
On Measuring Excess Capacity in Neural Networks

Florian Graf
University of Salzburg

florian.graf@plus.ac.at

Sebastian Zeng
University of Salzburg

sebastian.zeng@plus.ac.at

Bastian Rieck
Institute for AI and Health

Helmholtz Munich
bastian@rieck.me

Marc Niethammer
UNC Chapel Hill
mn@cs.unc.edu

Roland Kwitt
University of Salzburg

roland.kwitt@plus.ac.at

Abstract

We study the excess capacity of deep networks in the context of supervised classifi-
cation. That is, given a capacity measure of the underlying hypothesis class – in our
case, empirical Rademacher complexity – to what extent can we (a priori) constrain
this class while retaining an empirical error on a par with the unconstrained regime?
To assess excess capacity in modern architectures (such as residual networks), we
extend and unify prior Rademacher complexity bounds to accommodate function
composition and addition, as well as the structure of convolutions. The capacity-
driving terms in our bounds are the Lipschitz constants of the layers and an (2, 1)
group norm distance to the initializations of the convolution weights. Experiments
on benchmark datasets of varying task difficulty indicate that (1) there is a substan-
tial amount of excess capacity per task, and (2) capacity can be kept at a surprisingly
similar level across tasks. Overall, this suggests a notion of compressibility with
respect to weight norms, complementary to classic compression via weight pruning.
Source code is available at https://github.com/rkwitt/excess_capacity.

1 Introduction

Understanding the generalization behavior of deep networks in supervised classification is still a
largely open problem, despite a long history of theoretical advances. The observation that (over-
parametrized) models can easily fit—i.e., reach zero training error—to randomly permuted training
labels [45, 46] but, when trained on unpermuted labels, yield good generalization performance, has
fueled much of the progress in this area. Recent works range from relating generalization to weight
norms [3, 14, 26, 37, 38], measures of the distance to initializations [34], implicit regularization
induced by the optimization algorithm [8, 41], or model compression [2, 6, 42]. Other works study
connections to optimal transport [9], or generalization in the neural tangent kernel setting [1, 23].

When seeking to establish generalization guarantees within the classic uniform convergence regime,
bounding a capacity measure, such as the Rademacher complexity [4], of the hypothesis class is
the crucial step. While the resultant generalization bounds are typically vacuous and can exhibit
concerning behavior [36], the capacity bounds themselves offer invaluable insights through the
behavior of the bound-driving quantities, such as various types of weight norms or Lipschitz constants.

Particularly relevant to our work is the observation that the bound-driving quantities tend to increase
with task difficulty. Fig. 1 illustrates this behavior in terms of Lipschitz constants per layer and the dis-
tance of each layer’s weight to its initialization (measured via a group norm we develop in Section 3.1).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

mailto:florian.graf@plus.ac.at
mailto:sebastian.zeng@plus.ac.at
bastian@rieck.met
mailto:mn@cs.unc.edu
mailto:roland.kwitt@plus.ac.at
https://github.com/rkwitt/excess_capacity

102
1

10

L
ip

.

(2,1) group norm distance to initialization

CIFAR10 (easy)
CIFAR100 (medium)
Tiny-ImageNet-200 (hard)

101

Figure 1: Layerwise Lipschitz constants and dis-
tance to initialization of a ResNet18 model (see
Section 4), trained on different datasets.

This raises two immediate questions: First (Q1), can
a network maintain empirical testing performance at
a substantially lower capacity? Second (Q2), is the
level of this lowered capacity inevitably tied to task
difficulty, i.e., would a reduced-capacity model for
an easy task fail on a difficult task? Both of these
questions aim at the amount of “unneeded” capacity,
which we refer to as excess capacity in the remainder
of this work.

We will address questions (Q1) and (Q2) by means
of controlling the empirical Rademacher complexity of a neural network. To this end, we consolidate
and extend prior results from the literature on Rademacher complexity bounds to accommodate a
broad range of network components in a unified way, including convolutions and skip connections,
two ubiquitous elements in state-of-the-art models.

Our contributions can be summarized as follows:

1. We establish two bounds (in Theorem 3.5) for the empirical Rademacher complexity of neural
networks that use convolutions and implement functions built from composition and addition.
Specifically, we introduce two novel, convolution-specific, single-layer covering number bounds
in Section 3.2 and contrast them to prior art, then modularize the single-layer to multi-layer
covering approach of Bartlett et al. [3] in Section 3.3, and eventually present one incarnation of
our framework for convolutional residual networks in Sections 3.4 and 3.5.

2. We present an extensive set of experiments (in Section 4) with a ResNet18 model across benchmark
datasets of varying task difficulty, demonstrating that model capacity, when measured via our
weight norm based bound, (1) can be kept surprisingly small per task, and (2) can be kept at
roughly the same level regardless of task difficulty. Both observations suggest compressibility of
neural networks with respect to weight norms, complementary to the well-known compressibility
property of neural networks with respect to the number of parameters [2, 42].

2 Related Work

Many prior works establish uniform-convergence type generalization bounds for neural networks
through Rademacher complexity analysis. We review such approaches, highlighting challenges that
arise with modern network architectures and the peculiarities of convolutional layers.

One direct approach to bound the empirical Rademacher complexity is via a layer-peeling strategy [14,
38, 44] where the Rademacher complexity of L-layer networks is expressed by a factor times the
Rademacher complexity of (L− 1)-layer networks; in other words, the last layer is peeled off. This
factor is typically a matrix (p, q) group norm, and thus the bounds usually scale with the product of the
latter. Notably, the nonlinearities need to be element-wise operations, and some approaches only work
for specific nonlinearities, such as ReLUs or asymmetric activations. A second strategy is to bound
the empirical Rademacher complexity via a covering numbers approach [3, 26, 29, 47], typically
achieved via Dudley’s entropy integral [11]. This strategy is particularly flexible as it allows for
arbitrary (but fixed) nonlinearities and various paths to bounding covering numbers of network parts,
e.g., via Maurey’s sparsification lemma or via parameter counting. The corresponding whole-network
bounds typically scale with the product of each layer’s Lipschitz constant or local empirical estimates
thereof [43]. Irrespective of the particular proof strategy, most formal arguments only hold for neural
networks constructed from function composition, i.e., maps of the form

x 7→ σL(ALσL−1(AL−1 . . . σ1(A1x) . . .)) , (1)

where σi : Rdi−1 → Rdi are nonlinearities and Ai are weight matrices specifying the i-th linear
map. However, modern architectures often rely on operations specifically tailored to the data, such
as convolutions, and typically incorporate skip connections as in residual networks [20], rendering
many results inapplicable or suboptimal for such models. In this work, we handle convolutions and
skip connections, thus increasing the applicability and utility of such bounds.

For example, while residual networks have been studied extensively, theory mostly focuses on
expressivity or optimization aspects [3, 18, 28, 44]. Yun et al. [44] provide a Rademacher complexity
bound via layer-peeling for fully-connected layers and element-wise activations. He et al. [19]

2

∥·∥1,∞ Neyshabur et al. [38]
∥·∥1,∞ Golowich et al. [14]
∥·∥1,∞ Gouk et al. [16]
∥·∥2 Neyshabur et al. [38]
∥·∥2 Golowich et al. [14]
∥·∥2 Gouk et al. [16]

Ours, Theorem 3.5 (♣)
Bartlett et al. [3]

Ledent et al. (main result) [26]
Ledent et al. (fixed constraints)

Ours, Theorem 3.5 (♠)
Lin et al. [29]

Number of parameters
Product of Lipschitz constants

Product of ∥·∥2 norms
Product of ∥·∥1,∞ norms

via covering numbers

via layer-peeling

100 1010 1020 1030 1040

Figure 2: Empirical Rademacher complexity bounds (grouped by proof strategy; lower is better), for a 6-
(■■) and an 11-layer (■■) convolutional network, trained on CIFAR10. Bounds are listed in Section A.2 and
quantities that typically appear in these bounds are highlighted in green (top part of figure) for reference.

establish a generalization bound for residual networks via covering number arguments, resting upon
earlier work by Bartlett et al. [3] for linear maps. However, when directly applied to convolutions,
both bounds scale unfavorably w.r.t. the spatial input size (see Section 3.2). Other works provide
generalization guarantees specifically tailored to convolutional networks, cf. [16, 26, 29, 31], and,
although such bounds scale benignly with input size, they only apply for models as in Eq. (1).

An initial numerical comparison. Bounds on the empirical Rademacher complexity differ in their
dependence on various quantities, such as matrix (p, q) group norms, Lipschitz constants, or the
number of parameters. Thus, a precise formal comparison is challenging and, depending on the
setting, different bounds may be preferable. To provide some intuition about magnitude differences,
we evaluated several existing bounds (including ours from Section 3.5) on two convolutional (ReLU)
networks with 6 and 11 layers, see Fig. 2 and Section A.2 for details.

3 Rademacher Complexity Analysis
To derive bounds on the empirical Rademacher complexity, we follow the margin-based multiclass
learning formalism and the flexible proof strategy of Bartlett et al. [3]. Section 3.2 introduces novel
single-layer covering number bounds for convolutions. Section 3.3 modularizes and extends the
single- to multi-layer covering step to account for architectures such as residual networks (Section 3.4).
Last, Section 3.5 presents and discusses our Rademacher complexity bounds.

3.1 Preliminaries

In a κ-class classification task, we are given n instance/label pairs S = ((x1, y1), . . . , (xn, yn)),
drawn iid from a probability measure D on Rd×{1, . . . , κ}. For a neural network f in a hypothesis
class F ⊂ {f : Rd → Rκ}, a class label for input x is obtained by taking the argmax over the
components of f(x)∈Rκ. The margin operator M : Rκ×{1, . . . , κ}→R, (v, y) 7→ vy−maxi ̸=y vi
leads, with margin γ > 0, to the ramp loss ℓγ and the empirical ramp risk R̂γ , defined as

ℓγ : R → R+, r 7→ (1 + r/γ)1r∈[−γ,0] + 1r>0 and R̂γ(f) =
1

n

n∑
i=1

ℓγ(−M(f(xi), yi)) . (2)

To derive generalization bounds via classical Rademacher complexity analysis [33], without having
to resort to vector-contraction inequalities [32], we consider the hypothesis class

Fγ = {(x, y) 7→ ℓγ(−M(f(x), y)) : f ∈ F} . (3)
Then, defining the empirical Rademacher complexity of any class H of real-valued functions as

R̂S(H) = E
σ

[
sup
h∈H

1

n

n∑
i=1

σih(xi, yi)

]
, (4)

with iid Rademacher variables σ = (σ1, . . . , σn) from a uniform distribution on {±1}, facilitates to
study Fγ via Eq. (4). The following lemma [3, Lemma 3.1] establishes the link to a margin-based
multiclass generalization bound for any f ∈ F .

3

Lemma 3.1. Given a hypothesis class F of functions f : Rd → Rκ and a margin parameter γ > 0,
then, with probability of at least 1− δ over the choice of S ∼ Dn, for any f ∈ F , it holds that

P[argmax
i∈{1,...,κ}

f(x)i ̸= y]≤ R̂γ(f)+ 2R̂S(Fγ)+ 3

√
log
(
2
δ

)
2n

. (5)

To obtain a computable expression for the right-hand side of Lemma 3.1, we seek a bound on R̂S(Fγ)
tied to some measurable quantities of the network realizing F . For our purposes, the relationship
of R̂S(Fγ) and the covering number of Fγ turns out to be a flexible approach. In general, given
a normed space (G, ∥·∥G), the covering number N (G, ϵ, ∥·∥G) is the cardinality of the smallest
ϵ-cover of G, i.e., of the smallest subset U ⊂ G such that, for any g ∈ G, there exists u ∈ U with
∥g − u∥G ≤ ϵ. In our setting, G is a class of functions g : (X , ∥·∥X) → (Y, ∥·∥Y) between normed
spaces X and Y . Given data X = (x1, . . . , xn) ∈ Xn, we define a data-dependent norm on G|X as

∥g∥X =

√∑
i

∥g(xi)∥2Y . (6)

In other words, Eq. (6) is the l2 norm on the restriction of G to X . Specifically, we seek to bound
logN (Fγ , ϵ, ∥·∥S), as this facilitates to control the empirical Rademacher complexity of Fγ by
means of Dudley’s entropy integral. Typically, such covering number bounds depend on the norm of
the data itself, i.e., ∥X∥ =

√
∥x1∥2X + · · · ∥xn∥2X .

3.2 Covering number bounds for convolutions

We consider 2D convolutions, acting on images with cin channels of width w and height h, i.e.,
x ∈ Rcin×h×w. For readability only, we discuss convolutions of stride 1 and input-size preserving
padding; this is not an assumption required for Theorem 3.2. Formally, a convolutional layer is a
linear map ϕK : Rcin×h×w → Rcout×h×w (as we omit bias parameters), where cin and cout denote the
number of input and output channels. The map is parametrized by a tensor K ∈ Rcout×cin×kh×kw of
spatial extension/kernel size (kh, kw). Since convolutions are linear maps, they can be specified by
matrices which act on the (reshaped) inputs and one could invoke existing covering number bounds.
However, this is suboptimal, as any structure specific to convolutions is ignored. In particular, norm-
based generalization bounds agnostic to this structure incur unfavorable scaling behavior w.r.t. the
dimensionality of the input. To be more specific, the weight tensor K of a convolutional layer does
not directly specify the corresponding matrix; instead, it parametrizes cout filters, i.e., local linear
maps, which are applied to the (cin×kh×kw)-sized pixel neighborhoods of the input. Hence, the
matrix MK corresponding to the global linear map consists of many copies of the elements of this
tensor, one for each of the hw patches the filters are applied to. Thus, the lp norm of the matrix MK

is ∥MK∥p = (hw)1/p ∥K∥p (see Section A.1). We mitigate this scaling issue by tying the covering
number of a convolutional layer to a variant of the (2,1) group norm on the tensor K itself. We define
this norm as the sum over the l2 norms taken along the input channels of K, i.e.,

∥K∥2,1 =
∑
ikl

∥Ki·kl∥2 =
∑
ikl

√∑
j

K2
ijkl . (7)

For the special case of inputs of size (h,w) = (1, 1) and kernel size (kh, kw) = (1, 1), convolution
is just matrix multiplication along the channels. In this case, MK = K··11 and our norm from
Eq. (7) agrees with the standard (2, 1) group norm on M⊤

K , i.e., ∥K∥2,1 =
∥∥M⊤

K

∥∥
2,1

. Theorem 3.2
establishes two covering number bounds for convolutions.

Theorem 3.2. Let b > 0 and F = {ϕK |K ∈ Rcout×cin×kh×kw , ∥K∥2,1 ≤ b} denote the class of 2D
convolutions with cin input channels, cout output channels and kernel size kh×kw, parametrized by
tensors K with W = coutcinkhkw parameters. Then, for any X ∈ Rn×cin×h×w and covering radius
ϵ > 0,

logN (F , ϵ, ∥·∥X) ≤

⌈
∥X∥2 b2

ϵ2

⌉
log(2W) (8a)

2W log

(
1 +

⌈
∥X∥2 b2

ϵ2

⌉)
. (8b)

4

Eq. (8a) is analogous to the single-layer bound of Bartlett et al. [3, Lemma 3.2] for fully-connected
layers, but replaces the (2, 1) group norm constraint on matrices M⊤ with a constraint on tensors
K. This is tighter than invoking [3, Lemma 3.2] directly on M⊤

K ∈ Rcinhw× couthw, as K has only
coutcinkhkw parameters and

∥∥M⊤
K

∥∥
2,1

≥ hw/
√
khkw ∥K∥2,1, see Section A.1. A thorough comparison

between the two bounds in Theorem 3.2 is nuanced, though, as preferring one over the other depends
on the ratio between the number of parameters W and ∥X∥2 b2/ϵ2. The latter, in turn, requires
to consider all covering radii ϵ. Hence, we defer this discussion to Section 3.5, where differences
manifest more clearly in the overall empirical Rademacher complexity bounds.

Proof sketch. The statement of Theorem 3.2 follows from an application of Maurey’s sparsification
lemma, which guarantees the existence of an ϵ-cover of F (of known cardinality) if there is a finite
subset {V1, . . . , Vd} ⊂ F s.t. every f ∈ F is a convex combination of the Vi. We show that one can
find such a finite subset of cardinality d = 2cincoutkhkw = 2W . The cardinality of the cover is then
determined by a combinatorial quantity which additionally depends on ∥X∥ and the norm constraint
b. Bounding this quantity, i.e., a binomial coefficient, in two different ways, establishes the bounds.

Relation to prior work. Closely related is recent work by Ledent et al. [26] who derive l∞ covering
number bounds for convolutional layers based on a classic result by Zhang [47]. Similar to Eq. (8a),
their bound depends on the square of a weight norm directly on the tensorK, the square of a data norm,
as well as a logarithmic term. The data norm is the maximal l2 norm of a single patch. Compared to
our result, this implicitly removes a factor of the spatial dimension hw. However, when transitioning
to multi-layer bounds, this factor reenters in the form of the spatial dimension of the output (after
subsequent pooling) via the Lipschitz constant. Overall, the quadratic terms across both results scale
similarly (with our data norm being less sensitive to outliers), but we improve on Ledent et al. [26] in
the logarithmic term. By contrast, the use of l∞ covers in [26] yields whole-network bounds with
improved dependency on the number of classes; see Section A.6 for an in-depth comparison. In other
related work, Lin et al. [29] derive an l2 covering number bound for convolutional layers similar
to Eq. (8b), which depends linearly on the number of parameters and logarithmically on norms. In
their proof, Lin et al. [29] show that every cover of a convolutional layer’s weight space (a subset
of a Euclidean space) induces a cover of the corresponding function space w.r.t. the data dependent
norm defined in Eq. (6). However, their approach incurs an additional factor inside the logarithm
that corresponds to the number of how often each filter is applied, i.e., the spatial dimension of the
output. Importantly, non-convolution specific approaches can equally mitigate undesirable scaling
issues, e.g., by utilizing (1,∞) group norms on the matrices representing the linear map [14, 16, 38];
as differences primarily manifest in the resulting bounds on the Rademacher complexity, we refer to
our discussion in Section 3.5.

3.3 Covering number bounds for composition & addition

As many neural networks are built from composition and summation of layers, we study covering
numbers under these operations. The key building blocks are the following, easy to verify, inequalities.

Lemma 3.3. Let F1,F2 be classes of functions on normed spaces (X , ∥·∥X) → (Y, ∥·∥Y) and
let G be a class of c-Lipschitz functions (Y, ∥·∥Y)→(Z, ∥·∥Z). Then, for any X ∈ Xn and ϵF1

,
ϵF2

, ϵG > 0, it holds that

N ({f1 + f2 | f1 ∈ F1, f2 ∈ F2} , ϵF1
+ ϵF2

, ∥·∥X) ≤ N (F1, ϵF1
, ∥·∥X)N (F2, ϵF2

, ∥·∥X) (9)

and

N ({g ◦ f | g ∈ G, f ∈ F2} , ϵG + cϵF2
, ∥·∥X) ≤ N (F2, ϵF2

, ∥·∥X) sup
f∈F2

N (G, ϵG , ∥·∥f(X)) . (10)

To establish these inequalities, one chooses minimal covers of the original function spaces and links
their elements via the considered operation, i.e., addition or composition. The resulting functions
correspond to tuples of elements of the original covers. Hence, the right-hand side of the inequalities
is a product of covering numbers. The crucial step is to determine a preferably small radius ϵ such
that these functions form an ϵ-cover. In Lemma 3.3, this is achieved via standard properties of norms.
Notably, iterative application of Lemma 3.3 allows bounding the covering numbers of any function
class built from compositions and additions of simpler classes.

5

In Section C.3, we apply Lemma 3.3 on two examples, i.e., (1) f ∈ F = {fL ◦ · · · ◦ f1} and (2)
h ∈ H = {g + hL ◦ · · · ◦ h1}. Instantiating the first example for fi = σi ◦ ϕi, with σi fixed and
ϕi from a family of linear maps, yields covering number bounds for networks as in Eq. (1). As the
second example corresponds to residual blocks (with g possibly the identity map), the combination
of (1) and (2) yields covering number bounds for residual networks; see Example C.3.

Overall, this strategy not only allows to derive covering number bounds for a broad range of
architectures, but also facilitates integrating linkings between function spaces in a modular way. For
instance, Lemma C.14 provides a variant of Lemma 3.3 for concatenation, used in DenseNets [22].

Relation to prior work. He et al. [19] investigate covering number bounds for function spaces
as considered above. They present covering number bounds for residual networks and show that
the covering number N (F , ϵ, ∥·∥X) of such models with layers Fα is bounded by the product∏
α supϕ∈Gα

N (Fα, ϵFα , ∥·∥ϕ(X)) for appropriately defined function spaces Gα. Yet, the dependency
of the whole-network covering radius ϵ on the single-layer covering radii ϵFα is only derived for a
very specific residual network. Our addition to the theory is a more modular and structured way of
approaching the problem, which we believe to be valuable on its own.

3.4 Covering number bounds for residual networks

We next state our whole-network covering number bounds for residual networks and then present
the corresponding bounds on the empirical Rademacher complexity in Section 3.5. Accompanying
generalization guarantees (obtained via Lemma 3.1) are given in Section C.5. The results of this
section hold for a hypothesis class F of networks implementing functions of the form

f = σL ◦ fL ◦ · · · ◦ σ1 ◦ f1 with fi(x) = gi(x) + (σiLi
◦ hiLi

◦ · · · ◦ σi1 ◦ hi1)(x) , (11)

i.e., a composition of L residual blocks. Here, the nonlinearities σi and σij are fixed and ρi-, resp.,
ρij-Lipschitz continuous with σi(0) = 0 and σij(0) = 0. We further fix the shortcuts to maps with
gi(0) = 0. The map hij identifies the j-th layer in the i-th residual block with Lipschitz constraints
sij and distance constraints bij (w.r.t. reference weights Mij). Specifically, if hij is fully-connected,
then

hij ∈
{
ϕ : x 7→ Aijx

∣∣∣ Lip(ϕ)≤ sij ,
∥∥A⊤

ij −M⊤
ij

∥∥
2,1

≤ bij

}
, (12)

and, in case hij is convolutional, then

hij ∈
{
ϕKij

∣∣∣ Lip(ϕKij)≤ sij , ∥Kij −Mij∥2,1 ≤ bij

}
. (13)

In terms of notation, si = Lip(gi) +
∏Li

j=1 ρijsij further denotes the upper bound on the Lipschitz
constant of the i-th residual block fi. The Lipschitz constants are w.r.t. Euclidean norms; for a
fully-connected layer this coincides with the spectral norm of the weight matrix.

The covering number bounds in Theorem 3.4 below depend on three types of quantities: (1) the total
number of layers L̄ =

∑
i Li, (2) the numbers Wij of parameters of the j-th layer in the i-th residual

block, their maximum W = maxijWij , and (3) terms Cij that quantify the part of a layer’s capacity
attributed to weight and data norms. With respect to the latter, we define

Cij(X) = 2
∥X∥√
n

(
L∏
l=1

slρl

) ∏Li

k=1
sikρik

si

bij
sij

(14)

and write Cij = Cij(X) for brevity. Importantly, ∥X∥ ≤
√
nmaxi ∥xi∥ and so the Cij can be

bounded independently of the sample size. Overall, this yields the following covering number bounds
for residual networks.
Theorem 3.4. The covering number of the class of residual networks F as specified above, satisfies

logN (F , ϵ, ∥·∥X) ≤

log(2W)

(
L∑
i=1

Li∑
j=1

⌈
C

2/3
ij

⌉)3 ⌈ n
ϵ2

⌉
(15a)

L∑
i=1

Li∑
j=1

2Wij log
(
1 +

⌈
L̄2C2

ij

⌉ ⌈ n
ϵ2

⌉)
. (15b)

6

3.5 Rademacher complexity bounds

In combination with Dudley’s entropy integral, Theorem 3.4 implies the empirical Rademacher
complexity bounds in Theorem 3.5. These bounds equally hold for non-residual networks as in
Eq. (1), i.e., the special case of setting the shortcuts gi to the zero map (with L = 1 block).

Theorem 3.5. Let γ > 0 and define C̃ij = 2Cij/γ. Further, let Hn−1 =
∑n−1
m=1

1/m = O(log(n))
denote the (n− 1)-th harmonic number. Then, the empirical Rademacher complexity of Fγ satisfies

R̂S(Fγ) ≤
4

n
+

12Hn−1√
n

√
log(2W)

 L∑
i=1

Li∑
i=j

⌈
C̃

2/3
ij

⌉3/2

(♣)

and

R̂S(Fγ) ≤
12√
n

√√√√ L∑
i=1

Li∑
i=j

2Wij

(
log
(
1 +

⌈
L̄2C̃2

ij

⌉)
+ ψ

(⌈
L̄2C̃2

ij

⌉))
, (♠)

where ψ is a monotonically increasing function, satisfying ψ(0) = 0 and ∀x : ψ(x) < 2.7.

The theorem considers the function class Fγ as defined in Eq. (3). As a consequence, the bounds
depend on the quotients C̃ij = 2Cij/γ, which measure a layer’s capacity (with respect to weight
and data norms) relative to a classification margin parameter γ. As we will see in the experiments,
constraining the layers’ Lipschitz constants and weight norms, allows to substantially reduce the
quantities Cij while the margin parameter γ decreases only moderately.

Theorem 3.5 also immediately implies generalization bounds for Fγ via Lemma 3.1. In a subsequent
step one can gradually decrease the constraint strengths and invoke a union bound argument over
the corresponding generalization bounds, as for example done in [3, Lemma A.9]. This yields a
generalization bound which does not depend on a priori defined constraint strengths, but on the actual
Lipschitz constants and group norms computed from a neural network’s weights.

Interpretation. To facilitate a clean comparison between the bounds in Theorem 3.5, we disregard
the ceiling function and apply Jensen’s inequality to the first bound (♣), yielding

R̂S(Fγ) ≤
4

n
+

12Hn−1√
n

√
log(2W)

∑
ij
L̄2C̃2

ij . (16)

Denoting C̃ = maxij C̃ij , Eq. (16) reveals that the bounds essentially differ only in that (♣) depends
on (log(2W)L̄2C̃2)1/2 and (♠) depends on (2W log(1+ L̄2C̃2))1/2. Thus, the question of which one
is tighter, hinges on the ratio of 2W and L̄2C̃2, i.e., a tradeoff between the number of parameters and
the weight norms. As we see in Fig. 2, for simple, unconstrained networks, our second bound (♠) is
much tighter. However, due to the logarithmic dependency on C̃, it is less affected by constraining
the distances b to initialization and the Lipschitz constants s. In Section 4, we show that this effect
causes (♣) to be a more faithful measure of excess capacity. As C̃ depends exponentially on the
network depth via the product of Lipschitz constants, another perspective on the bounds is that
Eq. (♣) favors shallow architectures whereas Eq. (♠) favors narrow architectures. Notably, replacing
the function class Fγ with a class of networks composed with a Lipschitz augmented loss function
[43] facilitates deriving Rademacher complexity- and generalization bounds, which do not suffer
from the exponential depth dependency via the product of Lipschitz constants. Instead, such bounds
depend on data dependent empirical estimates thereof, which are typically much smaller.

Relation to prior work. Prior works [14, 16, 38] that tie generalization to (1,∞) group norms
of matrices of fully-connected layers are equally applicable to convolutional networks without
unfavorable scaling w.r.t. input size. In particular, for (1,∞) group norms of M⊤

K , we have∥∥M⊤
K

∥∥
1,∞ = maxo ∥Ko···∥1, i.e., the maximum l1 norm over each (input channel, width, height)

slice of K. Yet, due to the layer-peeling strategy common to these works, the bounds scale with the
product of matrix group norms vs. the product of Lipschitz constants (as in the C̃ij in Theorem 3.5) for
covering number based strategies. While one can construct settings where the product of (1,∞) group
norms is smaller than the product of Lipschitz constants, this is typically not observed empirically, cf.
Fig. 2. Alternatively, Long & Sedghi [31] derive a generalization bound which does not depend on lp

7

norms or group norms, but only on the distance to initialization with respect to the spectral norm.
Notably, an intermediate result in this reference yields a generalization bound of similar form as
(♠), scaling with the logarithm of the product of Lipschitz constants and with the square root of the
number of parameters, see Section A.5. The distance to initialization then enters the main result [31,
Theorem 3.1] at the cost of a Lipschitz constraint on the initialization. We argue that (♠) incorporates
the distance to initialization more naturally, as it comes without constraints on the initialization itself.
Further, it holds for any sample size n and the numerical constants are explicit. Last, in the special
case of fully-connected layers and no skip connections, (♣) reduces to the Rademacher complexity
bound from [3]. Yet, there are three differences to this result: (i) a different numerical constant, (ii)
the logarithm is replaced with a harmonic number, and (iii) there are no ceiling functions. From
our understanding, these modifications are equally necessary when proving the special case directly.
Nevertheless, these differences are only of minor importance, as they do not affect the asymptotic
behavior of the bound. For more details, see Section A.4.

4 Empirical Evaluation
To assess the excess capacity of a neural network trained via a standard protocol on some dataset, we
seek a hypothesis class that contains a network of the same architecture with comparable testing error
but smaller capacity. Controlling capacity via the bounds in Theorem 3.5 requires simultaneously
constraining the Lipschitz constants per layer and the (2, 1) group norm distance of each layer’s weight
to its initialization. We first discuss how to enforce the constraints. Then, we fix a residual network
architecture and train on datasets of increasing difficulty while varying the constraint strengths.

Capacity reduction. Controlling hypothesis class capacity necessitates ensuring that optimization
yields a network parametrization that satisfies the desired constraints. To this end, we implement a
variant of projected stochastic gradient descent (SGD) where, after a certain number of update steps,
we project onto the intersection of the corresponding constraint sets C1 and C2. For convolutional
layers, parametrized by tensors K, these are the convex sets C1 = {K : ∥K − K0∥2,1 ≤ b} and
C2 = {K : Lip(ϕK) ≤ s}. Hence, jointly satisfying the constraints is a convex feasibility problem
of finding a point in C = C1 ∩ C2. To ensure C ≠ ∅, we initially (prior to optimization) scale each
layer’s weight K0 so that Lip(ϕK0) = s. This starting point (per layer) resides in C by construction.

To project onto C, we rely on alternating orthogonal projections which map K to a tensor in C1, resp.
C2 with minimal distance to K. Repeated application of these projections converges to a point in the
intersection C [5]. To implement the orthogonal projections onto C1 and C2, we rely on work by Liu et
al. [30] and Sedghi et al. [40], respectively. The latter requires certain architectural prerequisites, and
in consequence, we need to use convolutions of stride 1 (though our bounds equally hold for strides
>1) and to reduce spatial dimensionality only via max-pooling. Further, we use circular padding and
kernel sizes not larger than the input dimensionalities. For details on the projection algorithm and a
comparison to alternating radial projections, see Section B.2.

Architecture. We use a slightly modified (pre-activation) ResNet18 [21]. Modifications include:
(1) the removal of batch normalization and biases; (2) skip connections for residual blocks where
the number of channels doubles and spatial dimensionality is halved are implemented via a fixed
map. Each half of the resulting channels is obtained via 2× 2 spatial max-pooling (shifted by one
pixel). This map has Lipschitz constant

√
2 and is similar to the shortcut variant (A) of [20]; finally,

(3) we fix the weight vectors of the last (classification) layer at the vertices of a κ− 1 unit simplex.
Fixing the classifier is motivated by [18] and the simplex configuration is inspired by [17, 48] who
show that this configuration corresponds to the geometric weight arrangement one would obtain at
minimal cross-entropy loss. By construction, this classifier has Lipschitz constant

√
κ/κ−1. Notably,

modifications (2) and (3) do not harm performance, with empirical testing errors on a par with a
standard ResNet18 without batch normalization. Modification (1), i.e., the omission of normalization
layers, was done to ensure that the experiments are in the setting of Eq. (11) and therefore that
(♣, ♠) are faithful capacity measures. However, it is accompanied by a noticeable increase in
testing error. In principle, our theory could handle batch normalization, as, during evaluation, the
latter is just an affine map parametrized by the running mean and variance learned during training.
However, including normalization in our empirical evaluation is problematic, as normalizing batches
of small variance requires the normalization layers to have a large Lipschitz constant. Consequently,
considering normalization layers as affine maps and enforcing Lipschitz constraints on them could

8

prevent proper normalization of the data. Another strategy would be to consider normalization
layers as fixed nonlinearities which normalize each batch to zero mean and unit variance. However,
this map is not Lipschitz continuous, and again, modifications could hinder normalization (which
defeats the very purpose of these layers). Hence, we decided to remove normalization layers in our
empirical evaluation. Presumably, however, there is a middle ground where capacity is reduced, and
normalization is still possible. If so, excess capacity could be assessed for very deep architectures,
which are difficult to train without normalization layers.

Datasets & Training. We test on three benchmark datasets: CIFAR10/100 [25], and Tiny-ImageNet-
200 [24], listed in order of increasing task difficulty. We minimize the cross-entropy loss using SGD
with momentum (0.9) and small weight decay (1e-4) for 200 epochs with batch size 256 and follow
a CIFAR-typical stepwise learning rate schedule, decaying the initial learning rate (of 3e-3) by a
factor of 5× at epochs 60, 120 & 160 [10]. No data augmentation is used. When projecting onto
the constraint sets, we found one alternating projection step every 15th SGD update to be sufficient
to remain close to C. To ensure that a trained model is within the capacity-constrained class, we
perform 15 additional alternating projection steps after the final SGD update. For consistency, all
experiments are run with the same hyperparameters. Consequently, hyperparameters are chosen so
that training converges for the strongest constraints we assess. In particular, we train for 200 epochs
even though unconstrained and weakly constrained models can be trained much faster. Importantly,
this affects the assessment of excess capacity only marginally, as we observe that the testing error
does not deteriorate in case of more update steps. Similarly, the Lipschitz constant and the distance
to initialization stay almost constant once the close-to-zero training error regime is reached, which
may happen way before 200 epochs are completed.

4.1 Results

First, we assess the capacity-driving quantities in our bounds for models trained without constraints1.
Table 1 (top) lists a comparison across datasets, along with the capacity measures (♣, ♠), the
training/testing error, and the empirical generalization gap (i.e., the difference between testing and
training error). In accordance with our motivating figure from Section 1 (Fig. 1), we observe an
overall increase in both capacity-driving quantities as a function of task difficulty.

To assess excess capacity in the context of questions (Q1) and (Q2), we first identify, per dataset,
the most restrictive constraint combination where the testing error2 is as close as possible to the
unconstrained regime. We refer to this setting as the operating point for the constraints, characterizing
the function class F that serves as a reference to measure excess capacity. The operating points per
dataset, as well as the corresponding results are listed in Table 1 (bottom).

With respect to (Q1) we find that networks can indeed maintain, or even improve, testing error at
substantially lowered capacity (see performance comparison in Fig. 3 relative tof). Furthermore,
the observation that the capacity of the constrained models (surprisingly) remains in the same order
of magnitude across tasks of varying difficulty, suggests a negative answer to question (Q2). A
reduced-capacity model from an easy task can perform well on a difficult task. In consequence, when
comparing the top vs. bottom part of Table 1 with respect to column (♣), we do see that task difficulty
primarily manifests as excess capacity. Another manifestation of task difficulty is evident from the
more detailed analysis in Fig. 3 (bottom), where we see that tightening both constraints beyond the
identified operating point leads to a more rapid deterioration of the testing error as the task difficulty
increases. Interestingly, at the operating point, the constrained models do not only share similar
capacity across datasets, but also similar empirical generalization gaps, primarily due to leaving the
ubiquitous zero-training-error regime. The latter is particularly noteworthy, as strong regularization
(e.g., via weight decay) can equally enforce this behavior, but typically at the cost of a large increase
in testing error (which we do not observe). Finally, the parameter-counting variant of our bound (see
Table 1, column ♠) is, by construction, much less affected by the constraints and apparently fails to
capture the observations above. This highlights the relevance of tying capacity to weight norms and
underscores their utility in our context.

1At evaluation time, Lipschitz constants are computed via a power iteration for convolutional layers [15, 27].
2We are primarily interested in what is feasible in terms of tolerable capacity reduction. Hence, leveraging

the testing split of each dataset for this purpose is legitimate from this exploratory perspective.

9

Lip.

0.2

0.4

0.6

0.8

1.0

0.5 0.6 0.7 0.8
Testing accuracy

Lipschitz constraint

CIFAR10 (task difficulty: easy) CIFAR100 (task difficulty: medium) Tiny-ImageNet-200 (task difficulty: hard)

Testing accuracy Testing accuracy

Operating point

0.4

20
0.2 0.4 0.6 0.8 1.0

Lipschitz constraint
0.2 0.4 0.6 0.8 1.0

Lipschitz constraint
0.5 0.6 0.7 0.8 0.9 1.0

40

60

80

100

0.6

0.8

1.0

T
ra
in
in
g

ac
cu

ra
cy

(2
,1
)g

ro
up

no
rm

di
st
an
ce

co
ns

tra
in

t

(2
,1
)g

ro
up

no
rm

di
st
an
ce

co
ns

tra
in

t

(2
,1
)g

ro
up

no
rm

di
st
an
ce

co
ns

tra
in

t

20

40

60

80

100

50

70

100

130

T
ra
in
in
g

ac
cu

ra
cy

T
ra
in
in
g

ac
cu

ra
cy(2,1) group norm dist. of 90

(2,1) group norm dist. of 30

w/o constraints

Lip.

0.2

0.4

0.6

0.8

1.0

0.1

0.7

0.6

0.5

0.3

0.4

0.2

0.1

0.30

0.35

0.25

0.20

0.2 0.3 0.4 0.5
0.00

0.25

0.50

0.75

1.00 (2,1) group norm dist. of 90

(2,1) group norm dist. of 30

w/o constraints

Operating point

0.15 0.20 0.25 0.30 0.35 0.40

0.2

0.4

0.6

0.8

1.0 (2,1) group norm dist. of 130

(2,1) group norm dist. of 50

w/o constraints

0.5

0.6

0.7

0.8

0.9

1.0
Lip.

Operating point

Acc. (Tst) Acc. (Tst) Acc. (Tst)

O
pe
ra
tin
g
po
in
t

O
pe
ra
tin
g
po
in
t

O
pe
ra
tin
g
po
in
t

Figure 3: Fine-grained analysis of training/testing accuracy in relation to the Lipschitz constraint and the (2, 1)
group norm distance to initialization constraint. We see that testing accuracy can be retained (relative tof) for
a range of fairly restrictive constraints (top row), compared to the unconstrained regime (cf. Lip./Dist. columns
in the top part of Table 1). However, this range noticeably narrows with increasing task difficulty (bottom row) .

Table 1: Assessment of the capacity-driving quantities. We list the median over the Lipschitz constants (Lip.)
and the (2, 1) group norm distances (Dist.) across all layers. Err. denotes the training/testing error, Capacity
denotes the measures (♣, ♠) from Theorem 3.5 and Gap the empirical generalization gap. The top part lists
results in the unconstrained regime (seef in Fig. 3), the bottom part lists results at the operating point of the
most restrictive constraint combination where the testing error is not worse than in the unconstrained case. Mar.
denotes the margin parameter γ used for computing the capacity measures. As the constrained models do not fit
the training data anymore, they do not have a positive classification margin. Thus, we choose γ such that the
unconstrained and constrained models have the same ramp loss value.

Lip. Dist. Mar. Err. (Tst) Err. (Trn) Capacity (♣, ♠) Gap

CIFAR10 1.63 60.3 11.2 0.24 0.00 1.0·1010 / 8.8·102 0.24
CIFAR100 2.17 129.1 23.4 0.54 0.00 1.7·1011 / 9.3·102 0.54

Tiny ImageNet 3.05 287.3 24.7 0.62 0.00 4.5·1013 / 1.1·103 0.62

CIFAR10 0.80 50.0 1.00 0.21 0.06 1.8·108 / 7.8·102 0.15
CIFAR100 0.80 70.0 1.00 0.52 0.36 2.6·108 / 7.9·102 0.16

Tiny ImageNet 0.80 130.0 1.00 0.62 0.41 8.9·108 / 8.9·102 0.21

5 Discussion

Studying the capacity of neural networks hinges crucially on the measure that is used to quantify it.
In our case, capacity rests upon two bounds on the empirical Rademacher complexity, both depending
on weight norms and the number of parameters, but to different extents. Hence, exerting control over
the weight norms manifests in different ways: in case of the more weight norm dependent capacity
measure, our results show substantial task-dependent excess capacity, while, when relying more on
parameter counting, this effect is less pronounced. Although the latter measure yields tighter bounds,
its utility in terms of explaining the observed empirical behavior is limited: in fact, capacity tied to
weight norms not only better correlates with observed generalization gaps (both with and without
constraints), but the amount of tolerable capacity reduction also reflects the smaller generalization
gaps in the constrained regime. Note that our results rest upon carefully implementing constraint
enforcement during optimization. Hence, numerical schemes to better account for this setting might
potentially reveal an even more pronounced excess capacity effect.

In summary, our experiments, guided by the theoretical bounds, strongly suggest a notion of com-
pressibility of networks with respect to weight norms. This compressibility only moderately reduces
with task difficulty. We believe these observations to be particularly relevant and we foresee them
sparking future work along this direction.

Acknowledgments

This work was supported by the Austrian Science Fund (FWF) under project FWF P31799-N38 and
the Land Salzburg under projects 0102-F1901166-KZP and 20204-WISS/225/197-2019.

10

References
[1] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of

optimization and generalization for overparameterized two-layer neural networks. In ICML,
2019.

[2] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds
for deep nets via a compression approach. In ICML, 2018.

[3] Peter Bartlett, Dylan Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
neural networks. In NeurIPS, 2017.

[4] Peter Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res. (JMLR), 3(Nov):463–482, 2002.

[5] Heinz H. Bauschke and Jonathan M. Borwein. On projection algorithms for solving convex
feasibility problems. SIAM Review, 36(3):367–426, 1996.

[6] Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-
dependent coresets for compressing neural networks with application to generalization bounds.
In ICLR, 2019.

[7] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[8] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. In NeurIPS, 2019.

[9] Ching-Yao Chuang, Youssef Mroueh, Kristjan Greenwald, Antonio Torralba, and Stefanie
Jegelka. Measuring generalization with optimal transport. In NeurIPS, 2021.

[10] Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural
networks with cutout, 2017. arXiv preprint https://arxiv.org/abs/1708.04552.

[11] Richard M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes. J. Funct. Anal., 1(3):290–330, 1967.

[12] Richard L. Dykstra. An algorithm for restricted least squares regression. Journal of the
American Statistical Association, 78(384):837–842, 1983.

[13] Evarist Giné and Armelle Guillou. On consistency of kernel density estimators for randomly
censored data: rates holding uniformly over adaptive intervals. Annales de l’IHP Probabilités
et statistiques, 37(4):503–522, 2001.

[14] Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In COLT, 2018.

[15] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
networks by enforcing Lipschitz continuity. Machine Learning, 110(2):393–416, Feb 2021.

[16] Henry Gouk, Timothy M. Hospedales, and Massimiliano Pontil. Distance-based regularization
of deep networks for fine-tuning. In ICLR, 2021.

[17] Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. Dissecting supervised
contrastive learning. In ICML, 2021.

[18] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In ICLR, 2017.

[19] Fengxiang He, Tongliang Liu, and Dacheng Tao. Why ResNet works? Residuals generalize.
IEEE Trans Neural Netw. Learn. Syst., 31(12):5349–5362, 2020.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV, 2016.

11

https://arxiv.org/abs/1708.04552

[22] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

[23] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In NeurIPS, 2018.

[24] Justin Johnson. Tiny ImageNet. https://github.com/jcjohnson/tiny-imagenet. Ac-
cessed: 28.09.2022 via http://cs231n.stanford.edu/tiny-imagenet-200.zip.

[25] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[26] Antoine Ledent, Waleed Mustafa, Yunwen Lei, and Marius Kloft. Norm-based generalisation
bounds for multi-class convolutional neural networks. In AAAI, 2021.

[27] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger Grosse, and Jörn-Henrik Jacobsen.
Preventing gradient attenuation in lipschitz constrained convolutional networks. NeurIPS, 2019.

[28] Hongzhou Lin and Stefanie Jegelka. ResNet with one-neuron hidden layers is a universal
approximator. In NeurIPS, 2018.

[29] Shan Lin and Jingwei Zhang. Generalization bounds for convolutional neural networks, 2019.
arXiv preprint https://arxiv.org/abs/1910.01487.

[30] Jun Liu, Shuiwang Ji, and Jieping Ye. Multi-task feature learning via efficient l2,1-norm
minimization. In UAI, 2009.

[31] Philip Long and Hanie Sedghi. Generalization bounds for deep convolutional neural networks.
In ICLR, 2020.

[32] Andreas Maurer. A vector-contraction inequality for Rademacher complexities. In ALT, 2016.

[33] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

[34] Vaishnavh Nagarajan and Zico Kolter. Generalization in deep networks: The role of distance
from initialization. In NeurIPS workshop on Deep Learning: Bridging Theory and Practice,
2017.

[35] Vaishnavh Nagarajan and Zico Kolter. Deterministic PAC-Bayesian generalization bounds for
deep networks via generalizing noise-resilience. In ICLR, 2019.

[36] Vaishnavh Nagarajan and Zico Kolter. Uniform convergence may be unable to explain general-
ization in deep learning. In NeurIPS, 2019.

[37] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian approach to
spectrally-normalized margin bounds for neural networks. In ICLR, 2018.

[38] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In COLT, 2015.

[39] Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Brendel. Foolbox Native:
Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch,
TensorFlow, and JAX. J. Open Source Softw., 5(53):2607, 2020.

[40] Hanie Sedghi, Vineet Gupta, and Philip Long. The singular values of convolutional layers. In
ICLR, 2019.

[41] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, and Nati Srebro. The implicit bias of gradient
descent on separable data. In ICLR, 2018.

[42] Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-
compressed network: unified generalization error analysis of large compressible deep neural
network. In ICLR, 2020.

12

https://github.com/jcjohnson/tiny-imagenet
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://arxiv.org/abs/1910.01487

[43] Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via
lipschitz augmentation. In NeurIPS, 2019.

[44] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Are deep ResNets provably better than linear
predictors? In NeurIPS, 2019.

[45] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

[46] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[47] Tong Zhang. Covering number bounds of certain regularized linear function classes. J. Mach.
Learn. Res. (JMLR), (2):527–550, March 2002.

[48] Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong You, Jeremias Sulam, and Qing Qu. A
geometric analysis of neural collapse with unconstrained features. In NeurIPS, 2021.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] For all presented theoretical
results, we discuss connections, as well as limitations or advantages/disadvantages with
respect to prior work. Furthermore, our supplementary material (Appendix) contains
substantial extensions of these discussions. Regarding our experimental results, we
discuss potential limitations in Section 4 and Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] All
experiments throughout this work are conducted on well-established, publicly available
benchmark datasets for image classification. We primarily address theoretical aspects
of existing neural network models for which we do not see a potential negative societal
impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] All key

theoretical results (theorems, lemmas, etc.), including assumptions and definitions are
listed in the main part of the paper.

(b) Did you include complete proofs of all theoretical results? [Yes] Proofs for all theoreti-
cal results listed in the main part of the paper (theorems, lemmas, etc.) can be found in
the supplementary material (Appendix), including any omitted technical details.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Code to re-run
experiments and reproduce results is included in the supplementary as part of this
submission.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We include training/architectural details in Section 4 of the main
part of the paper. Details for our initial bound comparison in Fig. 2 can be found in
the supplementary material (Appendix). Throughout all experiments, we adhere to the
common training/testing splits of the three datasets we used, i.e., CIFAR10/100 and
Tiny-ImageNet-200.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We did run experiments multiple times (using the same
network, dataset and training regime), but under varying constraint strengths (rather
than different seeds). Fig. 3 visualizes all these runs.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Section B.4 lists all hardware
resources used in our experiments.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] The datasets we used are publicly

available and well-established benchmark datasets commonly used in computer vision
research.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] All datasets in our experiments are used as is.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

14

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

