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Abstract

Inverse reinforcement learning (IRL) aims to recover the reward function and
the associated optimal policy that best fits observed sequences of states and
actions implemented by an expert. Many algorithms for IRL have an inherently
nested structure: the inner loop finds the optimal policy given parametrized
rewards while the outer loop updates the estimates towards optimizing a measure
of fit. For high dimensional environments such nested-loop structure entails
a significant computational burden. To reduce the computational burden of a
nested loop, novel methods such as SQIL [1] and IQ-Learn [2] emphasize policy
estimation at the expense of reward estimation accuracy. However, without
accurate estimated rewards, it is not possible to do counterfactual analysis such
as predicting the optimal policy under different environment dynamics and/or
learning new tasks. In this paper we develop a novel single-loop algorithm for
IRL that does not compromise reward estimation accuracy. In the proposed
algorithm, each policy improvement step is followed by a stochastic gradient
step for likelihood maximization. We show that the proposed algorithm provably
converges to a stationary solution with a finite-time guarantee. If the reward is
parameterized linearly, we show the identified solution corresponds to the solution
of the maximum entropy IRL problem. Finally, by using robotics control problems
in MuJoCo and their transfer settings, we show that the proposed algorithm achieves
superior performance compared with other IRL and imitation learning benchmarks.

1 Introduction

Given observed trajectories of states and actions implemented by an expert, we consider the problem
of estimating the reinforcement learning environment in which the expert was trained. This problem is
generally referred to as inverse reinforcement learning (IRL) (see [3] for a recent survey). Assuming
the environment dynamics are known (or available online), the IRL problem consists of estimating
the reward function and the expert’s policy (optimizing such rewards) that best fits the data. While
there are limitations on the identifiability of rewards [4], the estimation of rewards based upon expert
trajectories enables important counterfactual analysis such as the estimation of optimal policies under
different environment dynamics and/or reinforcement learning of new tasks.

In the seminal work [5], the authors developed an IRL formulation, in which the model for the expert’s
behavior is the policy that maximizes entropy subject to a constraint requiring that the expected
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features under such policy match the empirical averages in the expert’s observation dataset. The
algorithms developed for MaxEnt-IRL [5–7] have a nested loop structure, alternating between an
outer loop with a reward update step, and an inner loop that calculates the explicit policy estimates.
The computational burden of this nested structure is manageable in tabular environments, but it
becomes significant in high dimensional settings requiring function approximation.

Towards developing more efficient IRL algorithms, a number of works [8–12] propose to leverage
the idea of adversarial training [13]. These algorithms learn a non-stationary reward function through
training a discriminator, which is then used to guide the policy to match the behavior trajectories
from the expert dataset. However, [14] pointed out that the resulting discriminator (hence the
reward function) typically cannot be used in new learning tasks, since it is highly dependent on the
corresponding policy and current environment dynamics. Moreover, due to the brittle approximation
techniques and sensitive hyperparameter choice in the adversarial training, these IRL algorithms can
be unstable. [15, 16].

More recent works [1, 2] have developed algorithms to alleviate the computational burden of the
nested-loop training procedures. In [1], the authors propose to model the IRL using certain maximum
entropy RL problem with specific reward function (which assigns r = +1 for matching expert
demonstrations and r = 0 for all other behaviors). Then a soft Q imitation learning (SQIL) algorithm
is developed. In [2], the authors propose to transform the standard formulation of IRL (discussed
above) into a single-level problem, through learning a soft Q-function to implicitly represent the
reward function and the policy. An inverse soft-Q learning (IQ-Learn) algorithm is then developed,
which is shown to be effective in estimating the policy for the environment that it is trained on.
Despite being computationally efficient, IQ-Learn sacrifices the accuracy in estimating the rewards
since it indirectly recovers rewards from a soft Q-function approximator which is highly dependent
upon the environment dynamics and does not strictly satisfy the soft-Bellman equation. Therefore it
is not well-suited for counterfactual prediction or transfer learning setting.

Finally, in f -IRL [14] the authors consider an approach for estimating rewards based on the
minimization of several measures of divergence with respect to the expert’s state visitation measure.
The approach is limited to estimating rewards that only depend on state. Moreover, while the results
reported are based upon a single-loop implementation, the paper does not provide a convergence
guarantee to support performance. We refer the readers to Appendix A for other related works.

Our Contributions. The goal of this work is to develop an algorithm for IRL which is capable of
producing high-quality estimates of both rewards and behavior policies with finite-time guarantees.
The major contributions of this work are listed below.

• We consider a formulation of IRL based on maximum likelihood (ML) estimation over optimal
(entropy-regularized) policies, and prove that a strong duality relationship with maximum entropy
IRL holds if rewards are represented by a linear combination of features. 1 The ML formulation is
a bi-level optimization problem, where the upper-level problem maximizes the likelihood function,
while the lower-level finds the optimal policy under the current reward parameterization. Such a
bi-level structure is not only instrumental to the subsequent algorithm design, but is also flexible to
incorporate the use of state-only, as well as the regular reward function (which depends on the state
and action pair). The former is suitable for transfer learning since it is insensitive to the changes of
the environment dynamics, while the latter can be used to efficiently imitate the expert policy.

• Based on the ML-IRL formulation, we develop an efficient algorithm. To avoid the computational
burden of repeatedly solving the lower-level policy optimization problem, the proposed algorithm
has a single-loop structure where the policy improvement step and reward optimization step are
performed alternatingly so that each step can be performed relatively cheaply. Further, we show that
the algorithm has strong theoretical guarantees: to achieve certain ✏-approximate stationary solution
for a non-linearly parameterized problem, it requires O(✏�2) steps of policy and reward updates each.
To our knowledge, it is the first algorithm which has finite-time guarantee for the IRL problem under
nonlinear parameterization of reward functions.

• We conduct extensive experiments to demonstrate that the proposed algorithm outperforms many
state-of-the-art IRL algorithms in both policy estimation and reward recovery. In particular, when

1Heuristic arguments for this duality result are discussed in [5] wherein the distribution of state-action paths is
approximated (see equation (4) in [5]) and the equivalence between maximum entropy estimation and maximum
likelihood (over the class of exponential distributions) [17] is invoked.
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transferring to a new environment, RL algorithms using rewards recovered by the proposed algorithm
outperform those that use rewards recovered from existing IRL and imitation learning benchmarks.

2 Preliminaries

In this section, we review the fundamentals of the maximum entropy inverse reinforcement learning
(MaxEnt-IRL). We consider an MDP defined by the tuple (S,A,P, ⌘, r, �); S and A denote the
state space and the action space respectively; P(s0|s, a) : S ⇥A⇥ S ! [0, 1] denotes the transition
probability; ⌘(·) denotes the distribution for the initial state; r(s, a) : S ⇥ A ! R is the reward
function and � is a discount factor.

The MaxEnt-IRL formulation [6, 18–20] consists of finding a policy maximizing entropy subject to
the expected features under such policy matching the empirical averages in the expert’s observation
dataset. Specifically, the MaxEnt-IRL formulation is given by:

max
⇡

H(⇡) := E⌧⇠⇡

 1X

t=0

��
t log ⇡(at|st)

�
(MaxEnt-IRL)

s.t. E⌧⇠⇡

 1X

t=0

�
t
�(st, at)

�
= E⌧⇠⇡E

 1X

t=0

�
t
�(st, at)

�

where ⌧ = {(st, at)}1t=0 denotes a trajectory, �(s, a) is the feature vector of the state-action pair
(s, a) and ⇡

E denotes the expert policy. Let ✓ denote the dual variable for the linear constraint, then
the Lagrangian of (MaxEnt-IRL) is given by

L(⇡, ✓) := H(⇡) +

*
✓,E⌧⇠⇡

 1X

t=0

�
t
�(st, at)

�
� E⌧⇠⇡E

 1X

t=0

�
t
�(st, at)

�+
. (1)

In [6, 18, 19], the authors proposed a "dual descent" algorithm, which alternates between i) solving
max⇡ L(⇡, ✓) for fixed ✓, and ii) a gradient descent step to optimize the dual variable ✓. It is
shown that the optimizer ⇡⇤

✓ in step i) can be recursively defined as ⇡
⇤
✓(at|st) =

Zat|st,✓
Zst,✓

, where
logZat|st,✓ = �(st, at)T ✓ + �Est+1⇠P(·|st,at)

⇥
logZst+1,✓

⇤
and logZst,✓ = log

�P
a2A Za|st,✓

�
.

From a computational perspective, the above algorithm is not efficient: it has a nested-loop structure,
which repeatedly computes the optimal policy ⇡

⇤
✓ under each variable ✓. It is known that when the

underlying MDP is of high-dimension, such an algorithm can be computationally prohibitive [9, 10].

Recent work [2] proposed an algorithm called IQ-Learn to improve upon the MaxEnt-IRL by
considering a saddle-point formulation:

min
r

max
⇡

n
H(⇡) + E⌧⇠⇡

⇥ 1X

t=0

�
t · r(st, at)

⇤
� E⌧⇠⇡E

⇥ 1X

t=0

�
t · r(st, at)

⇤o
(2)

where r(st, at) is the reward associated with state-action pair (st, at). The authors show that this
problem can be transformed into an optimization problem only defined in terms of the soft Q-function,
which implicitly represents both reward and policy. IQ-Learn is shown to be effective in imitating the
expert behavior while only relying on the estimation of the soft Q-function. However, the implicit
reward estimate obtained is not necessarily accurate since its soft Q-function estimate depends on the
environment dynamics and does not strictly satisfy the soft-Bellman equation. Hence, it is difficult to
transfer the recovered reward function to new environments.

3 Problem Formulation

In this section, we consider a ML formulation of the IRL problem and formalize a duality relationship
with maximum entropy-based formulation (MaxEnt-IRL).

Maximum Log-Likelihood IRL (ML-IRL)
A model of the expert’s behavior is a randomized policy ⇡✓(·|s), where ⇡✓ is a specific policy
corresponding to the reward parameter ✓. With the state dynamics P(st+1|st, at), the discounted
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log-likelihood of observing the expert trajectory ⌧ under model ⇡✓ can be written follows:

E⌧⇠⇡E

⇥
log

Y

t�0

(P(st+1|st, at)⇡✓(at|st))�
t⇤

= E⌧⇠⇡E

⇥X

t�0

�
t log ⇡✓(at|st)

⇤

+ E⌧⇠⇡E

⇥X

t�0

�
t logP(st+1|st, at)

⇤
.

Then we consider the following maximum log-likelihood IRL formulation:

max
✓

L(✓) := E⌧⇠⇡E

⇥ 1X

t=0

�
t log ⇡✓(at|st)

⇤
(ML-IRL)

s.t ⇡✓ := argmax
⇡

E⌧⇠⇡

 1X

t=0

�
t

✓
r(st, at; ✓) +H(⇡(·|st))

◆�
, (3a)

where r(s, a; ✓) is the reward function and H(⇡(·|s)) := �
P

a2A ⇡(a|s) log ⇡(a|s).
We now make some remarks about ML-IRL. First, the problem takes the form of a bi-level

optimization problem, where the upper-level problem (ML-IRL) optimizes the reward parameter
✓, while the lower-level problem describes the corresponding policy ⇡✓ as the solution to an
entropy-regularized MDP ([21, 22]). In what follows we will leverage recently developed (stochastic)
algorithms for bi-level optimization [23–25], that avoid the high complexity resulted from nested
loop algorithms. Second, it is reasonable to use the ML function as the loss, because it searches
for a reward function which generates a behavior policy that can best fit the expert demonstrations.
While the ML function has been considered in [26, 27], they rely on heuristic algorithms with
nested-loop computations to solve their IRL formulations, and the theoretical properties are not
studied. Finally, the lower-level problem has been well-studied in the literature [21, 22, 28–30]. The
entropy regularization in (3a) ensures the uniqueness of the optimal policy ⇡✓ under the fixed reward
function r(s, a; ✓) [21, 28]. Even when the underlying MDP is high-dimensional and/or complex, the
optimal policy could still be obtained; see recent developments in [21, 22]. We close this section by
formally establishing a connection between (MaxEnt-IRL) and (ML-IRL).
Theorem 1. (Strong Duality) Suppose that the reward function is given as: r(s, a; ✓) := �(s, a)T ✓,

for all s 2 S and a 2 A. Then (ML-IRL) is the Lagrangian dual of (MaxEnt-IRL). Furthermore,

strong duality holds, that is: L(✓⇤) = H(⇡⇤), where ✓
⇤

and ⇡
⇤

are the global optimal solutions for

problems (ML-IRL) and (MaxEnt-IRL), respectively.

The proof of Theorem 1 is relegated to Appendix G. To our knowledge this result which specifically
addresses the (MaxEnt-IRL) formulation is novel. Under finite horizon, a duality between ML
estimation and maximum causal entropy is obtained in [18, Theorem 3]. However, the problem
considered in that paper is not in RL nor IRL setting, therefore they cannot be directly used in the
context of the present paper.

The above duality result reveals a strong connection between the two formulations under linear reward
parameterization. Due to the duality result, we know that (ML-IRL) is a concave problem under
linear reward parameterization. In this case, any stationary solution to (ML-IRL) is a global optimal
estimator of the reward parameter.

4 The Proposed Algorithm

In this section, we design algorithms for (ML-IRL). Recall that one major drawback of algorithms
for (MaxEnt-IRL) is that, they repeatedly solve certain policy optimization problem in the inner loop.
Even though the recently proposed algorithm IQ-Learn [2] tries to improve the computational
efficiency through implicitly representing the reward function and the policy by a Q-function
approximator, it has sacrificed the estimation accuracy of the recovered reward. Therefore, one
important goal of our design is to find provably efficient algorithms that can avoid high-complexity
operations and accurately recover the reward function. Specifically, it is desirable that the resulting
algorithm only uses a finite number of reward and policy updates to reach certain high-quality
solutions.

To proceed, we will leverage the special bi-level structure of the ML-IRL problem. The idea is to
alternate between one step of policy update to improve the solution of the lower-level problem, and
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Algorithm 1 Maximum Likelihood Inverse Reinforcement Learning (ML-IRL)

Input: Initialize reward parameter ✓0 and policy ⇡0. Set the reward parameter’s stepsize as ↵.
for k = 0, 1, . . . ,K � 1 do

Policy Evaluation: Compute Q
soft
r✓k ,⇡k

(·, ·) under reward function r(·, ·; ✓k)
Policy Improvement: ⇡k+1(·|s) / exp(Qsoft

r✓k ,⇡k
(s, ·)), 8s 2 S .

Data Sampling I: Sampling an expert trajectory ⌧
E
k := {st, at}t�0

Data Sampling II: Sampling a trajectory ⌧
A
k := {st, at}t�0 from the current policy ⇡k+1

Estimating Gradient: gk := h(✓k; ⌧Ek )� h(✓k; ⌧Ak ) where h(✓; ⌧) :=
P

t�0 �
tr✓r(st, at; ✓)

Reward Parameter Update: ✓k+1 := ✓k + ↵gk

end for

one step of the parameter update which improves the upper-level loss function. At each iteration k,
given the current policy ⇡k and the reward parameter ✓k, a new policy ⇡k+1 is generated from the
policy improvement step, and ✓k+1 is generated by the reward optimization step.

This kind of alternating update is efficient, because there is no need to completely solve the policy
optimization subproblem, before updating the reward parameters. It has been used in many other
RL related settings as well. For example, the well-known actor-critic (AC) algorithm for policy
optimization [31, 32, 23] alternates between one step of policy update, and one step of critic parameter
update. Below we present the details of our algorithm at a given iteration k.

Policy Improvement Step. Let us consider optimizing the lower-level problem, when the reward
parameter ✓k is held fixed. Towards this end, define the so-called soft Q and soft value functions for a
given policy ⇡k and a reward parameter ✓k:

V
soft
rk,⇡k

(s) = E⇡k

 1X

t=0

�
t

✓
r(st, at; ✓k) +H(⇡k(·|st))

◆����s0 = s

�
(4a)

Q
soft
rk,⇡k

(s, a) = r(s, a; ✓k) + �Es0⇠P(·|s,a)
⇥
V

soft
rk,⇡k

(s)
⇤

(4b)
We will adopt the well-known soft policy iteration [21] to optimize the lower-level problem (3a).
Under the current reward parameter ✓k and the policy ⇡k, the soft policy iteration generates a new
policy ⇡k+1 as follows

⇡k+1(a|s) / exp
�
Q

soft
r✓k ,⇡k

(s, a)
�
, 8s 2 S, a 2 A. (5)

Under a fixed reward function, it can be shown that the new policy ⇡k+1 monotonically improves ⇡k,
and it converges linearly to the optimal policy; see [21, Theorem 4] and [28, Thoerem 1].

Note that in practice, we usually do not have direct access to the exact soft Q-function in (4b). In
order to perform the policy improvement, a few stochastic update steps in soft Q-learning [21] or
soft Actor-Critic (SAC) [22] could be used to replace the one-step soft policy iteration (5). In the
appendix, we present Alg. 2 to demonstrate such practical implementation of our proposed algorithm.

Reward Optimization Step. We propose to use a stochastic gradient-type algorithm to optimize ✓.
Towards this end, let us first derive the exact gradient rL(✓). See Appendix D for detailed proof.
Lemma 1. The gradient of the likelihood function L(✓) can be expressed as follows:

rL(✓) = E⌧⇠⇡E

X

t�0

�
tr✓r(st, at; ✓)

�
� E⌧⇠⇡✓

X

t�0

�
tr✓r(st, at; ✓)

�
. (6)

To obtain stochastic estimators of the exact gradient rL(✓k), we take two approximation steps: 1)
approximate the optimal policy ⇡✓k by ⇡k+1 in (5), since the optimal policy ⇡✓k is not available
throughout the algorithm; 2) sample one expert trajectory ⌧

E
k which is already generated by the expert

policy ⇡
E; 3) sample one trajectory ⌧

A
k from the current policy ⇡k+1.

Following the approximation steps mentioned above, we construct a stochastic estimator gk to
approximate the exact gradient rL(✓k) in (6) as follows:

gk := h(✓k; ⌧
E
k )� h(✓k; ⌧

A
k ), where h(✓; ⌧) :=

X

t�0

�
tr✓r(st, at; ✓). (7)
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With the stochastic gradient estimator gk, the reward parameter ✓k is updated as:

✓k+1 = ✓k + ↵gk. (8)

where ↵ is the stepsize in updating the reward parameter.

In summary, the proposed algorithm for solving the ML-IRL problem (ML-IRL) is given in Alg. 1.

5 Theoretical Analysis

In this section, we present finite-time guarantees for the proposed algorithm.

To begin with, first recall that in Sec. 3, we have mentioned that (ML-IRL) is a bi-level problem,
where the upper level (resp. the lower level) problem optimizes the reward parameter (resp. the
policy). In order to solve (ML-IRL), our algorithm 1 has a singe-loop structure, which alternates
between one step of policy update and one step of the reward parameter update. Such a single-loop
structure indeed has computational benefit, but it also leads to potential unstableness, since the lower
level problem can stay far away from its true solutions. Specifically, at each iteration k, the potential
unstableness is induced by the distribution mismatch between the policy ⇡k+1 and ⇡✓k , when we use
estimator gk (7) to approximate the exact gradient rL(✓k) (6) in updating the reward parameter ✓k.

Towards stabilizing the algorithm, we adopt the so-called two-timescale stochastic approximation
(TTSA) approach [33, 23], where the lower-level problem updates in a faster time-scale (i.e.,
converges faster) compared with its upper-level counterpart. Intuitively, the TTSA enables the
⇡k+1 tracks the optimal ⇡✓k , leading to a stable algorithm. In the proposed Algorithm 1, the policy
(lower-level variable) is continuously updated by the soft policy iteration (5), and it is ‘fast’ because it
converges linearly to the optimal policy under a fixed reward function [28, Theorem 1]. On the other
hand, the reward parameter update (8) does not have such linear convergence property, therefore it
works in a ‘slow’ timescale. To begin our analysis, let us first present a few technical assumptions.
Assumption 1 (Ergodicity). For any policy ⇡, assume the Markov chain with transition kernel P is

irreducible and aperiodic under policy ⇡. Then there exist constants  > 0 and ⇢ 2 (0, 1) such that

sup
s2S

kP(st 2 ·|s0 = s,⇡)� µ⇡(·)kTV  ⇢
t
, 8 t � 0

where k · kTV is the total variation (TV) norm; µ⇡ is the stationary state distribution under ⇡.

Assumption 1 assumes the Markov chain mixes at a geometric rate. It is a common assumption in the
iterature of RL [34, 35, 32], which holds for any time-homogeneous Markov chain with finite-state
space or any uniformly ergodic Markov chain with general state space.
Assumption 2. For any s 2 S , a 2 A and any reward parameter ✓, the following holds:

��r✓r(s, a; ✓)
��  Lr, (9a)

��r✓r(s, a; ✓1)�r✓r(s, a; ✓2)
��  Lgk✓1 � ✓2k (9b)

where Lr and Lg are positive constants.

Assumption 2 assumes that the parameterized reward function has bounded gradient and is Lipschitz
smooth. Such assumption in Lipschitz property are common in the literature of min-max / bi-level
optimization [36, 23, 37, 25, 38].

Based on Assumptions 1 - 2, we next provide the following Lipschitz properties:
Lemma 2. Suppose Assumptions 1 - 2 hold. For any reward parameter ✓1 and ✓2, the following

results hold:

|Qsoft

r✓1 ,⇡✓1
(s, a)�Q

soft

r✓2 ,⇡✓2
(s, a)|  Lqk✓1 � ✓2k, 8s 2 S, a 2 A (10a)

krL(✓1)�rL(✓2)k  Lck✓1 � ✓2k (10b)

where Q
soft

r✓,⇡✓
(·, ·) denotes the soft Q-function under the reward function r(·, ·; ✓) and the policy ⇡✓.

The positive constants Lq and Lc are defined in Appendix E.

The Lipschitz properties identified in Lemma 2 are vital for the convergence analysis. Then we
present the main results, which show the convergence speed of the policy {⇡k}k�0 and the reward
parameter {✓k}k�0 in the Alg. 1. Please see Appendix E for the detailed proof.
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Theorem 2. Suppose Assumptions 1 - 2 hold. Selecting stepsize ↵ := ↵0
K� for the reward update step

(8) where ↵0 > 0 and � 2 (0, 1) are some fixed constants, and K is the total number of iterations to

be run by the algorithm. Then the following result holds:

1

K

K�1X

k=0

E
⇥�� log ⇡k+1 � log ⇡✓k

��
1
⇤
= O(K�1) +O(K��) (11a)

1

K

K�1X

k=0

E
⇥
krL(✓k)k2

⇤
= O(K��) +O(K�1+�) +O(K�1) (11b)

where we denote k log ⇡k+1 � log ⇡✓kk1 := maxs2S,a2A
�� log ⇡k+1(a|s) � log ⇡✓k(a|s)

��. In

particular, setting � = 1/2, then both quantities in (11a) and (11b) converge with the rate O(K�1/2).

In Theorem 2, we present the finite-time guarantee for the convergence of the Alg.1. Moreover,
as a special case, when the reward is parameterized as a linear function, we know that (ML-IRL)
is concave and Theorem 2 provides a stronger guarantee which identify the global optimal reward
estimator in finite time.

We provide a proof sketch below to present the key steps. The detailed proof is in Appendix H.

Proof sketch. We outline our main steps in analyzing (11a) and (11b) respectively.

In order to show the convergence of policy estimates in (11a), there are several key steps. First,
we note that both policies ⇡k+1 and ⇡✓k are in the softmax parameterization, where ⇡k+1(·|s) /
exp

�
Q

soft
r✓k ,⇡k

(s, ·)
�

and ⇡✓k(·|s) / exp
�
Q

soft
r✓k ,⇡✓k

(s, ·)
�
. Then, we can show a Lipschitz continuity

property between the policy and the soft Q-function:

klog⇡k+1 � log⇡✓kk1  2kQsoft
r✓k ,⇡k

�Q
soft
r✓k ,⇡✓k

k1,

where the infinty norm k · k1 is defined over the state-action space S ⇥A. Moreover, by analyzing
the contraction property of the soft policy iteration (5), we bound kQsoft

r✓k ,⇡k
�Q

soft
r✓k ,⇡✓k

k1 as:

kQsoft
r✓k ,⇡k

�Q
soft
r✓k ,⇡✓k

k1  �kQsoft
r✓k�1

,⇡k�1
�Q

soft
r✓k�1

,⇡✓k�1
k1 + 2Lqk✓k � ✓k�1k.

To ensure that the error term k✓k � ✓k�1k is small, we select the stepsize of reward parameters as
↵ := ↵0

K� , where K is the total number of iterations and � > 0. Then, by combining previous two
steps, we could further show the convergence rate of the policy estimates in (11a).

To prove the convergence of the reward parameters in (11b), we first leverage the Lipschitz smooth
property of L(✓) in (10b). However, one technical challenge in the convergence analysis is how
to handle the bias between the gradient estimator gk defined in (7) and the exact gradient rL(✓k).
When we construct the gradient estimator gk in (7), we need to sample trajectories from the current
policy ⇡k+1 and the expert dataset D. However, according to the expression of rL(✓k) in (6), the
trajectories are sampled from the optimal policy ⇡✓k and the dataset D. Hence, there is a distribution
mismatch between ⇡k+1 and ⇡✓k . Our key idea is to leverage (11a) to handle this distribution
mismatch error, and thus show that the bias between gk and rL(✓k) could be controlled.

To the best of our knowledge, Theorem 2 is the first non-asymptotic convergence result for IRL with
nonlinear reward parameterization.

6 A Discussion over State-Only Reward

In this section we consider the IRL problems modeled by using rewards that are only a function
of the state. A lower dimensional representation of the agent’s preferences (i.e. in terms only of
states as opposed to states and actions) is more likely to facilitate counterfactual analysis such as
predicting the optimal policy under different environment dynamics and/or learning new tasks. This
is because the estimation of preferences which are only defined in terms of states is less sensitive to
the specific environment dynamics in the expert’s demonstration dataset. Moreover, in application
such as healthcare [39] and autonomous driving [40], where simply imitating the expert policy can
potentially result in poor performance, since the learner and the expert may have different transition
dynamics. Similar points have also been argued in recent works [14, 41–43].
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Next, let us briefly discuss how we can understand (ML-IRL) and Alg.1, when the reward is
parameterized as a state-only function. First, it turns out that there is an equivalent formulation of
(ML-IRL), when the expert trajectories only contain the visited states.
Lemma 3. Suppose the expert trajectories ⌧ is sampled from a policy ⇡

E
, and the reward is

parameterized as a state-only function r(s; ✓). Then ML-IRL is equivalent to the following:

min
✓

Es0⇠⌘(·)
⇥
V

soft

r✓,⇡✓
(s0)

⇤
� Es0⇠⌘(·)

⇥
V

soft

r✓,⇡E (s0)
⇤

(12a)

s.t. ⇡✓ := argmax
⇡

E⇡

 1X

t=0

�
t

✓
r(st; ✓) +H(⇡(·|st))

◆�
. (12b)

Please see Appendix F for the detailed derivation. Intuitively, the above lemma says that, when
dealing with the state-only IRL, (ML-IRL) minimizes the gap between the soft value functions of the
optimal policy ⇡✓ and that of the expert policy ⇡

E. Moreover, Alg.1 can also be easily implemented
with the state-only reward. In fact, the entire algorithm essentially stays the same, and the only
change is that r(s, a; ✓) will be replaced by r(s; ✓). In this way, by only using the visited states in the
trajectories, one can still compute the stochastic gradient estimator in (7). Therefore, even under the
state-only IRL setting where the expert dataset only contains visited states, our formulation and the
proposed algorithm still work if we parameterize the reward as a state-only function.

7 Numerical Results

In this section, we test the performance of our algorithm on a diverse collection of RL tasks and
environments. In each experiment set, we train algorithms until convergence and average the scores
of the trajectories over multiple random seeds. The hyperparameter settings and simulation details
are provided in Appendix B.

MuJoCo Tasks For Inverse Reinforcement Learning. In this experiment set, we test the
performance of our algorithm on imitating the expert behavior. We consider several high-dimensional
robotics control tasks in MuJoCo [44]. Two class of existing algorithms are considered as the
comparison baselines: 1) imitation learning algorithms that only learn the policy to imitate the
expert, including Behavior Cloning (BC) [45] and Generative Adversarial Imitation Learning (GAIL)
[10]; 2) IRL algorithms which learn a reward function and a policy simultaneously, including
Adversarial Inverse Reinforcement Learning (AIRL) [11], f -IRL [14] and IQ-Learn [2]. To ensure
fair comparison, all imitation learning / IRL algorithms use soft Actor-Critic [22] as the base RL
algorithm. For the expert dataset, we use the data provided in the official implementation2 of f -IRL.

In this experiment, we implement two versions of our proposed algorithm: ML-IRL(State-Action)
where the reward is parameterized as a function of state and action; ML-IRL(State-Only) which
utilizes the state-only reward function. In Table 1, we present the simulation results under a limited
data regime where the expert dataset only contains a single expert trajectory. The scores (cumulative
rewards) reported in the table is averaged over 6 random seeds. In each random seed, we train
algorithm from initialization and collect 20 trajectories to average their cumulative rewards after the
algorithms converge. The results reported in Table 1 show that our proposed algorithms outperform
the baselines. The numerical results with confidence intervals are in Table 3 (See Appendix).

We observe that BC fails to imitate the expert’s behavior. It is due to the fact that BC is based on
supervised learning and thus could not learn a good policy under such a limited data regime. Moreover,
we notice the training of IQ-Learn is unstable, which may be due to its inaccurate approximation to
the soft Q-function. Therefore, in the MuJoCo tasks where IQ-Learn does not perform well, so that
we cannot match the results presented in the original paper [2], we directly report results from there
(and mark them by ⇤ in Table 1). The results of AIRL are not presented in Table 1 since it performs
poorly even after spending significant efforts in parameter tuning (similar observations have been
made in in [46, 14]).

Transfer Learning Across Changing Dynamics. We further evaluate IRL algorithms on the transfer
learning setting. We follows the environment setup in [11], where two environments with different
dynamics are considered: Custom-Ant vs Disabled-Ant. We compare ML-IRL(State-Only) with
several existing IRL methods: 1) AIRL [11], 2) f -IRL [14]; 3) IQ-Learn [2].

2https://github.com/twni2016/f-IRL
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Task BC GAIL IQ-Learn f -IRL ML-IRL ML-IRL Expert
(State-Only) (State-Action)

Hopper 20.49 2815.59 2981.01 3074.55 3089.79 3121.68 3592.63
Half-Cheetah -1.87 3301.52 4175.88 4375.88 4472.85 4086.92 5098.3

Walker -14.01 1112.79 3961.42 4464.20 4380.17 4504.88 5344.21
Ant 760.46 1154.27 4362.90⇤ 4571.71 4675.34 4984.34 5926.18

Humanoid 78.48 3016.40 5227.10⇤ 5243.90 5390.31 5240.57 5351.08
Table 1: MuJoCo Results. The performance of benchmark algorithms under a single expert trajectory.

We consider two transfer learning settings: 1) data transfer; 2) reward transfer. For both settings, the
expert dataset / trajectories are generated in Custom-Ant. In the data transfer setting, we train IRL
agents in Disabled-Ant by using the expert trajectories, which are generated in Custom-Ant. In
the reward transfer setting, we first use IRL algorithms to infer the reward functions in Custom-Ant,
and then transfer these recovered reward functions to Disabled-Ant for further evaluation. In both
settings, we also train SAC with the ground-truth reward in Disabled-Ant and report the scores.

The numerical results are reoprted in Table 2. the proposed ML-IRL(State-Only) achieves superior
performance compared with the existing IRL benchmarks in both settings. We notice that IQ-Learn
fails in both settings since it indirectly recovers the reward function from a soft Q-function
approximator, which could be inaccurate and is highly dependent upon the environment dynamics.
Therefore, the reward function recovered by IQ-Learn can not be disentangled from the expert actions
and environment dynamics, which leads to its failures in the transfer learning tasks.

Setting IQ-Learn AIRL f -IRL ML-IRL(State-Only) Groud-Truth
Data Transfer -11.78 -5.39 188.85 221.51 320.15

Reward Transfer -1.04 130.3 156.45 187.69 320.15
Table 2: Transfer Learning. The performance of benchmark algorithms under a single expert trajectory. The
scores in the table are obtained similarly as in Table 1.

8 Conclusion

In this paper, we present a maximum likelihood IRL formulation and propose a provably efficient
algorithm with a single-loop structure. To our knowledge, we provide the first non-asymptotic
analysis for IRL algorithm under nonlinear reward parameterization. As a by-product, when we
parameterize the reward as a state-only function, our algorithm could work in state-only IRL setting
and enable reward transfer to new environments with different dynamics. Our algorithm outperforms
existing IRL methods on high-dimensional robotics control tasks and corresponding transfer learning
settings. A limitation of our method is the requirement for online training, so one future direction of
this work is to further extend our algorithm and the theoretical analysis to the offline IRL setting.

Potential Negative Social Impacts

Since IRL methods aim to recover the reward function and the associated optimal policy from the
observed expert dataset, potential negative social impacts may occur if there are bad demonstrations
included in the expert dataset. Thus, for sensitive applications such as autonomous driving and
clinical decision support, additional care should be taken to avoid negative biases from the expert
demonstrations and ensure safe adaptation.
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