning method, whereby one chooses between two
samples of Y by picking one with probability proportional to its weight, is indeed unbiased.

We prove by induction that the currently tracked alternative path is an unbiased choice amongst
all possible alternative paths seen so far. The base case, where the first alternative path observed
is followed, is trivial as it is the only choice. Now, suppose that n alternative branches have been
observed so far, where w = w; + wy + - - - + w,, is the summed weight so far. Suppose we observe
an (n + 1)th branch, with weight w,,11. By our pruning strategy it is chosen with probability

Wn41 Wn+41

= , (B.62)
Wpt1 +W W+ W2+ -+ Wyt
while the jth path for some j < n will have been chosen after this step with probability
% e s S - ) (B.63)

Wi+ Wy + Wy W1 Wa o Wog1 WL Wt W

as desired for unbiasedness. Note that this enables us to prune online, i.e. without knowing the full
structure of the computation a priori, which we exploit in StochasticAD. j1 for O(1) memory
overhead.

B.6 Smoothing

Recall from the main text,

Deﬁnition (Smoothed stochastic derivative). For a stochastic program X (p) with a right (left)

stochastic derivative (J, w, Y") at input p, a right (left) smoothed stochastic derivative § of X at input
pis given as

5= E[+uw(Y — X(p) | X(p)]. 3

Using Definition[2.2] we can write the above in an alternative form that does not rely on the definition
of the stochastic derivative,

< EMX()| X(p)
e—0t/~ £

, (B.64)

as given in [26}27]. Smoothed stochastic derivatives propagate through functions that are locally
linear over the range of Y conditionally on X (p), as we now formalize. Note that this is a much
weaker requirement than global linearity over the full range of X (p), as the range of Y conditional
on X (p) is generally more restricted (e.g. Y € {X(p) — 1, X (p) + 1} for a binomial variable).

Proposition B.3. Suppose that | is linear over the range of Y conditionally on X (p) = x, for all x.
Then,

TEFX () =E [£(X 03] (B.65)
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Proof. Note that (f'(X (p)) - 6, w, f(Y)) is a stochastic derivative of f o X by Theorem[2.6] Now,
by Proposition[2.3]and the local linearity of f, we have the simplification,

d%E FX@)] = ELF(X(0) -6 +w (F(V) — F(X(0)) (B.6)
—E[(X() (6 + w(Y — X)) (B.67)
—E[/'(Xw)3]. (B.68)

O

In most cases, local linearity will only hold approximately, leading to bias in the estimate produced
by propagating smoothed stochastic derivatives. However, in the case of a particle filter resampling
step an exact estimate is produced, as we show in the following.

C Formalism of the particle filter

C.1 Hidden Markov model

Let us consider a hidden Markov model with random states X1, ..., X,, as specified by a stochastic
program X1 (6) giving the starting value depending on parameters 6 and consecutive states given by
pointwise differentiable stochastic programs X;(x;_1, 6) depending on the previous state x;_1 ~
X1 (Markov property) and 6. In general, we allow continuous probability densities p(x; | €) of X
and continuous transition probability densities p(x; | ;—1,6) to depend arbitrarily on . This latent
process X1, ..., X, is indirectly observed as the process y; ~ Y1,...,y, ~ Y, with n observations
Y;(x;) depending on x; ~ X; which are specified to have smooth conditional probability densities
p(yi | xi,0) depending only on z; and . As a concrete, special case, we consider the following
linear Gaussian state-space model with a d-dimensional latent process,

X; = ®X;_1 + Normal(0, Q), (C.1)
Y; = X; + Normal(0, R), (C.2)

where @ = 0.02 - 14x4, R = 0.01 - 14%4, 1 ~ Normal(u,0.001 - 1;544),  ~ Normal(0, 1xq)
is a random initial position, and @ is a d-dimensional rotation matrix. Here, the parameters 6 are
defined by the entries of ®, i.e. § = vec(P). We use a particle filter to compute an estimate of the
likelihood £ = p(y1,-.-,Yn | 0).

C.2 Differentiating a particle filter with a resampling step

Given n observations y; ~ Y1,...,y, ~ Y, of the hidden Markov model defined via Egs. (C.IJ) and
(C-2)), a bootstrap particle filter allows us to approximate the posterior distributions of the states and
the likelihood L of these observations by propagating a cloud of K weighted particles. We denote

the kth particle by xgk) Each particle evolves independently according to the stochastic program
[Egs. (CI) and (C.2)] and carries a weight wgk) measuring how well the trajectory of the particle so
far is matching the observations. This importance weight is updated by o™ = p(y: | xgk), G)wﬁ)l,

such that the empirical measure ), wgk)éz@) /> wfk) of the weighted particles approximates the
filtering distribution p(z; | y1,...,¥:,0).

So far, the particles and weight trajectories are differentiable with respect to the parameter [3].
However, weight degeneracy, the collapse of all but a few weights, is a common problem. Our
goal is to discard unlikely particles, so that numerical resources are not wasted on particles with
vanishing weight. The strategy to accomplish this goal is to include resampling steps, where we
pick the particles that best match the observations. However, such resampling steps present discrete

randomness, where the particle population is resampled according to the particle weights wgk) to form
(k)

a new population (2’),"’ with equal weight @, = 1/K - Zszl wgk). To differentiate the resampling
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step, we need to describe how perturbing the weight distribution wfk) provided to the resampling

procedure affects the resampled particles and weights. Importantly, the marginal likelihood of a
parameter 6 can be read off using the weights at the last step

K
Pyrs- sy |0) =Y @) (C3)
k=1

The strategies for resampling vary, but what they have in common is that the marginal distribution of
1(k)

each resampled particle z," is a multinomial distribution over the original particles with weights

given by the normalized weight vector (wgl)/wi, . ,wZ(K)/w,;) with w; = Zszl wgk). Thus, a
weighted sample of the marginal distribution of each resampled particle can be obtained by repeating
the following procedure until obtaining a weight of w;:

1. Sample an integer £ uniformly from 1 to K.
(k)

2. Return the particle =, ’ with assigned weight w; Ber(wgk) /).

Conditional on the assigned weight being w;, the returned particle obeys the multinomial distribution.

The key insight is that the alternate possibility of a resampled particle xgk)
(k)

i

not being chosen can be

written instead as the alternate possibility of its weight o, ' changing to 0.

Recall from Example[2.5]that there is an asymmetry between the left and right stochastic derivative of
(
?
is convenient to take the left stochastic derivative (0, wgk), Yi(k)) with Yi(k) = 0and wfk) = —wk/w;
of the particle’s weight ww; because it is O when the assigned weight is 0, meaning that this case has
no influence on the derivative estimate. Therefore, particles that are not resampled [and thus do not
contribute to the primal value, cf. Eq. (C.3)] do (also) not contribute to the derivative computation.
The fact that only the weights have a stochastic derivative, but not the particles imposes the following

setting:

the Bernoulli distribution Ber(w ®) /@) conditioned on the output 0 or 1 being chosen. In this case, it

Let X (p) be a stochastic program approximated by the program X (p). Assume we can sample from
X (p). Assuming absolute continuity, we may write expectations as Ew(p) f(X (p)) = Ef(X(p))
where @ (p) is the Radon-Nikodym derivative [4] of the law of X (p) with respect to the law of X (p),
evaluated in X (p). We thus consider the program which returns the pair of weight and value

(w(p), X(p)). (C4)

Proposition C.1. If X (p) is a continuous program, reparameterized such that it is differentiable
pointwise, and w(p) has a smoothed stochastic derivative 0,

EFX) = E [=(0)f (X)X () + /(X )] ©5)

Proof. By assumption, B
Ef(X(p)) = Ew(p)f(X(p)). (C.6)

As the function (w, x) — wf(x) is linear in ¢, the statement follows from Proposition O

Therefore, we can replace the stochastic derivative of @ Ber(ww /@) with its smoothed stochastic

derivative wgk)(l — Yi(k)) = w! /w, obtained using Table [2| This is convenient, as smoothed

stochastic derivatives permit forward- and reverse-mode whereas reverse-mode AD becomes superior
than forward-mode AD for functions f from R™ to R™ with m > n [2]]. Since the weights are used
in a purely linear fashion, Proposition [B.3]and Proposition [C.T| guarantee that the derivative estimator
is unbiased.
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Numerically, we accomplish this in our code with a formally differentiable weight function
new_weight (p) whose primal value is always 1 but whose derivative is the left smoothed stochastic
derivative of Ber(p) for primal output 1,

~ 1
o ==, (C.7)
p
so that a particle mgk) has weight given as
w; -new_weight(wl(k)/wi). (C.8)
In [7], an equivalent expression is derived by different means, using the stop-gradient operator L :
k
(@ /m:)

i , C9
L(w® ;) ©

where | is formally assigned a derivative of 0.

D Implementation details

D.1 Experiment details

All computation times in Fig.[5|were measured on an Intel Xeon Platinum 8260 CPU and Julia version
1.6. Garbage collection times are included in the total run time. We provide code and instructions to
run the examples in the tutorials folder of StochasticAD. j1.

D.2 Software dependencies

StochasticAD.jl 1is implemented in the Julia Language [4] and wuses internally
Distributions.jl and DistributionsAD.jl [1, [2, ChainRulesCore.jl [5], and
ForwardDiff. j1 [6].

The presented examples are using the additional packages: BenchmarkTools. j1 [7], Zygote. j1 [8l,
GaussianDistributions. jl [9]], and Plots. j1 [10].

We refer the reader to the documentation of StochasticAD. j1 for more detailed information on the
package implementation.
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