
Appendix

A MExMI Algorithm

Algorithm 1 MExMI attack

1: Input: F , P ; Parameters: k, b, ω;
2: Output: F ′, D̂;
3: [x1, . . . , xk]0← RandomPick(P);
4: Pr ← P \ [x1, . . . , xk]0, d← d− k, i = 0;
5: Dq ← [{x1, F (x1)} , . . .]0;
6: FMIA ← MIUpdate(Dq, P); . Section 4
7: while b >= 0 do
8: Dq+, Dq− ← FMIA(Dq);
9: AssignWeigtht(Dq+, Dq−, ω);

10: F ′i ← WeightLossTrain(Dq+, Dq−);
11: Pt ← FMIA(F ′i , Pr);
12: [x1, . . . , xk]i+1 ← ActiveLearning(Pt, F ′i);
13: Pr ← Pr \ [x1, . . . , xk]i+1,
14: Dq ← [{x1, F (x1)} , . . .]i+1 ∪Dq , d← d− k, i← i+ 1;
15: end while
16: D̂ ← FMIA(F ′, P);
17: F ′ ← SemiSupervisedTrain(Dq , D̂);

B Pool-based Active Learning Algorithms

MExMI can use various pool-based AL algorithms available in the literature. In this paper, we focus
on three AL algorithms based on different metrics of samples: uncertainty, diversity, and vulnerability
to deep-fool perturbation. As AL algorithms often calculate the distance between samples [50],
MExMI also provides an encoding process to reduce dimension for high-dimensional feature space.
In essence, it uses F ′i−1, the copy model trained in the previous iteration, as an encoder. When
inter-sample distances are required, we use inter-vector distances between the outputs of the encoder
for calculation. The distance is calculated using the output probability vectors of F ′ whenever the
calculation of the distance is needed.

B.1 Entropy Uncertainty

One of the most common ways to measure uncertainty is entropy [31]. The larger the entropy,
the higher the uncertainty level is. For a sample {x, ŷ} in the data pool, where ŷ = F ′(x) =
[Pr(1|x),Pr(2|x), . . . ,Pr(K|x)]T , its entropy is defined as

Φent(x) = −
K∑

k=1

Pr(k|x)log(Pr(k|x)), (1)

where K is the number of class labels.

B.2 Greedy K-center

One classic diversity-based AL is the greedy k-center algorithm [40]. Let Dq := [{xq, F (xq)} , . . .]
denote the set of samples selected previously, and P := [xp, . . .] the data pool. Greedy k-center
algorithm sets [F ′(xq), . . .] as cluster centers and selects the sample xs that has the largest Euclidean
distance from all existing centers. Formally,

xs = argmaxxp∈P {min(xq,yq)∈Dq
‖F ′(xp)− F ′(xq)‖22}. (2)

Then we query the selected sample xs and update Dq by Dq = Dq ∪ {xs, ys}, where ys = F (xs).

1

B.3 Adversarial Deep-Fool

Deep-Fool based AL (DFAL) uses sample perturbation attack in Deep Fool to calculate the distance
between samples and decision boundaries, a.k.a., margin, and then selects those with the smallest
perturbation distance to query [14]. The perturbation algorithm iteratively perturbs samples by adding
linear noise until the samples are misclassified by the copy model F ′.

C Proof of Theorem 1

Proof C.1 For a multi-classifier withK labels and n training samples, the training loss l is measured
using cross-entropy:

l = − 1

n

∑
x∈X

K∑
y=1

Pr (Y = y|x)log(Pr (Ŷ = y|x)), (3)

where Y is the ground truth label variable, and Ŷ is the predicted label variable. Since the ground
truth probability vectors are in one-hot format, the training loss in the j-th class, lj , can be rewritten
as:

lj = − 1

n

∑
x∈Xj

log(Pr (Ŷ = j|x)) (4)

Therefore, the gap of loss in the j-th class between the distribution of the shadow model Y(s) and
that of the victim model Y is:

∆lj =
1

n(s)

∑
y(s)∈Y(s)

j

log(y
(s)
j)− 1

n

∑
y∈Yj

log(yj), (5)

where yj represents the j-th element of y. On the other hand, We define b′jj as the log-bias between
the two logarithm distributions for class j:

b′jj ≡
1

n
(s)
j

∑
y(s)∈Y(s)

j

log(y
(s)
j)− 1

nj

∑
y∈Yj

log(yj). (6)

From Eqn. 7 and 8, we get:

b′jj =
∆lj
aj

, (7)

where aj is the proportion of class j in both shadow and victim model training sets. bj ∈ RK is a
vector, and its element in dimension j is denoted by bjj .

To complete the proof, in Eqn.9 we need to replace b′jj with bjj , the j-th element in vector bj . This
replacement is correct because of the following two assumptions, whose validity will be verified
experimentally in Section 5.

Assumption 1. The correlation coefficient ρ between a distribution and its logarithm distribution is
positive. Formally,

ρ|b′jj |,|bjj | > 0, (8)

where j ∈ [1, . . . ,K].

Assumption 2. For two models with the same structure and hyper-parameters, for any class j,
the correlation coefficient ρ between the output vector distribution and its j-th element is positive.
Formally,

ρ|bjj |,|bj | > 0, (9)

where j ∈ [1, . . . ,K].

Based on the above two assumptions, we replace b′jj with bjj in Eqn.9 and obtain ∆lj ∝ bj .

2

10 4 10 3 10 2

log-bias mean

10 4

10 3

10 2

10 1

bi
as

 m
ea

n

Original
Ideal case

(a) original shadow-model MI

10 4 10 3 10 2 10 1

log-bias mean

10 4

10 3

10 2

10 1

bi
as

 m
ea

n

FSL
Ideal case

(b) FSL shadow-model MI
Figure 1: The results of log-bias mean vs. bias mean.

10 4 10 3 10 2 10 1

bias mean

10 3

10 2

10 1

ve
ct

or
-b

ia
s m

ea
n

Original
Ideal case

(a) original shadow-model MI

10 4 10 3 10 2 10 1

bias mean

10 3

10 2

10 1

ve
ct

or
-b

ia
s m

ea
n

FSL
Ideal case

(b) FSL shadow-model MI

Figure 2: The results of bias mean vs. vector-bias mean.

To verify Assumptions 1 and 2 of Theorem 1, we calculated the bias mean as the mean of bias of
all classes, i.e.,

∑K
j=1 |bjj |, the log-bias mean as the mean of log-bias of all classes, i.e.,

∑K
j=1 |b′jj |,

and the vector-bias mean as the mean of scalar bias
∑

dim

∑K
j=1 |bj | of all classes. The results are

shown in Fig. 6 and Fig. 7 respectively. We observe that:

1 The bias mean is positively correlated with the log-bias mean, which justifies Assumption 1.

2 The vector-bias mean is positively correlated with the bias mean, which justifies Assumption
2.

D Few-shot Learning (FSL) Shadow-model MI

In MExMI, we use the following two FSL approaches to train shadow models, leading to two
metric-based shadow-model MI.

Data-augmented shadow-model MI. Data augmentation expands the training dataset to accelerate
convergence by adding synthetic samples transformed from existing samples. In image classification,
an image can be flipped, panned or rotated to enrich the training set [29].

Transfer shadow-model MI. Transfer learning shares the knowledge from a source domain to reduce
the training complexity in a target domain. In image classification, NN models are suitable for transfer
learning, because their shallow layers learn task-independent abstract features, and deep layers are
more task-related [21]. As such, an adversary can transfer the shallow layers of a pre-trained NN
model to initialize a shadow model’s parameters and to accelerate its convergence. This technique is
valid even if the pre-trained model’s problem domain is different from that of the shadow models.

E Implementation of Experiments

E.1 Datasets

CIFAR10. CIFAR10 is an image dataset in color (with 3 channels) with 10 class labels, 50k training
samples, and 10k test samples. The image samples have a resolution of 32 and are evenly
distributed into 10 classes. It is a well-known benchmark dataset to evaluate image classifiers.

SVHN. SVHN is another 32-resolution benchmark for color image classification. It consists of
street-view images of door numbers, which are labelled with digits from “0" to “9". The
dataset contains 73,257 images for training, and 26,032 images for testing.

3

AG’S NEWS. AG’S NEWS is a benchmark for text classification. It consists of titles and descrip-
tions of articles from 4 news classes, namely “World”, “Sports”, “Business” and “Sci/Tech”.
This dataset contains 120k training samples and 7.6k test samples.

E.2 Running Environment

Experiments are implemented with Python 3.7 on a desktop computer running Windows 10 with
AMD Ryzen 7 2700X CPU and 64 GB RAM.

E.3 Implementation Details for ML-leaks [39] Membership Inference Attacks

In the overall evaluation experiments and case study experiments, our membership inference (MI)
attacks on the copy models are compared with ML-leaks [39] MI direct attacks on the victim models.
For the shadow-model MI attack in ML-leaks, we use one shadow model trained on the victim
model’s training data set to build its MI attack model. For unsupervised MI attack in ML-leaks, 1000
non-member noise samples are queried from the victim model. The parameter tolerant percentage t
is set to 0.06 in the threshold decision method.

E.4 Implementation Details for Iterative MExMI attacks.

The hyper-parameters are set as follows: initial learning rate (lr)=0.03 for image classifiers, lr=0.01
for text classifiers, momentum=0.5, weight decay=10e− 4, epochs=150. The optimization method is
SGD accelerated by Nesterov Gradient Method [12]. The lr scheduler multiplies lr with the factor
0.1 at epoch 100. To be fair, all attacks, including the ideal one, use the same initial seed samples.
The adaptive shadow-model MI used in MI Pre-Filter and MI Post-Filter is trained on initial seed
samples for 150 epochs.

E.5 Details of Metric-based Shadow-model MI Experiments

For transfer shadow-model MI, it needs prior knowledge of the source model. In the experiment, we
use a 5-block model with the same shallow structure as the victim model as the source model and
train it on CIFAR100. We then transfer the parameters of the three shallow blocks to initialize the
shadow models. For data-augmented shadow-model MI, we add augmented samples to the training
dataset to double its size. We adopt the same augmentation policy as in [49], which includes inverting,
rotating, sharpness etc., but excludes those methods used to train models for a fair comparison. The
test dataset consists of 10k victim’s training images as positive samples and another 10k non-training
images as negative samples.

E.6 Implementation Detail for Case Study

We train and deploy a classification model on ModelArts without the knowledge of its architecture
using SVHN and then perform various PAME attacks on it. Our adversarial data pool consists of 2.5k
SVHN and 5k ImageNet32 images as we have to measure both ME results and MI results of MExMI.
Since ModelArts returns top-5 probabilities with three decimal places, we choose unsupervised MI as
the MI module in MExMI. The parameter tolerant percentage t is set to 0.06 in the threshold decision
method [39]. The architecture of the copy model is VGG16 with batch normalization. The query
budget is 7k, and the size of initial seeds as well as the step are both 1k.

F Supplementary Experiments

F.1 The Overall Performance MExMI on Adversarial Deep-fool

We present here a supplement to the performance of MExMI in Adversarial Deep-fool’s PAME
during the iterative process, as shown in Fig. It is a supplement to Fig. 3.

F.2 The Evaluation of MI Pre-Filter in the Iteration

To understand the underlying mechanism why MI Pre-Filter works, we track the filtering results
of Pre-Filter in each iteration of MExMI attack on CIFAR10. The results are shown in Fig. 9. We

4

2k 4k 6k 8k 10k 12k 14k 16k
Query number

50

60

70

80

90

Fi
de

lit
y/

%

CIFAR10

Baseline
Pre-Filter only
Post-Filter only
MExMI w/o Boosting
MExMI
Ideal case

(a) Adversarial Deep-fool

Figure 3: PAME attacks’ results on CIFAR10 during the iteration.

observe that MI Pre-Filter can accurately find victim’s training samples in the remaining pool, so the
training set for copy model is gradually restored through iterations.

4k 6k 8k 10k 12k 14k 16k
Query number

70

75

80

Ac
cu

ra
cy

 p
er

ce
nt

ag
e/

%

Entropy Uncertainty
Greedy K-center
Adversarial Deep-fool
Black-box attack on F

(a) MI Accuracy

4k 6k 8k 10k 12k 14k 16k
Query number

60

62

64

66

68

70

72

74

76
Pr

ec
isi

on
 p

er
ce

nt
ag

e/
%

Entropy Uncertainty
Greedy K-center
Adversarial Deep-fool

(b) MI Precision

4k 6k 8k 10k 12k 14k 16k
Query number

20

30

40

50

60

70

Re
ca

ll
pe

rc
en

ta
ge

/%

Entropy Uncertainty
Greedy K-center
Adversarial Deep-fool

(c) MI Recall

Figure 4: Performance of MI Pre-Filter in MExMI on CIFAR10.

F.3 Transferability of Adversarial Attacks

We measured the transferability of adversarial samples obtained from the FSGM [19] adversarial
attacks (at a rate of ε = 0.1) on the PAME copy models. The transferability rate is the fraction of
these samples misclassified by the victim model. The results on CIFAR10 are shown in Table 7.
MExMI consistently has higher transferability rate than the baseline, indicating that our MExMI
algorithms is also superior from this perspective.

Table 1: Transferability of FGSM attacks

Active Learning Transferability / %
Entropy Uncertainty Greedy K-center Adversarial Deep-fool

Baseline 51.76 57.47 57.59
Pre-Filter only 55.96 59.72 60.99
Post-Filter only 59.17 62.53 57.90

MExMI 63.87 62.66 58.57

F.4 Impact of Weight Ratio in MI Post-Filter

In MI Post-Filter, we introduce a weight ratio ω between loss weights of the inferred training data and
non-training data, which has an effect on both Post-Filter only and MExMI without semi-supervised
boosting variants. In this experiment, we vary ω in CIFAR10 experiments and show the results in
Table. 8. We observe that ω has a very limited impact on the fidelity and therefore our MExMI
framework is robust to this parameter.

Table 2: Impact of Post-Filter Weight Ratio

Weight Ratio Fidelity (Accuracy) / %
3:1 5:1 7:1

Post-Filter only 85.12 (84.20) 84.57 (84.00) 84.59 (83.93)
MExMI w/o Boosting 89.61 (99.84) 90.14 (89.58) 90.21 (89.61)

5

Table 3: Performance Boosting Using Different ML Optimization Methods

Methods Fidelity (Accuracy) / %
Baseline Baseline + Data-Aug Baseline + Data-Aug + Ensemble

Entropy Uncertainty 89.10 (88.69) 90.10 89.97) 91.57 91.36)
Greedy K-center 90.16 (89.21) 91.11 (90.98) 92.86 (92.60)

Adversarial Deep-fool 90.14 (89.58) 91.32 (90.80) 92.84 (92.32)

F.5 The Ability of Evading PRADA Defence

For image classification, PRADA[26] is the state-of-the-art method to detect ME attacks. The
detection is based on the distribution of consecutive query data, as PRADA believes that the adversary
tends to issue query samples across an exceptional feature space. To evaluate the ability of MExMI
evading such detection, we measure the minimal L2 distance between query samples of MExMI
and several benchmark ME attacks on CIFAR10. The results are shown in Fig. 10. We can see
that MExMI and the baseline attack are not different from benign queries (subjecting to Gaussian
distribution) and both cannot be detected by PRADA. In contrast, the distributions of PRADA
attack[26] and Black-box DNNs[35] have distinct traits, which are thus easier to be detected.

0 5 10 15 20
L2 distance

1k

2k

sa
m

pl
e

siz
e

(a) Black-box DNNs [35]

0 5 10 15 20
L2 distance

1k

2k

sa
m

pl
e

siz
e

(b) PRADA [26]

0 10 20 30
L2 distance

1k

2k

sa
m

pl
e

siz
e

(c) ActiveThief [34]

0 10 20 30
L2 distance

1k

2k

sa
m

pl
e

siz
e

(d) MExMI (this work)

Figure 5: Distribution of L2 distance required in PRADA defence.

F.6 Impact of ML Optimizations

As there are many emerging optimization methods in ML, in this subsection we investigate what
impact they have on PAME attacks. In particular, we focus on the following two methods:

• Data augmentation. It is used in the training process to prevent overfitting. This method
has become increasingly popular in the domain of image classification [36]. As shown in
the experiments below, applying data augmentation in PAME can significantly improve the
fidelity.

• Ensembles for neural networks. Ensembling a set of models trained separately is well
known for effectively reducing generalization error [20]. As shown in the experiments
below, applying ensembles in PAME can improve the fidelity.

We use the performance results in Section 5.3 on CIFAR10, especially MExMI without semi-
supervised boosting, as the baseline in this experiment. We then use the transforming policy in [49] to
perform a richer data augmentation and model averaging ensemble method. The results are shown in
Table 9, where “Data-Aug" denotes data augmentation. Richer data augmentation improves baselines’
fidelity by 1.18%, and the ensemble method further improves fidelity by another 1.52% to 92.84%.
These results warn us that in a never-ending battle between model owners and model extractors,
emerging technologies in ML may favour the latter rather than the former.

6

	Introduction
	Background and Definition
	Victim Models
	Threat Model
	Problem Definition

	Model Extraction Crossover Membership Inference
	MI Pre-Filter
	MI Post-Filter
	Semi-Supervised Boosting

	Adaptive Membership Inference
	Shadow-Model Membership Inference
	Measuring Quality of Shadow-model MI
	Metric-based Shadow-model MI

	Unsupervised Membership Inference

	Experiment
	Experiment Setup
	Metric-based Shadow-Model MI
	Overall Performance of MExMI
	Implementation Details
	Overall Results of MExMI

	Impact of Adversary Data Pool on PAME
	Impact of Output Access
	Case Study: Blackbox Attacks on MLaaS ModelArts

	Related Works
	Conclusion
	MExMI Algorithm
	Pool-based Active Learning Algorithms
	Entropy Uncertainty
	Greedy K-center
	Adversarial Deep-Fool

	Proof of Theorem 1
	Few-shot Learning (FSL) Shadow-model MI
	Implementation of Experiments
	Datasets
	Running Environment
	Implementation Details for ML-leaks salem2018ml Membership Inference Attacks
	Implementation Details for Iterative MExMI attacks.
	Details of Metric-based Shadow-model MI Experiments
	Implementation Detail for Case Study

	Supplementary Experiments
	The Overall Performance MExMI on Adversarial Deep-fool
	The Evaluation of MI Pre-Filter in the Iteration
	Transferability of Adversarial Attacks
	Impact of Weight Ratio in MI Post-Filter
	The Ability of Evading PRADA Defence
	Impact of ML Optimizations

