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A Appendix

A.1 Notations and Additional Concepts

A.1.1 Notations

Table 1: Notations.

Name Notation Meaning

strategy Sn the strategy selected by player n
policy πn the tool of player n used to select strategies
game engine g : S → Rn compute the utility of a joint strategy
best response BRn the strategies with the highest utility
Oracle On give a response for player n
policy solver Sn compute a policy for player n
rectifier ⌊x⌋ ⌊x⌋+ := max(0, x)
Hadamard product ⊙ [aij ]m×n ⊙ [bij ]m×n := [aijbij ]m×n

1,1-norm ∥·∥1,1 ∥A∥1,1 :=
∑

ij |aij |
Frobenius norm ∥·∥F ∥A∥F :=

√∑
ij a

2
ij =

√
Tr(ATA)

cardinality of a finite set |·| the number of elements in a finite set

Evaluation Metrics
empirical gamescape EGS(Sn) a convex hull of the payoff vectors of strategies in Sn

exploitability Exploit.(π) measure the “distance" of a joint policy to the NE
population effectivity PE(Sn) represent the effectiveness of a population

Existing Diversity Measures
effective diversity ED(Sn) a metric to measure the diversity of Sn

expected cardinality EC(Sn) a metric to measure the diversity of Sn

population diversity PD(Sn) a metric to measure the diversity of Sn

form of Euclidean projection FEP(Sn
new) compute the contribution of Sn

new to the current population

About Our Method
strategy feature ϕn characterize the corresponding strategy of player n
diversity kernel Ln

K a PSD matrix computed by the given kernel K
unified diversity measure UDM(Sn) a metric to measure the diversity of Sn

A.1.2 α-Rank

α-Rank [5] is a solution concept built on the response graph of a game. Each strategy profile
S ∈ S of the game is a node of this response graph, and a directed edge points from any profile
S ∈ S to σ ∈ S in the graph if (1) S and σ differ in only one single player’s strategy, and (2)
Gn(σ) > Gn(S). Thus, α-Rank constructs a random walk along this directed graph; and by
injecting a small probability of backwards-transitions from σ to S in this process, this random walk
would be equivalent to irreducible Markov chain, which ensures the existence of a unique stationary
distribution π ∈ ∆Sn called the α-Rank distribution. The masses of π are supported by the sink
strongly-connected components (SSCC) nodes, which are the nodes with only incoming edges but
no outgoing edges. More details of α-Rank distribution can be found in paper [5].

A.1.3 GWFP

Generalised weakened fictitious play (GWFP) [2] generalises fictitious play (FP) by allowing for
ϵ-best responses and perturbed averages strategy updates. Its definition is as follows:

Definition 1 (GWFP). GWFP is a process of {πt}t≥0 with πt ∈
∏

n∈[N ] ∆Sn , such that

πn
t+1 ∈ (1− αt+1)π

n
t + αt+1(BRn

ϵt(π
−n
t ) +Un

t+1), (1)
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where ϵt → 0 and αt → 0 as t → ∞,
∑

t≥1 αt = ∞, and {Ut}t≥1 is a sequence of perturbations
such that, for any T > 0,

lim
t→∞

sup
k

{
∥
k−1∑
i=t

αi+1Ui+1∥ :

k−1∑
i=t

αi < T

}
= 0. (2)

GWFP recovers FP if αt = 1/t, ϵt = 0 and Ut = 0, ∀t.

In theory, the policy sequence {πt}t≥0 learned by GWFP converges to the NE on two-player zero-
sum games or potential games.
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A.2 Some Examples

A.2.1 RPS-X Game

The RPS-X game is a counter example where ED would ignore the weak but useful strategy X . To
gain a conceptual understanding of why our method is able to find the final strategy X , consider the
scenario where we are in the state of the population {R,P, S}. In this case, PSRO-rN would fail
to find the final strategy X since the best response strategy is still within {R,P, S} [3]. We specify
UDM with f(x) = 1

1+exp(−x) −
1
2 , linear kernel function and strategy feature ϕn

i = G[i,:], then our
method can add the strategy X to the population with the largest UDM value as the best response.
Consider the following four cases:

(a) Strategy R is added to the population and then we have a strategy set {R,P, S,R}, resulting
in the following payoff matrix:

G =

 0 −1 1 0
1 0 −1 1
−1 1 0 −1
0 −1 1 0

 ,

and the following diversity kernel:

L = GGT =

 2 −1 −1 2
−1 3 −2 −1
−1 −2 3 −1
2 −1 −1 2

 .

Then the UDM value is: UDM({R,P, S,R}) ≈ 0.987.

(b) Strategy P is added to the population and then we have a strategy set {R,P, S, P}, and
the result is the same as that of adding R to the population and the UDM value is:
UDM({R,P, S, P}) ≈ 0.987.

(c) Strategy S is added to the population and then we have a strategy set {R,P, S, S}, and
the result is the same as that of adding R to the population and the UDM value is:
UDM({R,P, S, S}) ≈ 0.987.

(d) Strategy X is added to the population and then we have a strategy set {R,P, S,X}, result-
ing in the following payoff matrix:

G =

 0 −1 1 −2/5
1 0 −1 −2/5
−1 1 0 −2/5
2/5 2/5 2/5 0

 ,

and the following diversity kernel:

L = GGT =

 2.16 −0.84 −0.84 0
−0.84 2.16 −0.84 0
−0.84 −0.84 2.16 0

0 0 0 0.48

 .

Then the UDM value is: UDM({R,P, S,X}) ≈ 1.141. Therefore, strategy X would be
added to the population due to the largest UDM value.

A.2.2 Redundant-Strategy Problem

Here we use the Rock-Paper-Scissors (RPS) game to illustrate how our method tackles redundant-
strategy problem:

G1 =

[
0 −1 1
1 0 −1
−1 1 0

]
and G2 =

 0 −1 1 1
1 0 −1 −1
−1 1 0 0
−1 1 0 0

 .
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The first payoff table encodes rock-paper-scissors interactions, and the second is the same payoff
but with two copies of scissors, and thus the diversity kernels with strategy feature ϕn

i =
G[i,:]

∥G[i,:]∥
can be computed as follows:

L1 =

[
1 −1/2 −1/2

−1/2 1 −1/2
−1/2 −1/2 1

]
and L2 =


1 −2/3 −

√
6/6 −

√
6/6

−2/3 1 −
√
6/6 −

√
6/6

−
√
6/6 −

√
6/6 1 1

−
√
6/6 −

√
6/6 1 1

 .

Their eigenvalues are λ(L1) = { 3
2 ,

3
2 , 0} and λ(L2) = { 7

3 ,
5
3 , 0, 0}, respectively, and thus RPD = 0

in both cases while the population reaches the largest diversity. In contrast, specifying UDM with
linear kernel function and f(x) =

x

1 + x
, UDM values can be computed as follows:

UDM({R,P, S}) = f(
3

2
) + f(

3

2
) + f(0) =

6

5
=

48

40
,

UDM({R,P, S, S}) = f(
7

3
) + f(

5

3
) + f(0) + f(0) =

53

40
.

It can be found that UDM does not slump with a redundant strategy.

Besides, from this example, we can obtain:

EC({R,P, S}) = Tr(I − (I + L1)
−1) =

6

5
> 1 = rank(G1)/2. (3)

Nieves et al. [4] argue that if G is normalised (i.e., ∥G[i,:]∥ = 1, ∀i), then EC(Sn) ≤ rank(G)/2,
which is problematic since it conflicts with Eq. (3).
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A.3 A Full Proof of Propositions

A.3.1 Proof of Proposition 1

Proposition 1 (Equivalent Representation of UDM). The UDM defined in Definition 3 has an equiv-
alent representation:

UDM(Sn) :=
M∑
i=1

f(λi) = Tr(f(Ln
K)). (4)

Proof. Since Ln
K is PSD, there exists an orthogonal matrix P such that:

P TLn
KP = diag{λi} =: Λ,

where λi is the eigenvalue of Ln
K . If λi ∈ R, ∀i, we have:

f(Ln
K) =

∞∑
k=0

ck(Ln
K)k

=

∞∑
k=0

ck(P ·Λ · P T)k

= P · (
∞∑
k=0

ckΛ
k) · P T

= P · diag{f(λi)} · P T.

Hence, f(λi), i = 1, · · · ,M are the eigenvalues of f(Ln
K), and thus

∑M
i=1 f(λi) = Tr(f(Ln

K)),
proving our proposition.

A.3.2 Proof of Proposition 2

Before the proof of proposition 2, we provide a lemma and its corollary.
Lemma 1. Let A,B = [bi,j ]n×n ∈ Rn×n, where A = diag{µ1, · · · , µn}. Denote the eigenvalues
of A + εB by λi(ε), where ϵ is a real number with sufficiently small |ε|; and thus λi(0) = µi, i =
1, · · · , n. Suppose that µ is the eigenvalue of A with multiplicity m, i.e., there exists a subsequence
J = {l1, · · · , lm} ⊆ {1, · · · , n} such that:

µl1 = µl2 = · · · = µlm = µ, µj ̸= µ, ∀j /∈ J.

Hence,

(a)
∑

i∈J λ′
j(0) =

∑
j∈J bjj ;

(b)
∑

i∈J λ′′
j (0) = 2

∑
j /∈J

∑
j∈J bijbji

µ− µj
.

Proof. Without loss of generality, we assume that J = {1, · · · ,m}. Let

Ã = A− µIn = diag{0, · · · , 0, µ̃m+1, · · · , µ̃n}, µ̃k = µk − µ.

It is easy to compute that the eigenvalues of Ã+ εB are λ̃i(ε) = λi(ε)− µ, ∀i. Denote the column
vectors of λIn− Ã−εB by ηi(λ, ε), i = 1, · · · , n, and F (λ, ε) := det (λIn − Ã− εB). Note that
∂2

∂ε2 ηi = 0, then:
∂

∂ε
F =

n∑
i=1

det (η1, · · · , ηi−1,
∂

∂ε
ηi, ηi+1, · · · , ηn),

∂2

∂ε2
F = 2

∑
1≤i<j≤n

det (η1, · · · , ηi−1,
∂

∂ε
ηi, ηi+1, · · · , ηj−1,

∂

∂ε
ηj , ηj+1, · · · , ηn).
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Let ε = 0, we have:

∂

∂ε
F (λ, 0) = −λm−1

n∏
j=m+1

(λ− µ̃j) ·
m∑
i=1

bii − λm
n∑

i=m+1

bii
∏

j≥m+1,j ̸=i

(λ− µ̃j), (5)

∂2

∂ε2
F (λ, 0) =2δ(m− 1) · λm−2(

∑
1≤i<j≤m

det (Bij))

n∏
k=m+1

(λ− µ̃k)

+ 2λm−1
∑

1≤i≤m<j≤n

[det (Bij)
∏

k≥m+1,k ̸=j

(λ− µ̃k)]

+ 2λm
∑

m<i<j≤n

[det (Bij)
∏

k≥m+1,k ̸=i,j

(λ− µ̃k)], (6)

where

δ(x) =

{
1 , x ̸= 0

0 , x = 0
, Bij =

(
bii bij
bji bjj

)
On the other hand, note that:

F (λ, ε) ≡
m∏
i=1

(λ− λ̃i(ε))

n∏
j=m+1

(λ− λ̃j(ε)).

Differentiate the both sides of the above equation with respect to ε and let ε = 0, then we have:

∂

∂ε
F (λ, 0) =− λm−1(

m∑
i=1

λ′
i(0))

n∏
j=m+1

(λ− µ̃j)

− λm
n∑

i=m+1

λ′
i(0)

∏
j≥m+1,j ̸=i

(λ− µ̃j), (7)

∂2

∂ε2
F (λ, 0) =λm−1

( m∑
i=1

λ′′
i (0))

n∏
j=m+1

(λ− µ̃j)− 2

m∑
i=1

λ′
i(0)

n∑
i=m+1

λ′
i(0)

∏
j≥m+1,j ̸=i

(λ− µ̃j)


+ 2δ(m− 1) · λm−2

∑
1≤i<j≤m

λ′
i(0)λ

′
j(0)

n∏
k=m+1

(λ− µ̃k) + λmR(λ), (8)

where R(λ) is a polynomial with respect to λ.

Since
(5)− (7)

λm−1

∣∣∣∣
λ=0

= 0:
m∑
i=1

λ′
i(0) =

m∑
i=1

bii. (9)

Now we prove the first conclusion in Lemma 1.

If m > 1, since
(6)− (8)

λm−2

∣∣∣∣
λ=0

= 0:∑
1≤i<j≤m

det (Bij) =
∑

1≤i<j≤m

λ′
i(0)λ

′
j(0). (10)

If m = 1, since
(6)− (8)

λm−1

∣∣∣∣
λ=0

= 0:

n∏
k=m+1

(−µ̃k) ·
m∑
i=1

λ′′
i (0) = 2

m∑
i=1

n∑
j=m+1

(λ′
i(0)λ

′
j(0)− det (Bij))

∏
k≥m+1,k ̸=j

(−µ̃k). (11)
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For ∀j ≥ m+ 1, if µ̃j is the eigenvalue of Ã with multiplicity r, we denote these eigenvalues by:

µ̃m+1 = · · · = µ̃m+r.

Besides, since the first conclusion in Lemma 1 :

m+r∑
j=m+1

λ′
j(0) =

m+r∑
j=m+1

bjj ,

then we have:
m∑
i=1

m+r∑
j=m+1

(λ′
i(0)λ

′
j(0)− biibjj + bijb[ji])(−µ̃m+1)

r−1
∏

k≥m+r

(−µ̃k)

=(−µ̃m+1)
r−1

∏
k≥m+r

(−µ̃k)

 m∑
i=1

(λ′
i(0)

m+r∑
j=m+1

λ′
j(0)− bii

m+r∑
j=m+1

bjj) +
∑

1≤i≤m<j≤m+r

bijbji


=(−µ̃m+1)

r−1
∏

k≥m+r

(−µ̃k)

 m∑
i=1

(λ′
i(0)− bii)

m+r∑
j=m+1

bjj +
∑

1≤i≤m<j≤m+r

bijbji


=(−µ̃m+1)

r−1
∏

k≥m+r

(−µ̃k)

m∑
i=1

m+r∑
j=m+1

bijbji

=

m∑
i=1

m+r∑
j=m+1

bijbji
∏

k≥m+1,k ̸=j

(−µ̃k). (12)

Therefore, (11) can be rewritten as:
n∏

k=m+1

(−µ̃k) ·
m∑
i=1

λ′′
i (0) = 2

m∑
i=1

n∑
j=m+1

bijbji
∏

k≥m+1,k ̸=j

(−µ̃k),

then we have:
m∑
i=1

λ′′
i (0) = 2

n∑
j=m+1

∑m
i=1 bijbji
−µ̃j

= 2

n∑
j=m+1

∑m
i=1 bijbji
µ− µj

.

Therefore, we prove the second conclusion in Lemma 1; and then we complete the proof.

Corollary 1. Let A = diag{µ1Ir1 , · · · , µmIrm}, where µ1 < µ2 < · · · < µm,
∑m

i=1 ri = n, and
B = [bij ]n×n ∈ Rn×n. Denote the eigenvalues of A + εB as λi(ε), i = 1, · · · ,m, j = 1, · · · , ri,
and thus λij(0) = µi.

Then:

(a)
∑k

i=1

∑ri
j=i λ

′′
ij(0) ≤ 0, k = 1, · · · ,m− 1;

(b)
∑m

i=1

∑ri
j=1 λ

′′
ij(0) = 0.

The equal sign in the case k < m holds if and only if bij = 0, ∀i = 1, · · · ,
∑k

s=1 rs, j =
∑k

s=1 rs+
1, · · · ,m.

Proof. Let R0 = 0, Ri = Ri−1 + ri, i = 1, · · · ,m, and

βst = 2

Rs∑
j=Rs−1+1

Rt∑
i=Rt−1+1

bijbji = βst = 2

Rs∑
j=Rs−1+1

Rt∑
i=Rt−1+1

b2ij = βts ≥ 0.
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According to the second conclusion in Lemma 1, we have:
ri∑
j=1

λ′′
ij(0) =

m∑
j≥1,j ̸=i

βij

µi − µj
.

Therefore,
k∑

i=1

ri∑
j=1

λ′′
ij(0) =

k∑
i=1

m∑
j=1,j ̸=i

βij

µi − µj
=

k∑
i=1

k∑
j=1,j ̸=i

βij

µi − µj
+

k∑
i=1

m∑
j=k+1

βij

µi − µj
(13)

=

k∑
i=1

m∑
j=k+1

βij

µi − µj
≤ 0, ∀k < m. (14)

The last “=” holds if and only if:
βij = 0,

which is equivalent to bij = 0, ∀i = 1, · · · , Rk, j = Rk+1, · · · , n.

Similarly, we can prove the case where k = m, and thus we can complete the proof.

Proposition 2 (Convexity of UDM). Consider a concave function f ∈ F . Then UDM is concave if
all the eigenvalues of Ln

K exist in the convergence domain of f .

Proof. We study the sign of the second derivative of the UDM in a neighborhood of the PSD matrix
Ln
K , and we rewrite Ln

K as L for convenience. We apply a perturbation to L such that L+ εB with
a symmetric matrix B and ε ∈ R. It suffices to prove that:

d2

dε2
Trf(L+ εB)

∣∣∣∣
ε=0

< 0.

First, there exists an orthogonal matrix C such that:

Λ := CTLC = diag{µ1Ir1 , · · · , µmIrm},
where µ1 < · · · < µm,

∑m
i=1 ri = n.

Besides, there exists an orthogonal matrix P (ε) such that:

P T(ε)(Λ+ εCTBC)P (ε) = diag{λ11(ε), · · · , λ1r1(ε), · · · , λm1(ε), · · · , λmrm(ε)},
where λij(0) = µi, j = 1, · · · , ri, i = 1, · · · ,m.

Hence,

d2

dε2
Trf(L+ εB)

∣∣∣∣
ε=0

=
d2

dε2
Tr

[
P T(ε)CTf(L+ εB)CP (ε)

] ∣∣∣∣
ε=0

=
d2

dε2
Trf

(
P T(ε)CT(L+ εB)CP (ε)

) ∣∣∣∣
ε=0

=
d2

dε2

m∑
i=1

ri∑
j=1

f(λij(ε))

∣∣∣∣
ε=0

=

m∑
i=1

 ri∑
j=1

λ′′
ij(0)

 f ′(µi) +

m∑
i=1

ri∑
j=1

(
λ′
ij(0)

)2
f ′′(µi)

=

m−1∑
k=1

[f ′(µk)− f ′(µk+1)]

k∑
i=1

[

ri∑
j=1

λ′′
ij(0)] +

m∑
i=1

ri∑
j=1

[λ′
ij(0)]

2f ′′(µi) (15)

9



From Corollary 1 and f ′(µk)− f ′(µk+1) > 0, it can be easily derived that (15)≤ 0.

If (15)= 0, then CTBC is a diagonal block matrix according to Corollary 1. Denote its diagonal
elements as b̃ij , i = 1, · · · ,m, j = 1, · · · , ri where not all of these values are zero. However, from
(15)= 0 we have:

0 = λ′
ij(0) = b̃ij , ∀i, j.

However, it contradicts b̃ij , i = 1, · · · ,m, j = 1, · · · , ri where not all of these values are zero.

Therefore, we have (15)< 0, yielding the desired result.

A.3.3 Proof of Proposition 3

Proposition 3 (Convergence of UDM-FP). If UDM is concave, and UDM-FP uses the update rule:

πn
t+1 ∈ (1− αt+1)π

n
t + αt(BRn

τt(π
−n
t ) +Un

t+1),

where αt = o(1/ log t) is deterministic and perturbations Un
t+1 are the differences between the

actual and expected changes in strategies. Then UDM-FP shares the same convergence property
as GWFP: the policy sequence πn

t converges to the NE on two-player zero-sum games or potential
games.

Proof. From the assumption, UDM is a concave function, and τt → 0 as t → ∞; and perturbations
are bounded martingale differences since they are the differences between the actual and expected
change in strategies. So if {αt}t≥1 is deterministic and αt = o(1/ log t), then for ∀T > 0, the
condition on Un

t+1, i.e.:

P

{
lim
t→∞

sup
k

{
∥
k−1∑
i=t

αi+1Ui+1∥ :

k−1∑
i=t

αi < T

}
= 0

}
= 1

holds with probability 1 [1].

Furthermore, since BRn
τt → BRn as τt → 0, then we have BRn

τt ∈ BRn
ϵt as ϵt → 0. Hence,

UDM-FP with decreasing smoothing parameters results almost surely in a GWFP as t → ∞, and
thus converges to the NE on the two-player zero-sum games and potential games [2].

A.3.4 Proof of Proposition 4

Proposition 4 (EGS Enlargement). Adding a new (meta-)strategy Sθ via Eq.(8) enlarges EGS. For-
mally, we have:

EGS(Sn) ⊆ EGS(S ∪ Sθ).

Proof. Since UDM increases the number of the eigenvalues of Ln
K , the new row in the meta-game

M corresponding to the new strategy Sn must be linearly independent to the other rows, and thus it
cannot be a convex combination of the other rows. As a result, the EGS is enlarged.

A.3.5 Proof of Proposition 5

Lemma 2. If at any point the population of UDM α-PSRO contains a member of an SSCC of the
game, then UDM α-PSRO will converge a sub-cycle of that SSCC.

Proof. Suppose that a member of one of the underlying game’s SSCCs appears in the UDM α-
PSRO population. This member will induce its own meta-SSCC in the meta-game’s response graph.
At least one of the members of the underlying game’s corresponding SSCC will thus always have
positive probability under the α-Rank distribution for the meta-game, and the Oracle for this meta-
SSCC will always return a member of the underlying game’s SSCC. If the Oracle returns a member
of the underlying SSCC already in the population, we claim that the corresponding meta-SSCC
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already contains a cycle of the underlying SSCC. To see this, note that if the meta-SSCC does not
contain a cycle, it must be a singleton. This singleton is either equal or not equal to the full SSCC
of the underlying game. In the later case, the Oracle will return a new strategy from the underlying
SSCC, contradicting our assumption that it has terminated.

Proposition 5 (Convergence of UDM α-PSRO). In two-player symmetric NFGs, UDM α-PSRO
converges to the sub-cycle of the unique SSCC.

Proof. From the lemma 2, we only need to prove that there exists a member of one of the underlying
game’s SSCCs appears in the UDM α-PSRO population before it has terminated.

First, the uniqueness of the SSCC follows from the fact that in the two-player symmetric NFGs, the
response graph is fully-connected. Suppose at termination of UDM α-PSRO, the UDM α-PSRO
population contains no strategy within the SSCC, and let S be a strategy in the SSCC. We claim that
S attains a higher value of the quality term than any strategy in the UDM α-PSRO population, which
contradicts the fact that UDM α-PSRO has terminated. From the definition of SSCC, we know that
S has a higher value of quality term than any strategy S

′
outside the SSCC, and in particular for all

Si ∈ S1, and thus the quality term for S is exp(1). In contrast, for any Si ∈ S1, the quality term
for Si is upper-bounded by exp(1 − πi). If πi > 0, then the quality term of Si is lower than S. If
πi = 0, then the quality term of Si is exp(0). Hence, any strategy in the population has a < exp(1)
quality term, and thus UDM α-PSRO cannot terminate before it has encountered an SSCC member.
Therefore, we complete the proof.

11



A.4 Experiment Details

A.4.1 Hyper-Parameter Settings

Table 2: Hyper-Parameter Settings for AlphaStar and Blotto.

Settings Value Description

The Oracle Function UDM Best Response Function of Getting Oracles
Learning Rate 0.5 Learning Rate for Agents
Improvement Threshold 0.03 Convergence Criteria
Meta-Policy Solver FictitiousPlay Solve The NE-Policy
Meta-Policy Solver Iterations 1000 Iterations for Meta-Policy Solver
Threads in Pipeline 2 Learners in Pipeline PSRO
Iterations 200 Training Iterations
Random Seeds 5 Random Seeds of Trials
UDM Weighting 0.15 Weight of UDM in UDM Best Response

Table 3: Hyper-Parameter Settings for Non-Transitive Mixture Model.

Settings Value Description

The Oracle Function Gradient Ascent Function of Getting Oracles
Optimizer Adam Gradient Ascent Optimizer
Learning Rate 0.1 Learning Rate for Optimizer
Betas (0.9, 0.99) Betas Parameter for Optimizer

πn = {πn
k }k exp

(−(xn − µk)
TΣ(xn − µk)

2
) Meta-Policy

Σ 1/2I Covariance Matrix for Gaussians
µ1 (2.871, -0.025) Position of The First Gaussian
µ2 (1.8105, 2.2298) Position of The Second Gaussian
µ3 (1.8105, -2.2298) Position of The Third Gaussian
µ4 (-0.61450, 2.8058) Position of The Fourth Gaussian
µ5 (-0.61450, -2.8058) Position of The Fifth Gaussian
µ6 (-2.5768, 1.2690) Position of The Sixth Gaussian
µ7 (-2.5768, -1.2690) Position of The Seventh Gaussian
Meta-Policy Solver Fictitious Play Solve the NE-Policy
Meta-Policy Solver Iterations 1000 Iterations for Meta-Policy Solver
Iterations 50 Training Iterations

UDM Weight at Iteration t
0.7

1 + exp(−0.25(t− 25))
Weight of UDM in Best Response

Threads in Pipeline 4 Learners in Pipeline PSRO
Random Seeds 10 Random Seeds of Trials

Table 4: Hyper-Parameter Settings for Additional Experiments in Appendix A.4.3.

Settings Value Description

The Oracle Function UDM Best Response Function of Getting Oracles
Learning Rate 0.5 Learning Rate for Agents
Improvement Threshold 0.03 Convergence Criteria
Meta-Policy Solver FictitiousPlay Solve The NE-Policy
Meta-Policy Solver Iterations 1000 Iterations for Meta-Policy Solver
Threads in Pipeline 2 Learners in Pipeline PSRO
Iterations 200 Training Iterations
Random Seeds 5 Random Seeds of Trials
UDM Weighting 0.15 Weight of UDM in UDM Best Response
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A.4.2 Pseudo Codes

Algorithm 1 UDM Gradient Ascent Oracle
Input: Player population St =

∏
n∈[N ] Snt with Sn

t ∈ Snt parameterised by θSn
t

,
Meta-policies πt =

∏
n∈[N ] π

n
t ,

Number of training updates Ntrain,
Diversity probability λ.

Output: Strain.
1: Randomly initialise a new Strain;
2: for j = 1, · · · , Ntrain do
3: Compute payoff pj of Strain;
4: Compute meta-payoff Mj = M(Snt ∪ {Strain});
5: Compute UDM dj = Tr(f(MjMT

j ));
6: Compute loss lj = −(1− λ)pj − λdj ;
7: Update θStrain to minimise lj using a gradient based optimization method;
8: end for
9: return Strain

Algorithm 2 UDM Best Response Oracle
Input: Player population St =

∏
n∈[N ] Snt with Sn

t ∈ Snt parametrised by θSn
t

,
Meta-policies πt =

∏
n∈[N ] π

n
t ,

Learning rate µ,
Diversity probability λ.

Output: Sn
t .

1: Compute BRn
quality = BRn(π−n

t );
2: for each pure strategy Pj do
3: Update meta-payoff Mj = M(Snt ∪ {Pj});
4: end for
5: Compute BRn

UDM = argmaxPj
UDM(Snt ∪ {Pj});

6: Choose BRn = BRn
UDM with probability λ else BRn = BRn

quality;
7: Update θSn

t
= µθSn

t
+ (1− µ)θBRn ;

8: return Sn
t
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A.4.3 Additional Experiments

1. UDM-FP and UDM α-PSRO

Here we validate UDM-FP and UDM α-PSRO on the normal-form games. The baselines are FP and
α-PSRO, respectively.
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Figure 1: Exploitability & Negative PE / PCS-score vs. Iterations in NFGs.

UDM-FP. In the first two subgraphs in Figure 1, we validate UDM-FP on the randomly generated
NFGs, and the performances of UDM-FP are better in terms of exploitability and PE. The results
also prove the correctness of Proposition 3 that UDM-FP can converge to the NE on two-player
zero-sum NFGs.

UDM α-PSRO Notice that the solution concept of (UDM-)α-PSRO is α-Rank. PCS-score [1] is
a better metric to assess the quality of the population than exploitability that measures the "distance"
to a NE. Concretely, PSC-score computes the proportion of current strategies in the empirical game
that also belongs to the full games SSCCs. The result in the last subgraph in Figure 1 shows that
UDM α-PSRO can jump out the current strategic cycles during training and achieve a higher PCS-
score than the baseline.

2. Extensive-Form Games

Here we provide two additional experiments consisting of a chess game and a poker game to validate
our method. The settings of UDM-PSRO are consistent with the one we introduce in Section 5, and
the experimental settings can be found in Appendix A.4.
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Figure 2: Tic-Tac-Toe and Kuhn Poker: Exploitability & Negative PE & UDM vs. Iterations.
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Tic-Tac-Toe. Tic-tac-toe is a type of chess game for two players. The board consists of 3 × 3
small squares, which are crossed by two vertical and two horizontal lines. Each player takes turns
drawing a cross or a circle in a square, and the player wins if it places three equal pieces in a row,
either vertically, horizontally or diagonally. The results in the upper row of Figure 2 show that our
method achieves the best expolitability and PE.

Kuhn Poker. Kuhn poker is a zero-sum two-player imperfect-information poker game. In Kuhn
poker, the deck includes only three playing cards, for example a King, Queen, and Jack. One card is
dealt to each player, which may place bets similarly to a standard poker. If both players bet or both
players pass, the player with the higher card wins, otherwise, the betting player wins. We report the
performances of different algorithms in this game in the below row of Figure 2, and the results show
that our method is competitive with the diversity-aware baselines, and it performs better than other
baselines in terms of expolitability and PE.

3. Additional Experiments

Here we provide two additional experiments. One is to show that UDM-PSRO can achieve a better
performance by considering RD and BD at the same time; the other one on AlphaGO is used to
supplement the real-world meta-games in Section 5.
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Figure 3: UDM-FP with BD & RD: Exploitability & Negative PE & UDM vs. Iterations.

UDM-PSRO with RD & BD In Figure 3, we report the performances of different algorithms over
a normal-form game with 500 meta-strategies. The performance of UDM-PSRO incorporating RD
and BD simultaneously is significantly better than the baselines in terms of exploitability and PE.
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Figure 4: UDM-PSRO on AlphaGO: Exploitability & Negative PE & UDM vs. Iterations.

AlphaGO. We investigate the diversity-aware algorithms on AlphaGO with 1679 meta-strategies.
The results in Figure 4 show that UDM-PSRO is competitive with most baselines, while PSRO-rN
fails to recover the diverse strategies and is easily exploited.
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A.5 Discussions

1) Selection of f(x) and K⟨x, y⟩. We firstly discuss about the selection of f(x) and K⟨x, y⟩.
As for the function f(x), the principle of choosing f(x) is that the function should be bounded,
monotonically increasing, and f(0) = 0 (refer to Section 3.1 for more explanations). There are lots
of functions that satisfy these properties, e.g., f(x) = g(x)

γ+g(x) −
g(0)

γ+g(0) , where γ > 0 is a constant,
g(x) is a monotonically increasing function and g(0) ≥ 0. In our paper, we choose g(x) = exp(x)
since f(x) = 1

1+γ exp(−x) −
1

1+γ , γ ∈ (0, 1] has a sufficiently large convergence region R = (0,∞).
The results in Figure 5 show that γ = 1 is the best.
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Figure 5: Ablation Study of γ: Exploitability & Negative PE & UDM vs. Iterations.

As for the diversity kernel, we can choose some simple but effective kernel functions such as the
linear kernel, polynomial kernel and Gaussian kernel. Since the dimension of the feature vector (i.e.
Mi) in our experiments is large, the computational burden of Gaussian kernel would be higher than
the others. We finally use K⟨x, y⟩ = (⟨x, y⟩+1)3 due to its best performances in the ablation study
shown in Figure 6.
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Figure 6: Ablation Study of Kernels: Exploitability & Negative PE & UDM vs. Iterations.

2) Extension to More General Games. We here discuss whether UDM can be extended to
n-player, general-sum, or non-symmetric games or not. In theory, UDM can still work in these
games. For each player n, UDM measures the diversity of a population through the diversity kernel
[K(ϕi, ϕj)]i,j , which is determined by the strategy features {ϕi}i of the population. Thus, to show
that UDM can still work in these games, it suffices to show that the strategy features {ϕi}i are
independent of the types of games. Concretely, we can choose ϕi = M(n)

[i,:], where M(n)
i,j :=∑

Sn

∑
S−n π

(n)
i (Sn) ·gn(Sn, S−n) ·π(−n)

j (S−n) is the utility of the i-th strategy π
(n)
i of the player

n against the j-th joint strategy π
(−n)
j of the players −n. However, since the length of S−n :=

(S1, · · · , Sn−1, Sn+1, · · · , SN ) increases with the number of the players, the computational cost of
UDM would be expensive. Investigating how to reduce the computational cost in n-player, general-
sum, or non-symmetric games can be an important future work.
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