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Abstract

Finding accurate solutions to the Schrödinger equation is the key unsolved chal-
lenge of computational chemistry. Given its importance for the development of new
chemical compounds, decades of research have been dedicated to this problem, but
due to the large dimensionality even the best available methods do not yet reach
the desired accuracy. Recently the combination of deep learning with Monte Carlo
methods has emerged as a promising way to obtain highly accurate energies and
moderate scaling of computational cost. In this paper we significantly contribute
towards this goal by introducing a novel deep-learning architecture that achieves
40-70% lower energy error at 6x lower computational cost compared to previous
approaches. Using our method we establish a new benchmark by calculating the
most accurate variational ground state energies ever published for a number of
different atoms and molecules. We systematically break down and measure our
improvements, focusing in particular on the effect of increasing physical prior
knowledge. We surprisingly find that increasing the prior knowledge given to the
architecture can actually decrease accuracy.

1 Introduction

The challenge of the Schrödinger Equation Accurately predicting properties of molecules and
materials is of utmost importance for many applications, including the development of new materials
or pharmaceuticals. In principle, any property of any molecule can be calculated from its wave-
function, which is obtained by solving the Schrödinger equation. In practice, computing accurate
wavefunctions and corresponding energies is computationally extremely difficult for two reasons:
First, the wavefunction is a high-dimensional function, depending on all coordinates of all electrons,
subjecting most methods to the curse of dimensionality. Second, the required level of accuracy is
extremely high. While total energies of small molecules are typically hundreds of Hartrees, the
chemically relevant energy differences are on the order of 1 milli-Hartree as depicted in Fig. 1.
Decades of research have produced a plethora of methods, which all require a trade-off between
accuracy and computational cost: On one end of the spectrum are approximate methods such as
Hartree-Fock (HF) or Density Functional Theory (DFT), which was awarded the Nobel prize in
1998. These methods can treat thousands of particles but can often only crudely approximate chem-
ical properties. On the other end of the spectrum are "gold-standard" methods such as FCI (Full
Configuration Interaction) or CCSD(T) (Coupled Clusters Singles Doubles (Perturbative Triples))
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which yield energies that often closely agree with experiments, but can only treat up to 100 particles.
Despite all these efforts, even for small molecules there do currently not exist highly accurate energy
calculations. A 2020 benchmark of state-of-the-art methods for the benzene molecule found a spread
of 4 mHa across different methods [1] – as a matter of fact, our results show that the absolute energies
calculated in [1] are off by at least 600 mHa, due to the small basis set used in their calculations.
An important characteristic of a method is the type of approximation being made: Hartree-Fock or

Total energy
109.505 Ha
100%

Correlation energy
511 mHa, 0.5 %

Required accuracy
1- 2 mHa
0.002 %

Figure 1: Conceptual visualization of the required accuracies on the example of an N2 molecule: For
chemical applications, total energies must achieve accuracies of ∼99.998%.

FCI are "variational", meaning that their predicted energies at least upper-bound the ground-truth
energy. Since a lower energy is always guaranteed to be a closer approximation of the true energy,
this makes assessment of these methods straight-forward. In contrast, CCSD(T) or DFT do not have
any guarantees on the accuracy of their results. The approximations resulting from such methods,
while working well for many common systems, often fail for chemically challenging situations such
as breaking of chemical bonds [2, 3].

Deep-learning-based variational Monte Carlo Combining deep learning and Monte Carlo meth-
ods has recently emerged as a promising new approach for solving the Schrödinger equation [4, 5].
These methods offer high accuracy, moderate scaling of computational cost with system size and
obey the variational principle. Within a few years deep-learning-based methods have managed to
outperform conventional high-accuracy methods for many different molecules, potentially defining a
new gold-standard for high-accuracy solutions. In the Born-Oppenheimer approximation a molecule,
consisting of nnuc nuclei and nel electrons, is fully described by its Hamiltonian in atomic units

H = −1
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Here RI , ZI , I ∈ {1, . . . , nnuc} denote the coordinates and charges of the nuclei, r =
(r1, . . . , rn↑ , . . . , rnel) ∈ R3×nel denotes the set of nel Cartesian electron coordinates differentiated
between n↑ spin-up and n↓ spin-down electrons. We define the inter-particle vectors rij = ri − rj
and ρiJ = ri −RJ . All properties of the molecule depend on the wavefunction ψ(r), which must
fulfill the antisymmetry constraint: ψ(Pr) = −ψ(r) for any permutation P of two electrons with
the same spin [6]. The wavefunction ψ can be found as the solution to the Schrödinger equation
Hψ = E0ψ with the ground-state energy and smallest eigenvalue E0. By the Rayleigh-Ritz principle
[7], the ground-state energy and the corresponding wavefunction can be found through minimization
of the loss

L(ψθ) = Er∼ψ2
θ(r)

[
Hψθ(r)

ψθ(r)

]
≥ E0 (1)

for a trial wavefunction ψθ, parameterized by parameters θ. The trial function ψθ is represented by a
neural network and typically has the form

ψθ(r) =

ndet∑
d=1

det
[
Λdki(r)Ω

dαi

k (ri)
]
k,i=1,...,nel

(2)

with Λdki : R3×nel → R, Ωdk : R3 → R, αi ∈ {↑, ↓}, i ∈ {1, . . . , nel}, k ∈ {1, . . . , nel}. Each
determinant is taken over a nel × nel matrix, with row-indices k running over orbitals and column-
indices i running over electrons. The determinant enforces antisymmetry, Ωdk are envelope functions
enforcing the boundary condition lim|r|→∞ ψθ(r) = 0, and Λdki are neural networks. The local
energy Hψ

ψ can be evaluated using automatic differentiation and the loss can be minimized by gradient
based methods. The computation of the expectation value in eq. 1 over the high-dimensional space
R3×nel is done using Monte Carlo integration by sampling electron coordinates r distributed according
to ψ2

θ using the Metropolis-Hastings [8] algorithm. A thorough discussion of deep-learning-based
variational Monte Carlo (DL-VMC) can be found in [9].
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Related work Two major neural network architectures and their extensions have emerged through-
out literature: PauliNet [9] and FermiNet [10]. PauliNet puts emphasis on maximizing physical prior
knowledge, by focusing on the the envelope function. They use the output of CASSCF (Complete
Active Space Self Consistent Field, a sophisticated conventional quantum-chemistry method) as Ω
and use a relatively small (∼ 100k weights) neural network for Λ. FermiNet on the other hand uses a
simple exponential function as envelope Ω and uses a large (∼ 700k weights) neural network for Λ.
Both approaches have been applied with great success to many different systems and properties, such
as energies of individual molecules [4, 10, 9], ionization energies [10], potential energy surfaces [11,
12], forces [11], excited states [13], model-systems for solids [14, 15] and actual solids [16]. Several
approaches have been proposed to increase accuracy or decrease computational cost, most notably
architecture simplifications [17], alternative antisymmetric layers [18], effective core potentials [19]
and Diffusion Monte Carlo (DMC) [20, 21]. FermiNet commonly reaches lower (i.e. more accurate)
energies than PauliNet[10], but PauliNet has been observed to converge faster [12]. It has been
proposed [9] that combining the embedding of FermiNet and the physical prior knowledge of PauliNet
could lead to a superior architecture.

Our contribution In this work we present the counter-intuitive observation that the opposite
approach might be more fruitful. By combining a PauliNet-like neural network embedding with
the envelopes of FermiNet and adding several improvements to the embedding, input features, and
initialization of parameter (Sec. 2), we obtain the currently best neural network architecture for
the numerical solution of the electronic Schrödinger equation. Combining our new architecture
with VMC we establish a new benchmark by calculating the most accurate variational ground state
energies ever published for a number of different atoms and molecules - both when comparing to
deep-learning-based methods, as well as when comparing to classical methods (Sec. 3). Across
systems we reduce energy errors by 40-100% and achieve these results with 3-4x fewer optimization
epochs compared to FermiNet. In Sec. 4 we systematically break down which changes cause these
improvements. We hypothesize that including too much physical prior knowledge can actually hinder
optimization and thus deteriorate accuracy – we provide ample experimental evidence in Sec. 5.

2 Improved approach

Similar to FermiNet, our architecture expresses Λdki as a linear combination of high-dimensional
electron embeddings hLi , and the envelopes Ωdαi

k as a sum of exponential functions

Λdki(r) =W dαi

k hLi Ωdαi

k (ri) =

nnuc∑
I=1

πdαi

kI exp(−ωdαi

kI |ρiI |), (3)

where W dαi

k , πdαi

kI , ω
dαi

kI are trainable parameters and we enforce ωdαi

kI ≥ 0. We compute these
embeddings hLi by first transforming the inputs RI , ri into feature vectors

h0
i =

[
|ρiI |, ρ̃iI

]
I∈{1,...,nnuc}

v0
iI =

[
|ρiI |, ρ̃iI

]
g0
ij = |rij |

where [·] denotes the concatenation operation and then applying L iterations of an embedding network
(Fig. 2a). The local difference vectors ρ̃iI are obtained by applying rotation matrices onto ρiI as
described in Sec. 2.2.

2.1 Convolutional layers in embedding

Our embedding network uses four residual neural network streams (Fig. 2b): A primary one-
electron stream that embeds a single electron, and three auxiliary streams modelling the two-particle-
interactions (electrons with same spins, electrons with different spin, and electron-ion).

hl+1
i = Al

one

(
f li

)
+ hli gl+1

ij = Al
σij

(
glij

)
+ glij vl+1

iI = Al
nuc

(
vliI

)
+ vliI (4)

Here l denotes the embedding iteration, Al denote fully connected neural networks, and glij , v
l
iI

denote electron-electron- and electron-nucleus-embeddings. We use σij = ’same’ for same-spin
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Mean over
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Figure 2: Our architecture: a) High-level overview b) One single embedding iteration c) Sub-block
of assembling symmetric features

pairs of electrons and σij = ’diff’ for pairs of electrons with different spin. Similar to FermiNet, in
each iteration we assemble the input f li to the primary stream from the auxiliary streams (Fig. 2c):

f li =

[
hli,

1

n↑

n↑∑
j=1

hlj ,
1

n↓

nel∑
j=1+n↑

hlj , sl,el
i , sl,nuc

i

]
. (5)

Inspired by the success of SchNet [22] and the efficiency of the PauliNet embedding, we use the
sum of element-wise multiplication (⊙), effectively forming a convolution, to aggregate the auxiliary
two-particle streams:

sl,el
i =

nel∑
j=1

Bl
σij

(
glij

)
⊙Cl

σij

(
hlj

)
sl,nuc
i =

nion∑
I=1

Bl
nuc

(
vliI

)
⊙Cl

nuc

(
Zemb
I

)
(6)

Eq. 5 and 6 form the core of the architecture and are the key difference between FermiNet, PauliNet
and our architecture. The PauliNet architecture emphasizes two-particle interactions and essentially
only uses convolutions as input features: f li = [sl,el

i , sl,nuc
i ]. In addition to not using the hi as input

features, PauliNet also limits its effective depth by making the convolutional kernels B functions
of the electron-electron distances |rij | instead of the high-dimensional embedded representations
gij . The FermiNet architecture on the other hand emphasizes the one-electron stream and only uses
sums over gij as input features, essentially corresponding to Bl = Id, C(·) = 1. Furthermore
FermiNet does not contain an explicit stream for electron-nucleus interactions. Since our architecture
adequately models both the one-electron-embedding as well as the two-particle-interactions, we
expect our architecture to be more expressive than either predecessor, as demonstrated in Sec. 4.

2.2 Local, invariant input features

The first stage of any VMC wavefunction model is typically the computation of suitable input features
from the raw electron coordinates r and nuclear coordinates {RI}. While the subsequent embedding
stage could in principle take the raw coordinates, appropriate features allow to explicitly enforce
symmetries and improve the model’s transferability and accuracy. Input features should have three
properties: First, they should be sufficiently expressive to encode any physical wavefunction. Second,
the features should be invariant under geometric transformations. Third, the features should primarily
depend on the local environment of a particle, i.e. similar local geometries should generate similar
local features, mostly independent of changes to the geometry far from the particle in question.
Published architectures have so far not been able to address all three points: PauliNet [10] uses
only distances as input features, making them invariant and local, but not sufficiently expressive, as
demonstrated by [12]. FermiNet [10] uses raw distances and differences, making the inputs expressive
and local, but not invariant under rotations. PESNet [12] proposes a global coordinate system along
the principle axes of a molecule, making the inputs invariant and sufficiently expressive, but not local.

We propose using local coordinate systems centered on every nucleus and evaluating the electron-
nuclei differences in these local coordinate systems. Effectively this amounts to applying a rotation
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a.) Ethene b.) Hypothetical chain of atoms Global
coordinates 
(PESNet)

Local
coordinates 
(this work)

Figure 3: Visualization of resulting coordinate systems for 2 example molecules: a) Ethene b) A
hypothetical bent chain of atoms.

matrix UJ to the raw electron-nucleus differences: ρ̃iJ = UJρiJ . As opposed to [12] where U
is constant for all nuclei, in our approach UJ can be different for every nucleus. These electron-
nucleus differences ρ̃iJ are invariant under rotations, contain all the information contained in raw
Cartesian coordinates and depend primarily on the local environment of an atom. To compute the
3x3 rotation matrices UJ , we first run a single Hartree-Fock calculation using a minimal basis set to
obtain a density matrix D. For each atom J we choose the 3x3 block of the density matrix which
corresponds to the 3 p-orbitals of the atom J and compute its eigenvectors UJ = eig(DJ). To make
our coordinate system unique we sort the eigenvectors of DJ by their corresponding eigenvalues. If
the eigenvalues are degenerate, we pick the rotation of the eigenvectors that maximizes the overlap
with the coordinate-axes of the previous nucleus. Fig. 3 shows the resulting coordinate systems
spanned by UJ . Note that the local coordinate system generally depicts more physically meaningful
directions such as "along the chain". We find that these local coordinates slightly increase the accuracy
for single geometries, but more importantly we expect the wavefunction to generalize better across
different molecules or geometries. This should improve the accuracy of approaches that attempt to
learn wavefunctions for multiple geometries at once [11, 12].

2.3 Initialization of orbital envelope weights

When considering a single atom, the entries of the wavefunction determinant have essentially the
form

Λki(r) exp (−ωk|ρiI |) .

In [10], the exponential envelope was purely motivated by the boundary condition that the orbitals
must decay to zero, and initialization with ωk = 1 was proposed. However, when comparing
this ansatz to analytical solutions, an interesting parallel can be found: Analytical solutions to the
Schrödinger equation for atoms with a single electron – the only systems that have analytical solutions
– are of the form

Λ̃k(ρiI) exp

(
− Z

nk
|ρiI |

)
,

where Λ̃k(ρiI) is a product of a Laguerre polynomial and a spherical harmonic, and nk ∈ N+

is known as the principal quantum number. This suggests ωk ≈ Z/nk, which we also find when
analyzing the weights of a fully trained wavefunction. When initializing with ωk = Z/nk instead of
ωk = 1, we observe faster convergence, lower final energies, and lower variance of the energies (Sec.
4). The effect is most notable for molecules containing nuclei with large Z, where Z/nk ≫ 1.

2.4 Improved hyperparameters

Beyond the improved neural network architecture we fine-tuned the hyperparameters to reduce the
number of optimization steps required for convergence. Starting from the hyperparameters proposed
by [10], we increased the norm constrain by 3x for the second-order optimizer KFAC [23, 24],
decreased learning rate by 0.5x, and decreased learning rate decay time by 0.4x. We observe that
these changes stabilize the optimization and enable usage of 50% fewer Monte Carlo walkers, which
results in ∼2x faster optimization and reduced memory allocation. A complete set of hyperparameters
can be found in appendix B.
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3 Results of improved approach

We evaluated the accuracy of our approach by comparing our computed energies against the most
accurate references available in the literature. Fig. 4 compares our energies against variational
methods – for which lower energies are guaranteed to be more accurate – as well as non-variational
high-accuracy methods. We find that across many different systems (small and large atoms, molecules
at equilibrium geometry, molecules in transition states), our approach yields substantially lower –
and thus more accurate – energies than previous variational results. Across all tested systems, we
outperform almost all existing variational methods, both deep-learning-based methods as well as
classical ones. When comparing to high-accuracy FermiNet VMC calculations, we not only reach
substantially lower energies, but also do so using 3-4x fewer training steps, with each step being 40%
faster (cf. appendix C). Comparing to a concurrently published Diffusion Monte Carlo approach,
which used ∼10x more computational resources, we achieve similar or better accuracy for molecules
like N2 and cyclobutadiene and slightly lower accuracy for benzene. Non-variational methods (e.g.
CCSD(T)) yield slightly lower energies than our calculations for some molecules, but since those
methods do not provide upper bounds or uncertainty guarantees they do not provide a ground-truth.
For many applications not only absolute energies are important, but energy differences between
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Figure 4: Energies relative to the previously known best estimate, (lower is better). Blue bars depict
best published variational energies, footnotes mark the method: a: FermiNet VMC [10, 17], b:
Conventional DMC [25, 26, 27], c: FermiNet DMC [21], d: MRCI-F12. A table of absolute energies
and methods for Eref can be found in appendix A. Note that Eref is not necessary variational and thus
may underestimate the true energy.

different molecules or geometries are of interest, for example to determine the energy required to
break a chemical bond. A particularly difficult challenge is the dissociation of the N2 molecule, i.e.
the energy of an N2 molecule at different bond lengths (inset Fig. 5). Even methods that are generally
regarded as highly accurate, such as CCSD(T), predict energies that deviate far from experimental
data at bond-lengths from 2.5 - 4 bohr. Fig. 5 depicts this deviation between experimental and
computed energy for our method and the best available reference calculations. We find that our
results are closer to the experimental absolute energies than all previous work, and are similar to
concurrently published FermiNet-DMC results which require 5-10x more computational resources.
When comparing relative energies, our approach outperforms all other deep-learning-based methods
and CCSD(T), and is only beaten by the highly specialized r12-MR-ACPF method [28]. Similar to
absolute energies, we also find that our relative energies converge substantially faster than for other
deep-learning-based methods, with relative energies being almost fully converged after 50k epochs.
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Figure 5: Comparison of energy error E - Eexperiment for the dissociation of the N2 molecule across
various methods. Errorbars corresponds to the standard deviation wrt. two different seeds. Errorbars
for our work are too small to be visible (∼ 0.1 mHa). Results for Eexperiment can be found in [29],
FermiNet block-det & CCSD(T) in [10], FermiNet DMC in [21] and r12-MR-ACPF in [28].

4 Ablation study

To investigate which specific changes lead to the observed improvements in accuracy, we start from
the improved FermiNet architecture proposed in [17] and incrementally add improvements in the
following order: First, we use dense nel × nel determinants introduced by the FermiNet authors [10,
17] in their GitHub repository and described in [18] instead of block-diagonal determinants. This
generalization increases computational cost and parameter count (cf. appendix C) but has been found
to better describe the wavefunction’s nodal surface and thus increase expressiveness of the ansatz.
Second, we change hyperparameters as described in Sec. 2.4, which increases throughput by ∼ 2x.
Third, we augment the electron embedding using our new SchNet-like neural network architecture
described in Sec. 2.1. This leads to a moderate increase in parameter count and computational cost.
Fourth, we switch to local, invariant input features as described in Sec. 2.2 and remove the electron-
electron difference vectors rij as inputs. Lastly we switch to initializing ωdkI = Z/nk as described in
Sec. 2.3, resulting in our proposed final method. We note that the accuracy gains of these changes are
not fully independent of each other and the relative attribution depends on the order in which they
are applied: Earlier changes will generally generate larger energy improvements compared to later
changes. At each step we compute total energies for three different molecules: ethene, N2 at the
challenging bond-length of 4.0 bohr, and the K-atom. Fig. 6 depicts the energy of our implementation
of FermiNet, and the energy change caused by each subsequent improvement. Each experiment
was repeated two times with different RNG seeds (appendix D), the errorbars depict the spread in
energy. Overall we find that all our changes combined yield a ∼3-20x improvement in the energy
error. For ethene, the dominant contribution (3.7 mHa) comes from improved hyperparameters,
which lead to the results being mostly converged after 50k epochs vs. the original settings which
require 200k epochs for convergence. Using a lower learning rate in combination with a larger
gradient-norm-constraint ensures that more optimization steps are taken according to curvature
estimated by KFAC and fewer steps are clipped by the gradient-norm-constraint. Architectural
improvements (embedding and input features) lower the energy error by additional 1.4 mHa. Because
our embedding is a strict generalization of both FermiNet and PauliNet, our ansatz is more expressive
and can therefore reach lower energies than previous ansätze. For N2 it has already been observed
that a single dense determinant can outperform models with multiple block-diagonal determinants
[18]. We find the corresponding result that 32 dense determinants substantially lower the energy
relative to an ansatz with 32 block-diagonal determinants. Comparing N2 to ethene, we observe
larger contributions from our architectural improvements and smaller contributions from improved
hyperparameters. For the K atom, the overall gains are largest, totalling 60mHa, with substantial
accuracy gains from all improvements. Since K has a much larger nuclear charge (Z=19) than the
constituents of ethene (Z=1,6) and N2 (Z=7), also the physics-inspired initialization of the envelope
parameters yields a substantial contribution. This improved initialization leads to a better initial guess
for the wavefunction, which not only reduces the number of required optimization steps, but also
leads to more accurate initial sampling.
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Figure 6: Breakdown of accuracy improvements for three different molecules, each trained for 50k
epochs. The black dashed line depicts the best published variational result and as reference we use
the best available estimates: CCSD(T) [10] for ethene, experimental data for N2 [29], and our own
VMC calculations after 100k epochs for the K atom.

5 Incorporating prior knowledge

To further understand the effect of incorporating prior knowledge into neural network architectures
for physical problems as the electronic Schrödinger equation, we examined two distinct ways of
increasing prior information in our model: First, by including a built-in approximate physical model,
analogous to PauliNet. Second, by increasing the number of pre-training steps to more closely match
a reference wavefunction before starting the optimization.

Explicitly include CASSCF PauliNet maximizes the physical prior information by computing the
envelopes Ω with CASSCF, a sophisticated conventional method, and explicitly enforcing the Kato
cusp conditions [30]. Starting from our proposed architecture, we modified our approach step-by-step
until we arrived at a PauliNet-like architecture. Fig. 7a shows the energies of an NH3 molecule
trained for 50k epochs at each step.
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Figure 7: Effect of prior knowledge for NH3: a) Change in accuracy after 50k optimization epochs
when transitioning from our approach to a PauliNet-like architecture, by increasing prior knowledge.
b) Energy error for 3 architectures over number of training epochs. c) Mean and standard deviation of
the energy error as a function of pre-training steps. Pre-training used CASSCF or HF as a reference,
and the energy was evaluated after 20k or 50k subsequent variational optimization epochs.
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First, we switch from dense determinants to block-diagonal determinants as used by the original
PauliNet, leading to small loss in accuracy. Second, we exchange our embedding for the PauliNet-like
embedding using the hyperparameters proposed in [11], leading to a substantial loss in accuracy,
presumably caused by a loss in expressiveness. Next, we replace the simple exponential envelopes by
the more physically inspired CASSCF-envelopes, causing a large loss in accuracy. We then remove
the vector ri −RI as input feature (keeping only its absolute value) as done in the original PauliNet
architecture [9]. This again deteriorates accuracy, presumably due to enforcing rotational invariance
which is too restrictive of a symmetry class as pointed out by [12]. Lastly we replace the electron-
electron distances |rij | (which are not smooth at rij = 0 and thus lead to cusps) by smooth, cuspless
radial basis functions as input feature and add an explicit term to enforce the electron-electron cusp
condition. Since the CASSCF-envelopes are designed to fulfill the electron-ion cusp condition, this
change leads to an enforced cusp condition, slightly improving the energy accuracy. The largest loss
in accuracy throughout these changes is caused by introducing the CASSCF-envelopes, suggesting
that they introduce a strong bias of the wavefunction that cannot be easily overcome during training.
Fig. 7b shows that architectures using exponential envelopes converge to lower absolute energies
compared to the CASSCF-based PauliNet and outperform PauliNet already after ∼5000 epochs.

Increase pre-training accuracy Before starting the unsupervised variational optimization of the
wavefunction, we run a short supervised pre-training of the wavefunction to roughly match a given
reference wavefunction. This is computationally inexpensive because it only requires evaluation of
ψθ and a back-propagation step to update the neural network weights θ but not the second derivative
of the Hamiltonian. If the reference method yields a decent approximation to the true wavefunction,
this pre-training significantly speeds-up optimization and avoids unstable parameter regimes [10].
To incorporate more prior knowledge, one could either use a more sophisticated reference method
(e.g. CASSCF instead of HF) or increase the number of pre-training steps. In Fig. 7c we pre-trained
the wavefunction with a block diagonal determinant for the NH3 molecule using a CASSCF and
Hartree-Fock reference. We increased pre-training iteration steps and evaluated the energy after
subsequent 20k and 50k variational optimization epochs, each run was repeated with five different
seeds. Increasing the number of pre-training steps initially increases accuracy – since it provides a
better starting point for the subsequent variational optimization – but when increasing pre-training
beyond 20k steps, accuracy deteriorates for both methods. Surprisingly, we observe a drop in accuracy
when using CASSCF as a reference method compared to the simpler Hartree-Fock method. This
effect is even more pronounced when increasing the number of pre-training steps. It suggests that
excessive pre-training introduces a bias that is hard to overcome during variational optimization,
similarly to a built-in reference method.

6 Discussion and Limitations

Discussion We find that our approach yields substantially more accurate absolute energies than all
previous work – both classical as well as deep-learning-based – and that we reach these accuracies
4-6x faster than the next best method (FermiNet). Especially for larger systems, such as 4th row atoms
or the amino acid glycine, we outperform conventional "gold-standard" methods like MRCI-F12(Q)
by ∼100 mHa. This corroborates the fact that deep-learning-based methods are emerging as a
new gold-standard in computational chemistry and showcases the immense potential of machine-
learning-based methods in the natural sciences. A concurrent work [21] was able to achieve similar
accuracies by applying Diffusion Monte Carlo (DMC) on top of a FermiNet VMC calculation,
highlighting the potential of deep-learning Monte Carlo methods. However, [21] required ∼10x more
computational resources and their VMC results – already by themselves 8x more expensive then
our calculations – are consistently inferior to our results. This showcases a promising route towards
further improvements by using our substantially cheaper and more accurate VMC results as a starting
point for a DMC calculation.

Regarding the question of how much physics to include in the model, we find varying results. For
exact physical constraints, such as symmetries or the cusp conditions, inclusion in the model generally
appears to be helpful. However for prior knowledge from existing approximate solutions (such as
CASSCF) the situation is more subtle. On the one hand, soft physical guidance such as short
supervised pre-training or physics-inspired weight initialization accelerates optimization. On the
other hand, we show empirically that increasing physical prior knowledge, e.g. by incorporating
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CASSCF or extensive supervised pre-training, does not necessarily increase accuracy, but can in fact
introduce detrimental biases that are hard to overcome during wavefunction optimization.

Limitations and outlook Despite the proposed improvements and favorable scaling of the method,
computation of energies for large molecules still takes days of GPU-time on current hardware.
While the same holds true for conventional high-accuracy approaches, substantial speed-ups are
still required to make DL-VMC more accessible for practitioners. Additionally, when increasing
the nuclear charges, the wavefunction becomes increasingly localised, which leads to a reduction
in average Monte Carlo stepsize and potentially correlated samples. We circumvent this effect for
4th row atoms by increasing the number of intermediate Monte Carlo steps, but further research
into Monte Carlo sampling methods [31, 32] is required to fully address this issue. Despite our
improvements for the accuracy of energy differences between different molecules or geometries, DL-
VMC is still outperformed by other, computationally cheaper methods in some cases. Initial research
into the regularity of the wavefunction across different molecules [11, 12] provides a promising
route to improvements. We note in passing that thanks to the local coordinate input features, our
architecture fulfills the required rotational invariance required for these approaches.

7 Code availability

The code alongside a detailed documentation is available as part of the DeepErwin code package
on the Python Package Index (PyPI) and github (https://github.com/mdsunivie/deeperwin)
under the MIT license.
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