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Abstract

Retrosynthetic planning occupies a crucial position in synthetic chemistry and,1

accordingly, drug discovery, which aims to find synthetic pathways of a target2

molecule through a sequential decision-making process on a set of feasible re-3

actions. While the majority of recent works focus on the prediction of feasible4

reactions at each step, there have been limited attempts toward improving the5

sequential decision-making policy. Existing strategies rely on either the expensive6

and high-variance value estimation by online rollout, or a settled value estimation7

neural network pre-trained with simulated pathways of limited diversity and no8

negative feedback. Besides, how to return multiple candidate pathways that are not9

only diverse but also desirable for chemists (e.g., affordable building block materi-10

als) remains an open challenge. To this end, we propose a Goal-dRiven Actor-critic11

retroSynthetic Planning (GRASP) framework, where we identify the policy that per-12

forms goal-driven retrosynthesis navigation toward a user-demand objective. Our13

experiments on the benchmark Pistachio dataset and a chemists-designed dataset14

demonstrate that the framework outperforms existing state-of-the-art approaches15

by up to 32.2% on search efficiency and 5.6% on quality. Remarkably, our user16

studies show that GRASP successfully plans pathways that accomplish the goal17

prescribed with a goal (building block materials).18

1 Introduction19

Retrosynthetic planning has significantly advanced chemical synthesis, bringing in increasingly20

sophisticated medicines that cure diseases and materials that improve life. A retrosynthetic planner21

takes the structure of a target molecule as input and recursively selects feasible reactions to unsolved22

intermediate molecules until eventually reaching building block molecules. Since an unsolved inter-23

mediate molecule usually requires multiple steps of reactions to synthesize and at each step has up24

to hundreds of feasible reaction candidates, retrosynthetic planning with an enormous search space25

is very challenging even for experienced chemists. Consequently, computer-aided synthesis plan-26

ning (CASP) enters the scene to assist chemists in accelerating the process of designing retrosynthetic27

pathways.28

Computer-aided retrosynthesis planning consists of: 1) a single-step retrosynthesis prediction which29

predicts a list of feasible reaction candidates that connect a target molecule to its respective precursors,30

and 2) a multi-step planning policy that searches for the optimal synthetic pathway by recursively31

applying the single-step prediction model. Recent years have witnessed a plethora of advancements in32

single-step prediction models [25, 30, 19, 9], while in this work we are pursuing a more efficient and33

effective planning policy that limits the effective search space to include the most likely successful34

pathways.35

Prior multi-step planning centered around tree or graph search methods [10, 21], where the search36

is guided by only the total reaction cost (quality) from the target molecule to the current node. To37
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improve the search policy, recent attempts [24, 2, 7] include the estimated value from the current node38

to building block molecules, i.e., being building block aware. Unfortunately, the value estimation in39

[24, 7] is by online roll-out, unfavorably being of high variance and low search efficiency. Though40

[2] addressed this issue by pre-training a value network on simulated pathways, these pathways41

constructed from an existing single-step reaction dataset offer limited diversity and no negative42

experiences to learn from.43

Over and above, scoring and ranking the quality of many feasible pathways towards a target molecule44

has been notoriously difficult. The considerations that dictate a high-quality pathway, including high45

reaction yields, simple reaction conditions, and low building block molecule costs, are oftentimes46

conflicting and require a trade-off; moreover, predicting reaction yields [22] and conditions is very47

challenging due to ill-defined and noisy annotations. Chen et al. [2] proposed to evaluate the quality48

with the negative log-likelihood of all reactions predicted by the single-step model, while it is49

predicated on the assumption that frequent reactions are with high yields or easy conditions and50

biased by the seen reactions that train the single-step model. Keeping in mind that the objective51

of retrosynthetic planning is to assist chemists, in practice the challenge of quality evaluation can52

be overcome by 1) returning as diverse feasible pathways as possible for chemists to weigh their53

preferences, and 2) returning the pathways that meet the qualifying conditions prescribed by chemists,54

e.g., a set of very cheap building block materials or easy-to-synthesize intermediate molecules.55

Therefore, we are motivated to propose a Goal-dRiven Actor-critic retroSynthetic Planning (GRASP)56

framework. Specifically, we formulate retrosynthesis planning as a reinforcement learning (RL)57

problem, where we first learn a policy network that takes continuous actions encoding the structure-58

level molecular information to allow navigation in the huge discrete action space of single-step59

reaction candidates. Moreover, GRASP learns a goal-driven Q-value estimation network to update60

the policy, by sampling both successful (positive) and failed (negative) experiences and relabeling the61

goals of sampled experiences. Finally, the learned Q-value estimation and policy networks join to62

guide the Monte-Carlo Tree Search, after which GRASP returns diverse pathways as a result of a63

good exploration-exploitation tradeoff. In summary, our contributions are threefold.64

• We propose a novel actor-critic retrosynthetic planning framework GRASP, which learns from65

extensive positive and negative experiences to navigate through huge single-step reaction spaces.66

• We are the first to empower goal-driven planning, which mitigates the challenge in quality evaluation67

of pathways by directly fulfilling the requirements prescribed by chemists.68

• We have evaluated the performance of GRASP on both an academic and an industrial benchmark69

dataset. The results and user studies demonstrate that GRASP outperforms all baselines in general70

retrosynthetic planning metrics by a significant margin and is the first to achieve high-quality71

goal-driven retrosynthetic planning.72

2 Related Work73

Single-step Retrosynthesis Prediction Single-step prediction models can be categorized into two74

main classes, i.e., template-based and template-free. Template-based methods rely on templates75

that encode chemical reaction cores to convert a product molecule into reactants. The key is76

to rank templates and select an appropriate template to apply, for which recent attempts [3, 23]77

solve the problem of template selection through a classification neural network. Despite their78

superior interpretability, template-based approaches are disadvantaged by 1) the daunting challenge79

of atom-mapping for template extraction, and 2) poor generalization to unknown reaction types80

or structures beyond templates. On the other hand, template-free methods [13, 12, 20], inspired81

by the recent progress of seq2seq [27] and Transformer [28], regard single-step retrosynthesis82

prediction as a translation task and translate a product molecule represented in SMILES strings [29]83

to reactant SMILES strings. To join the benefits of template-based and template-free methods, recent84

works [25, 30, 19] seek semi-template-based methods where the reaction center dictating a reaction85

is firstly predicted via graph neural networks and the resulting intermediate synthons are secondly86

translated into reactants via seq2seq or graph translation models. Recently, Kim et al. [9] proposed to87

fine-tune a single-step prediction model with the feedback from a multi-step retrosynthetic planning88

policy, leading to a search-guided single-step model. We have validated in Section 4.3 that our89

planning policy is also compatible with the framework and improves single-step prediction and90

thereby final pathways.91

Multi-step Retrosynthetic planning We summarize the comparison of existing multi-step retrosyn-92

thetic planning policies in Table 1. Specifically, previous planning methods HgSearch [21] and the93
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Neural-guided
search

building blocks
awareness

Negative
experiences

Exploration-exploitation
tradeoff Goal-driven

HgSearch [21] ✗ ✓ ✗ ✓ ✗
DFPN-E [10] ✗ ✗ ✗ ✗ ✗
MCTS [24] ✗ ✓ ✓ ✓ ✗
Retro* [2] ✓ ✓ ✗ ✗ ✗
Ours ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of different planning frameworks in five dimensions. Neural-guided Search
learns from past multi-step planning experiences a planning policy characterized by a neural network;
Building blocks Awareness: The value of a planning policy is biased towards reactions leading to
building block molecules; Negative Experiences mean planning pathways with failure; Exploration-
exploitation tradeoff: A planning policy balances exploration and exploitation, resulting in more
diverse pathways. Goal-driven: A planning policy is capable of performing planning towards a
specific goal.

proof number search [10] are traditional heuristic search algorithms, where the chemical feasibility94

and the value of the negative (failure) pathways are not considered. Inspired by AlphaGo [26], Segler95

et al. [24] adopted the Monte-Carlo tree search to generate a search tree on the fly and explore and96

generate multiple synthesis pathways. Unfortunately, each node with a combination of all precursors97

in a reaction leads to enormous search space, and the value estimation by online roll-out is of high98

variance and high computation cost. Recently, inspired by [10], Chen et al. [2] designed a neural-99

based A*-like algorithm that learns an additional value network with automatically constructed100

and only successful pathways to bias the search prior. One disadvantage of Retro* [2] is that it101

fails to balance exploration and exploitation, resulting in less diverse pathways. Moreover, none of102

the previous approaches is capable of biasing the retrosynthetic planning toward a favorable goal103

prescribed by chemists.104

3 Methods105

First, Sec. 3.1 introduces Markov decision process (MDP) setting for goal-driven retrosynthetic106

planning. Secondly, Sec. 3.2 elaborates on the framework of the GRASP goal-driven actor-critic107

agent and the training procedure with TD3 [6] algorithm. Lastly, Sec. 3.3 introduces GRASP planning108

for a given target molecule under a goal-driven variant of MCTS.109

3.1 Goal-driven MDP for retrosynthetic planning110

We denote a finite-horizon MDP by M = {S,A, T ,G, r(s, a, g), H, γ} for our goal-driven retrosyn-111

thetic planning task. We use s ∈ S to denote the state (molecule) space, a ∈ A to denote the112

action (reaction) space which consists of reaction candidates a generated by the single-step prediction113

model, and T (st+1|st, at) to denote the state transition from st to st+1 through performing reaction114

a with a deterministic state transition probability. We denote the goal space as G, which has the same115

size as the state space S since our goal is to navigate toward particular states. Considering the ultimate116

goal for retrosynthesis is to discover retrosynthetic pathways reaching building block molecules, we117

denote the goal for the entire set of building block molecules as GB, where each goal gi ∈ GB indicates118

a specific building block molecule i. To simultaneously adapt to both general (non-goal-driven) and119

goal-driven retrosynthetic planning, we define g = GB as all zero embedding and concatenate the120

goal embedding with an additional binary feature embedding, where we use I(g = GB) = 0 for the121

general planning and I(g = gi) = 1 for the goal-driven planning towards goal gi. For the reward122

design of r(s, a, g), we assign the goal-driven path-finding reward as r(s, a, g) = 1 when the state s123

reaches the desired goal g after taking action a and r(s, a, g) = 0 otherwise. Finally, γ is the discount124

factor, and H is the maximum horizon (length) for the pathway.125

3.2 GRASP framework and training procedure126

GRASP has two parametrized components as shown in Fig. 1: actor network denote by πϕ(a|s, g)127

and critic network by Qθ(s, a, g). In the setting of retrosynthetic planning, we regard the upstream128

single-step retrosynthesis predictor as the environment and retrosynthetic planner as the agent.129

At each time step t, the agent outputs a proto-action ãt with the same size as action embedding,130

according to its goal-driven policy network πϕ(ãt|st, g) from observing the current state st and goal131

g. Since we are unaware of the possible goal state for a given initial state without prior knowledge,132

we use g = GB in πϕ(ãt|st, g = GB) as behavioral policy. Specifically, we add a small amount of133
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random noises N to the action for exploration during sampling:134

ãt
′ = ãt + ϵ; ϵ ∼ N (µ, σ).

After acquiring the proto-action ãt
′, the agent has to identify an actual reaction at from available135

reaction candidates A(st) given the state st and action embedding ãt. Inspired by the k-nearest136

neighbor (k-NN) trick for large discrete action space similar to the Wolpertinger training [5], we137

use the true action embeddings from the available actions A(st) for the k-NN calculation during the138

action selection procedure. Furthermore, we may encounter reactions that induce more than one non-139

building block molecule as reactants, namely convergent synthesis. Convergent synthesis reaction,140

although infrequent in retrosynthesis , introduces a variation in the cardinality of state representation141

s that conflicts with MDP settings. Previous MCTS for retrosynthesis [24] accumulates all non-142

building block reactants as a set of molecules in state representation, but only performs action143

selection on a single molecule. The combinatorial nature of state representation introduces bias in144

reward propagation and sparsity in variance estimation. To overcome this complexity during the145

sampling and training phase, we use the average distance among all reactants for k-NN computation146

each time we encounter a reaction with convergent synthesis. As a result, we obtain an actual reaction147

at by referring to the k-NN computation of the proto-action ãt over the available actions A(st). If a148

convergent synthesis reaction is identified as the true action at by the environment, non-building block149

reactants are split into separate next states as independent trajectories to perform parallel sampling.150

Eventually, the next state st+1 is defined as the non-building block molecule among the reactants151

of at. The sampling of a trajectory terminates when the state reaches the goal g or the length of the152

trajectory reaches the maximum horizon H .153

Goal-driven relabeling: To capture the goal-driven planning insights from a retrosynthesis pathway154

and accelerate learning in the sparse reward setting, we are inspired by [1] to relabel transition tuples155

in trajectories. The core idea of applying goal-driven relabeling in retrosynthesis is to exploit the156

data generated from the general retrosynthesis policy πϕ(a|s, g = GB) to train featured retrosynthesis157

planning data, and incorporate the agent with knowledge of navigating toward a specific goal state158

g = gi. In practice, we copy the state transition tuple Mi = (si, ai, ri(.|gi = GB), si+1) and159

randomly relabel the tuple Mi = (si, ai, ri(.|g′i), si+1) with a relabeling probability pr using future160

relabeling strategy. Specifically, for the ith tuple M⟩ in trajectory τ with length T , we perform161

goal-driven relabeling by iterating over all future transitions as:162

g′i =

{
si+k, pr
GB, 1− pr

for k ∈ (0, T − i]. Since the relabeling probability pr is an important hyperparameter to balance163

between general and goal-driven planning, we will further examine the effect of different pr on the164

planning performance in the experiment.165

The RL agent is trained with TD3 [6] algorithm. For tuple i in a training batch, the target critic166

network is first updated using the one-step TD equation as:167

ytdi = ri + γQ′(si+1, π
′(si+1, gi+1), gi+1), (1)

where, Q′ and π′ denote the target critic and actor networks with fixed parameters copied from168

original critic and actor networks Qθ and πϕ respectively, and ri, si+1, gi+1 represents the reward,169

state, and goal at the step t. With the TD target yi, we can calculate the batch mean-square-error loss170

on the original critic network Qθ(s, a, g) as:171

L(θ) =
1

N

∑
i

(ytdi −Qθ(si, ai, g)). (2)

Since the goal of the actor network is designed to maximize the overall return (success rate), and the172

goal of critic network is to approximate the overall return, the actor πϕ can be trained by maximizing173

the Q value by minimizing:174

L(ϕ) = − 1

N

∑
i

(−Qθ(si, πϕ(ã|si, g), g)). (3)

Self-imitation learning: To learn from highly imbalanced pathways in the overall search space175

(> 85% failures), we adopt self-imitation learning [17] (SIL) to accelerate the convergence in sparse176
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1. Initialize by sampling a 
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Actor Network 
πϕ(ã |s, g)
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candidates 

𝒜(s)

ã

a

Environment

si+1

r

Replay buffer

Goal-driven relabeling

Training batch

Critic Network 
Qθ(s, a, g)

Q(s, a, g)

Figure 1: GRASP training flowchart (left) and the goal-driven actor-critic framework (right). Grey
boxes indicate the agent-level components that will be used further during GRASP planning, and
green boxes indicate the components used in GRASP training only.

reward and enhance the training efficiency. Intuitively, SIL assists the RL agent to emphasize high-177

quality planning experiences. Instead of using the Bellman equation for calculating the target Q-value,178

SIL directly uses the Monte-Carlo return of each ‘good’ episode as the Q-value target. It is crucial179

for the agent to exploit success trajectories in retrosynthetic planning tasks, especially during the180

early stage of training when a large proportion of samples in the replay buffer originated from failed181

trajectories. We denote the simplified SIL loss for ith tuple in a success trajectory τ with length h as:182

L(θ) =
1

N

∑
i

(ysili −Qθ(si, ai, g)), (4)

where ysili =
∑h

i=k γ
h−kri. We also include the full training algorithm as Alg. 1 in Appendix B.183

3.3 GRASP retrosynthetic planning184

In this section, we demonstrate the GRASP planning procedure for a target molecule and a specific185

goal with GRASP RL agent πϕ(a|s, g) and Qθ(a, s, g).186

Since each newly expanded molecule node is the same as the initial state in GRASP , it is natural to187

combine our RL agent into Monte-Carlo tree search (MCTS) with goal-driven p-UCT function [26]:188

at = argmax
a∈A(st)

Q(st, a, g)

N(st, a)
+ cP (a|st, g)

√
N(st−1, at−1)

1 +N(st, a)
. (5)

Previous MCTS for retrosynthesis [24] used an online roll-out stage for Monte-Carlo estimation189

of success rate for each leaf node, which both suffer from high-variance and heavy computation.190

Therefore, one of the key differences between GRASP and Segler et al. during the planning stage is191

we completely skip the online roll-out stage and directly refer to the RL agent for value estimation192

of the leaf nodes instead of Monte-Carlo estimation from the online roll-out. To align with our193

MDP settings in RL, we adopt a goal-driven MCTS planning with individual molecules as tree node194

representation. Specifically, our framework consists of three phases as shown in Fig. 2, and for195

simplicity, we ignore all building block molecules in the figure since no selection action will be196

performed on:197

• Selection: Starting from the root node, the p-UCT function in Eq. 5 is used to iteratively select198

an action. At any step t, available actions in candidate set at ∈ A(st) and respective single-step199

confidence score pc(at|st) are provided by the single-step retrosynthesis predictor, and we define:200

p(at|st, g) = pc(at|st)
exp( 1

D(ã,at)
)∑

aj∈A(st)
exp( 1

D(ã,aj)
)
, (6)

where D(·) is the same distance metric used in the k-NN calculation, ã is produced by policy201

network πθ(ã|st, g), and N(st−1, at−1) denotes the visit count of the state-action pair of previous202
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along the 
selected edges 
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root node

Figure 2: Overview of GRASP planning procedure. Specifically, the selected pathway (green)
includes 4 specific reactions:A → B,B → C +D,C → E,D → F .

states. If a convergent synthesis action with multiple non-building block reactants is selected, we203

perform parallel selection and select all non-building block reactants as the next state. We iteratively204

perform selection on states until reaching a leaf node. Eventually, a set of leaf nodes is identified for205

expansion.206

• Expansion: Each leaf node st from the selected set is expanded by referring to the single-step model.207

Each available action from A(st) is directly appended to the node st. For convergent synthesis208

action, we generate the same number of leaf nodes depending on the quantity of unsolved molecules.209

For each newly generated leaf node, we evaluate their Q∗ value with the following rule: if there is210

no available action for st, we directly apply Q∗ = 0. Before applying Qθ(s, a, g) network to assign211

Q∗ value for newly added leaf nodes, we assign Q∗ = 1 and label it as ‘solved’ if the st reaches212

g or Q∗ = 0 if the state reaches the maximum horizon. If the state is undetermined, we assign213

Q∗ = Qθ(st+1, a, g) by applying Qθ value network.214

• Update: During the update phase, the Q∗ values and visit counts N(s, a) are traversed backward215

following the selection path from leaf nodes back to the root node. We use a simple moving average216

for updating Q value with a discount factor γ:217

Q′(st, a, g) = Q(st, a, g) +
1

N(s, a)
[γQ∗ −Q(st, a, g)].

4 Experiments218

4.1 Experiment setup219

4.1.1 Baseline Algorithms and Evaluation metrics220

We compare our approach against a varieties of baselines including: MCTS [24], DFPN-E [10],221

Retro*-0 and Retro* [2], and Hyper-Graph Search (HgSearch) [21].222

MCTS[24]: The original version of MCTS for retrosynthesis planning which exploits online roll-out223

to obtain Monte-Carlo estimation of future value without data generalization.224

DFPN-E[10]: Depth-first proof number search (PNS) performed on AND-OR tree with an additive225

reaction likelihood as cost.226

Retro* and Retro*-0 [2]: Different from DPFN-E, Retro* utilizes the AND-OR tree as a single-227

player game and utilizes global value estimation. Additionally, Retro* pre-trains a value network on228

a simulated retrosynthesis pathway dataset. Retro*-0 denotes its version that performs the search229

without the value network. Retro* is reported as the state-of-the-art search algorithm for retrosynthetic230

planning.231

HgSearch[21]: HgSearch is a beam-search-like algorithm performed on a hyper-graph structure. The232

heuristics are the product of the single-step confidence score and molecular complexity score (SC-233

Score) [4].234

We use four different metrics to comprehensively evaluate the performance of different search235

algorithms: 1. Pathway length: We use the total number of reactions in the retrosynthesis pathway236
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for length evaluation. 2. Pathway cost: The cost function is defined as the summation of the negative237

log-likelihood (confidence score) of the reactions in the pathway τ provided by the single-step238

model, i.e., −
∑

a∈τ logpc(a|s) [2]. The cost is also regarded as a criterion for chemical feasibility.239

3. Planning efficiency: Since the primary objective of AI-aided retrosynthesis is to help chemists240

find successful pathways faster, efficiency has been a crucial evaluation criterion for a multi-step241

retrosynthesis planning algorithm. Therefore, we follow [2] to take the number of single-step inference242

calls as a qualified surrogate of time, as single-step inference (∼ 2s per iter) takes up almost > 99%243

of the time (only ∼ 0.006s per iter on planning). 4. Success rate: With a fixed number of single-step244

inference calls, the success rate is defined as the percentage of solved molecules in the entire set.245

4.1.2 Single-step retrosynthesis predictor246

We adopt the template-free single-step retrosynthesis predictor based on molecular trans-247

former (MT)[20, 12] from Schwaller et al. [21] as our single-step retrosynthesis predictor. Specifically,248

Schwaller et al. separately trained a pair of backward single-step generation models and forward249

single-step prediction models, and cooperatively utilized them to generate high-quality single-step250

retrosynthetic candidates with a confidence score pc(a|s) ranging from 0 to 1. Both statistics [13, 12]251

and our user study in real-world scenarios demonstrate that MT-based single-step framework achieves252

higher accuracy and less chemo-selectivity when compared with template-based approaches. Even-253

tually, we choose top-k=100 reactions ranked according to the confidence score predicted by the254

single-step model as the available single-step candidate set for a given molecule since top-k=100 is255

sufficient to represent feasible single-step reaction space for a molecule.256

4.2 Creating benchmark datasets257

Single-step reactions and building block molecules dataset: We use the Pistachio reaction258

dataset (Ver. 18.11.19) [15] as our benchmark dataset for training our single-step models, and259

the implementation details are listed in Appendix A.1. After further pruning and discarding reactions260

with multiple products, the entire dataset consists of 2.7M reactions. The dataset is further split261

randomly into train/val/test sets following 90%/5%/5% proportions. We use the complete 231M262

commercially available molecules presented in eMolecules 1 for the building block molecule set.263

Pathway dataset: Since only Retro* requires an additional simulated retrosynthesis pathway dataset264

for pre-training its value network for planning, we follow the setting in [2] and construct the Pistachio265

pathway dataset similarly. Specifically, we obtained 61554 pathways with an average length of 3.66.266

We split the dataset into 40000 training pathways, 21354 validation pathways, and 200 test pathways267

for Retro* value network training. Note that constructing an artificial pathway dataset by simply268

concatenating single-step reactions is only a reference rather than an optimal/expert pathway for269

a given molecule in a given search space. Moreover, an expert pathway dataset is unavailable for270

unreported molecules and expensive to obtain in real-world scenarios. Therefore for a fair comparison,271

the target molecules in the pathway dataset are simultaneously used as initial states for GRASP272

training.273

Expert dataset: We also include a real-world expert dataset ‘WuxiTest’ designed by WuxiAppTec274

chemists, and each target molecule is provided with one reference pathway. WuxiTest consists of 500275

molecules that are specifically designed to consist only of molecules that have never appeared in any276

journals and patents. Molecules were split into ten categories in terms of retrosynthesis strategies, and277

each category shares similar molecular substructures. We partition the pathway dataset category-wise278

as 80%/10%/10% into train/valid/test sets as partitions and follow the same training settings as the279

Pistachio.280

4.3 Results281

The performance of all methods is listed in Table. 2. For both the Pistachio and WuxiTest datasets, our282

approach achieves the highest success rate compared with the baselines. We observe that HgSearch283

achieves the best performance on the average cost metric in Pistachio, mainly from the near-exhaustive284

search performed on less challenging molecules. Our approach outperforms other baselines in average285

expansion by a large margin, demonstrating the performance gain in planning efficiency brought286

by RL training. In the WuxiTest dataset, our approach outperforms all other baselines in all four287

metrics. Since the WuxiTest dataset is designed to emphasize retrosynthesis strategies with more288

challenging but strategically similar molecules, the result proves that RL training can generalize289

1http://downloads.emolecules.com/free/2019-11-01/
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PISTACHIO GRASP RETRO* RETRO*-0 HGSEARCH DFPN-E MCTS

AVG. LENGTH 4.12 4.27 4.25 4.38 4.22 4.74
AVG. COST 7.47 7.53 8.44 7.06 12.88 13.72
AVG. TIME 42.6 62.0 82.4 94.5 84.3 116.5

SUCCESS RATE 0.95 0.92 0.92 0.87 0.85 0.81

WUXITEST GRASP RETRO* RETRO*-0 HGSEARCH DFPN-E MCTS

AVG. LENGTH 6.93 7.50 7.38 7.65 7.29 8.15
AVG. COST 21.19 22.55 26.55 21.41 30.89 38.62
AVG. TIME 79.3 112.5 157.2 194.7 183.9 224.5

SUCCESS RATE 0.86 0.80 0.78 0.82 0.64 0.52

Table 2: General planning performance summary on Pistachio and WuxiTest. Average statistics is
calculated among all successful pathways with Nmax = 400 for both datasets.

planning knowledge from a molecule with similar substructures. We demonstrate the influence290

of time limit on the success rate for different approaches for the WuxiTest dataset in Fig. 3a for291

Nmax = 400. We also demonstrate that the success rate tends to saturate when for N > 400 by292

extending to Nmax = 1000 in Appendix C for all approaches.293

Goal-driven planning performance Since GRASP is the first and only approach that empowers294

goal-driven planning, to evaluate whether GRASP is capable of generating high-quality goal-driven295

results, we conduct a double-blind user study of goal-driven planning on the WuxiTest. Specifically,296

we run GRASP using the building block molecules from the source pathways as the GRASP’s goal297

input to obtain a goal-driven result. In addition, we also include goal-driven planning using the298

general (GRASP’s general planning) and expert (reference route from the chemists) source pathways.299

The results in Table. 3 demonstrate that our approach can perform goal-oriented search and in the300

meantime generate a high-quality result. We provide an exemplar of pathway comparison in reference301

for demonstration in Fig. 5 and Fig. 6 in Appendix C.302

WUXITEST RETRO* HGSEARCH DFPN-E MCTS GRASP
GENERAL

GRASP
EXPERT

SOURCE AVG. LENGTH 7.50 7.65 7.29 8.15 7.05 N/A
GRASP AVG. LENGTH 7.35 7.55 7.07 7.55 7.05 7.20

SOURCE AVG. RATING (0-10) 7.6 8.1 7.4 6.5 8.3 N/A
GRASP AVG. RATING (0-10) 7.7 8.1 7.6 7.5 8.3 9.2

Table 3: Goal-driven planning performance summary. THe experiment is conducted through a
double-blind test with two different chemists to evaluate the quality of the pathway in terms of
feasibility, efficiency, and simplicity.

Compatibility to self-improved retrosynthetic planning Self-improved retrosynthetic planning [9]303

is an end-to-end framework that fine-tunes the single-step model to imitate successful trajectories304

found by a fixed search (Retro* was used in the original work) algorithm by altering the prior305

distribution of single-step candidates in the search space. To evaluate the adaptation of GRASP306

with the self-improved framework, we follow the training procedure in [9] by replacing Retro*307

with GRASP and observe the performance on Pistachio and WuxiTest. As shown in Fig.3b, the308

self-improved retrosynthetic planning framework can improve the success rate of GRASP by using309

its own planning experience to fine-tune the single-step model.310

4.4 Ablation studies311

In this section, we investigate the following questions from different ablation studies: 1. The influence312

of two components: goal-driven relabeling (GDR) and self-imitation learning (SIL) over episodic313

reward during RL training. 2. How does the different probability of GDR affect the performance of314

general retrosynthesis planning and goal-driven retrosynthesis planning?315

Influence of different components: We cross-check the training statistics of four different combi-316

nations: GRASP without GDR and SIL, GRASP with GDR, GRASP with SIL, and GRASP with317

GDR and SIL. We evaluate the results on Pistachio by calculating the average reward with respect to318

training episodes. In binary reward setting, we use success rate as the criteria for reward evaluation,319

and the result is shown in Fig.3c. On the one hand, SIL significantly improves the overall training320
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Figure 3: Experiments and ablation studies

statistics but induces a more significant variance in the training process. The variance is attributed321

to higher variance when using Monte-Carlo return and inevitable trade-offs in gradient propagation322

from different successful pathways under the same target. On the other hand, GDR also offers a323

certain amount of performance enhancement by relieving training difficulties induced by the sparse324

rewards. However, we are more interested in GDR’s contribution brought to goal-driven planning.325

Influence of GDR probability: The main hyper-parameter we are interested in is GDR probability,326

which adjusts the distribution of transition tuples in the replay buffer for general planning and goal-327

driven planning. Specifically, we use the WuxiTest to evaluate the trade-off between the success rate328

of general and goal-driven planning with respect to GDR probability. For goal-driven planning, we329

use the building block molecules in expert pathways for goal-driven input. The result is shown in330

Fig.3d. We observe that the success rate of goal-driven planning is lower than general planning as331

expected, as it requires both general success and the specific goal reached. However, the success332

rate for goal-driven planning improves significantly when relabeling probability ranges from 10% to333

70%. Nevertheless, high relabeling probability impairs the success rate for general planning since334

GDR might incur failures in general planning pathways, and increasing the proportion of goal-driven335

data leads to less proportion of general data. In conclusion, it is crucial to select an appropriate GDR336

probability depending on the actual usage of GRASP .337

5 Conclusion338

This paper proposes GRASP, a novel goal-driven retrosynthetic planning approach. Unlike existing339

approaches that limit their generalization planning knowledge in a static dataset, GRASP can capture340

synthetic knowledge through self-generated experiences. Moreover, GRASP can perform goal-341

driven retrosynthetic planning that none of the existing approaches could explicitly accomplish.342

Experimental results on academic and industrial benchmark datasets demonstrate GRASP outperforms343

all baselines in general retrosynthetic planning and first achieves high-quality goal-driven planning.344

Future works could extend to designing a more informative goal space representation with additional345

retrosynthetic planning level knowledge, possibly through pre-training an encoder for retrosynthetic346

pathways [16].347
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A Experimental settings456

A.1 Single-step retrosynthesis model training details457

We use the Pistachio dataset to train our single-step retrosynthesis model and SMILES to represent458

molecules in the reactions. Pistachio contains 6.9M reaction details. The majority are extracted459

from experimental procedure text in patents, including 4.2M reactions in United States Patent460

Office (USPTO). The remaining 1.8M is extracted from sketches in U.S. patents. Results from461

previous work [21] have demonstrated that the single-step model trained by the Pistachio dataset462

achieves higher chemical class diversity and disconnection options compared with the model trained463

with the USPTO dataset. We follow the setting in [21] by training a forward reaction prediction464

model and a backward retrosynthesis model for the single-step model, both using the molecular465

transformer [20] architecture. Specifically, both transformers are implemented using OpenNMT-466

py [11], as encoder and decoder, with hyperparameters listed in Tab. 4. The training takes about 50467

hours in total on a single NVIDIA RTX 3090.468

Table 4: Hyper parameters of Molecular Transformer
self-attention layers 4 optimizer Adam
attention heads 8 Adam β1 0.9
transformer feed-forward size 2048 Adam β2 0.998
word embedding size 256 warm up steps 8000
model feed-forward size 256 batch size 4096

A.2 GRASP training details469

We utilize Morgan fingerprint bit vector with dimension 1024 and radius 2 in RDKit as molecule rep-470

resentation in states, actions, and goals, which contains similar information as Extended-connectivity471

Fingerprints (ECFP4) [18]. Chemical fingerprints have long been used to represent molecules, includ-472

ing the classic Morgan fingerprints that utilize the graph topology to include neighbour information.473

Recently, numerous deep learning algorithms directly use Morgan fingerprint for molecular repre-474

sentation as input for neural networks in retrosynthesis tasks [8, 23]. Furthermore, works [14] have475

demonstrated that ECFP4 fingerprints have similar performance even compared with state-of-the-art476

graph-based deep learning algorithms. We utilize Morgan fingerprint bit vector with dimension477

1024 and radius 2 in RDKit 2, which contains similar information as Extended-connectivity Finger-478

prints (ECFP4) [18]. We listed all hyper-parameters in Tab. 5 for GRASP network hyper-parameters479

and training hyper-parameters. The training takes about 95 hours for 500k episodes on Pistachio480

and 20 hours for 50k episodes on WuxiTest on a single NVIDIA RTX 3090. In order to accelerate481

training, we implemented a cache system to store the single-step reaction candidates for encountering482

repeated molecules during training since the main computational cost is inferencing the single-step483

MT model.484

Table 5: Hyper parameters of GRASP
state dimension 1024 discount factor γ 0.99
action dimension 1024 action noise σ 0.02
goal dimension 1024+1 action noise µ 0
actor hidden 1 2048 replay buffer size µ 50000
actor hidden 2 1024 maximum horizon H 10
critic hidden 1 1024 optimizer Adam
critic hidden 2 512 batch size 64
critic learning rate 0.001 actor learning rate 0.0001

B Algorithm485

2https://github.com/rdkit/
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Algorithm 1 GRASP

Initialize Critic network Qθ, Q
′
θ and actor network πϕ, π

′
ϕ, replay buffer B, initial state space S,

action space A, goal space G, reward function r : S ×A× G → R.
for ep = 1 to M do

Sample initial state s0 ∈ S.
for t = 0 to H do

Sample proto-action ãt using behavioral policy and exploration noise for general planning
π′
ϕ(a|st, GB)

Perform k-NN computation and execute action at
Observe reward rt = r(st, at, GB) and next state st+1

end for
for t = 0 to H do

Store original transition (st, at, rt, st+1, g) in B
Generate transition copy and relabel g′ = st+i and r′t = r(st, at, g

′) with probability pr with
future goal-driven relabeling strategy.
Store transition (st, at, r

′
t, st+1, g

′) in B
end for
for t = 0 to N do

Perform actor-critic batched TD training on θ, ϕ with Eq.2 and Eq.3
Perform SIL training on θ with Eq.4

end for
end for

C Additional figures486

Performance saturation: We demonstrate the performance (success rate and avg. time) saturation487

of success rate with respect to the number of single-step inference calls Nmax = 1000 in Fig. 4.488

GRASP still outperforms the baselines, though all algorithms tend to converge as stated [24].489

Figure 4: Overview of GRASP training procedure.
Exemplar figures: We present an exemplar comparison between a source pathway in Fig. 5 and490

a goal-driven pathway Fig. 6 for user study conducted in goal-driven experiments, where we use491

the red molecule as goal input for GRASP planning. We also present an exemplar in Fig. 7 of the492

GRASP planning tree for reference.493
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Figure 5: Source pathway with rating 6

Figure 6: Goal-driven pathway (red molecule as goal input) with rating 8

Figure 7: Exemplar of a GRASP search tree. Blue node: Expanded node, Grey node: Unexpanded
leaf node , Red node: Leaf node without candidates, Green node: Goal molecule.
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