
A Experimental Setup

A.1 Datasets

In Table 3, we provide information about the image size, the number of classes, and the number of
training/test samples of the datasets used in our experiment.

Datatset Image size #classes #train #test
CIFAR10

3× 32× 32
10 50,000 10,000

CIFAR100 100 50,000 10,000
Tiny-ImageNet 3× 64× 64 200 100,000 10,000

ImageNet
3× 256× 256

1000 1,281,167 50,000
Places365 365 1,803,460 36,500
Food101 101 75,750 25,250

Table 3: Details of the datasets used in our experiment.

A.2 Training Settings of Teacher

We provide training settings of the teacher w.r.t. different datasets in Table 4.

Dataset Training settings
opt lr wd mo bs ls ld ldep ep wep

CIFAR10/100

SGD
0.1 5e-4

0.9

128 No

0.1 80, 120 160 0TinyImageNet 256 No
Food101 0.01 1e-4 512 Yes 5Places365 1024 Yes 30, 60 90

Table 4: Training settings of teacher w.r.t. different datasets. Meanings of abbreviations: opt:
optimizer, lr: learning rate, wd: weight decay, mo: momentum, bs: batch size, ls: scaling learning
rate or not with the base batch size of 256 [15], ld: learning rate decay, ldep: epochs at which learning
rate are decayed, ep: total number of epochs, wep: number of warm-up epochs.

A.3 Training Settings of MAD

In Tables 5,6,7, we provide the training settings of MAD used in this paper. Despite multiple attempts,
we could not find a global configuration that works well for all datasets and architectures.

In practice, we do not optimize the student and the generator via the plain losses in Eq. 4 and Eq. 6,
respectively but with some additional regularizations on the output logits of T, S and G. This prevents
our losses from being NaN when the logits grow too big. Specifically, we define LS as follows:

LS , λ0Ez∼p(z),x=G(z) [LKD(x) + ζ0 max(|S(x)| − δ, 0)] +

λ1Ez′∼p(z),x′=G̃(z′) [LKD(x′) + ζ0 max(|S(x′)| − δ, 0)] (10)

where max(|S(·)| − δ, 0) ensures that the output logit of S is between [−δ, δ]; ζ0 ≥ 0 is a coefficient.

And we define LG,E as follows:

LG,E , Ez∼N (0,I),y∼Cat(C),u=Glg(z+y),x=σ(u)

[
− λ2LKD(x) + λ3LNLL(x, y) + λ4LNormReg(ey)

+ ζ1 max(|T(x)| − δ, 0) + ζ2 max(|u| − ν, 0)

]
+ λ5LBNmm (11)

where Glg denotes the generator that produces logits instead of normalized images; σ(·) denotes
the sigmoid function; max(|u| − ν, 0) ensures that the output logit u of Glg is between [−ν, ν];
max(|T(x)| − δ, 0) ensures that the output logit of T w.r.t. the synthetic sample x is between [−δ, δ];
ζ1, ζ2 ≥ 0 are coefficients.

14

We train MAD on multiple NVIDIA A100-SXM2-32GB and A100-SXM4-40GB GPUs. Due to the
use of different teacher/student architectures, the use of GPUs with different numbers and types, and
the share of computational resources, it is hard to compute exactly the training time of our method but
roughly it took about 1-2 days, 3-4 days, and 4-6 days to train MAD on CIFAR10/100, TinyImageNet,
and ImageNet/Places365/Food101, respectively.

Dataset Arch. Student Generator
optS lrS wdS moS nS optG lrG wdG moS nG

CIFAR10/100 ♥
SGD 1e-2 5e-4 0.9

30

Adam

1e-3

5e-4 -

3♦ 60
TinyImageNet ♥ 90

ImageNet
♣ Adam 1e-4 1e-4 - 150 1e-4

20
Places356 10
Food101 5

Table 5: Settings of optimizers for student and generator w.r.t. different datasets and architectures.
The teacher/student architecture settings are ResNet34/ResNet18 (♥), WRN40-2/WRN16-2 (♦),
and AlexNet/AlexNet (♣). Meanings of abbreviations: opt: optimizer, lr: learning rate, wd: weight
decay, mo: momentum, n: number of optimization steps.

Dataset Training settings
bs ld ldep ep spe dz α cg γ pg pgs δ ν

CIFAR10/100 256 0.1 100, 200 300 50

256 0.95

No - No -

20 20
TinyImageNet -

ImageNet
512 - - 6000 1 Yes

1.1
Yes

200
Places365 1.1 50Food101 4000 1.1

Table 6: Training settings of MAD w.r.t. different datasets. Meanings of abbreviations: bs: batch
size, ld: learning rate decay, ldep: epochs at which learning rate are decayed, ep: total number of
epochs, spe: steps per epoch, dz: dimensionality of the noise z, α: momentum for updating G̃, cg:
G is class-conditional or not, γ: the scaling hyperparameter in Eq. 8, pg: Pretraining G or not, pgs:
Number of steps for pretraining G, δ: the bound in Eqs. 10,11, ν: the bound in Eq. 11.

Dataset Student Generator
λ0 λ1 ζ0 λ2 λ3 λ4 λ5 ζ1 ζ2

CIFAR10/100

1.0 1.0
0.01

1.0

0.0 0.0 1.0

0.1 0.1
TinyImageNet

ImageNet
0.1 0.1 0.0Places365 0.1

Food101 0.1
Table 7: Coefficients of the loss terms in LS (Eq. 10) and LG (Eq. 11).

A.4 Generator Architectures

In Table 8, we show different architectures of the generator w.r.t. different image sizes.

15

Layer Output size Layer Output size Layer Output size
Linear(dz , 4096) 4096 Linear(dz , 16384) 16384 Linear(dz , 8192) 8192

Reshape (16384, (256, 8, 8)) 256×4×4 Reshape (16384, (256, 8, 8)) 256×8×8 Reshape (8192, (512, 4, 4)) 512×4×4
ReLU() 256×4×4 ReLU() 256×8×8 ResNetBlockY(512, 512) 512×4×4

BatchNorm2d(256, 0.1) 256×4×4 BatchNorm2d(256, 0.1) 256×8×8 UpsamplingBilinear2d(2) 512×8×8
UpsamplingBilinear2d(2) 256×8×8 UpsamplingBilinear2d(2) 256×16×16 ResNetBlockY(512, 256) 256×8×8
ConvBlockX(256, 128) 128×8×8 ConvBlockX(256, 128) 128×16×16 UpsamplingBilinear2d(2) 256×16×16

UpsamplingBilinear2d(2) 128×16×16 UpsamplingBilinear2d(2) 128×32×32 ResNetBlockY(256, 128) 128×16×16
ConvBlockX(128, 64) 64×16×16 ConvBlockX(128, 64) 64×32×32 UpsamplingBilinear2d(2) 128×32×32

UpsamplingBilinear2d(2) 64×32×32 UpsamplingBilinear2d(2) 64×64×64 ResNetBlockY(128, 64) 64×32×32
ConvBlockX(64, 32) 32×32×32 ConvBlockX(64, 32) 32×64×64 UpsamplingBilinear2d(2) 64×64×64
Conv2d(32, 3, 1, 0, 1) 3×32×32 Conv2d(32, 3, 1, 0, 1) 3×64×64 ResNetBlockY(64, 32) 32×64×64

UpsamplingBilinear2d(2) 32×128×128
ResNetBlockY(32, 16) 16×128×128

UpsamplingBilinear2d(2) 16×256×256
ResNetBlockY(16, 16) 16×256×256
Conv2d(16, 3, 3, 1, 1) 3×256×256

(a) CIFAR10/CIFAR100 (b) TinyImageNet (c) ImageNet/Places365/Food101
Table 8: Architectures of the generator w.r.t. different datasets. Details about ConvBlockX and
ResNetBlockY are provided in Table 9.

ConvBlockX(ci, co) ResNetBlockY(ci, co)
Conv2d(ci, co, 3, 1, 1)

Conv

Conv2d(ci, co, 3, 1, 1)
ReLU() LeakyReLU(0.2)

BatchNorm2d(co, 0.1) BatchNorm2d(ci, 0.01)
Conv2d(ci, co, 3, 1, 1) Conv2d(co, co, 3, 1, 1)

ReLU() LeakyReLU(0.2)
BatchNorm2d(co, 0.1) BatchNorm2d(co, 0.01)

Shortcut
{

Conv2d(ci, co, 1, 0, 1) if ci 6= co
Identity() otherwise

Output y = Conv(x) + Shortcut(x)

(a) (b)
Table 9: Architectures of ConvBlockX (a) and ResNetBlockY (b).

B Additional Experimental Results

B.1 Results of Teacher

Table 10 reports the results of our teacher on all the benchmark datasets. On the small datasets, our
teacher achieves very similar performance compared to the one in [14].

CIFAR10 CIFAR100 TinyIN ImageNet Places365 Food101
ResNet34 WRN40-2 ResNet34 WRN40-2 ResNet34 AlexNet AlexNet AlexNet

Ours 95.46 94.65 78.55 75.65 66.47 56.52 50.80 65.15
In [14] 95.70 94.87 78.05 75.83 66.44 - - -
Table 10: Classification accuracies of our teacher and of the one in [14] on different datasets.

B.2 Results of DFKD-Mem with Different Memory Sizes

In Fig. 7, we show the classification results of DFKD-Mem with different memory sizes on CIFAR100
and ImageNet. On CIFAR100, DFKD-Mem achieves the best result at memory size = 2048 but still
underperforms ABM and MAD. On ImageNet, the performance of DFKD-Mem is proportional to
the memory size and is highest at memory size = 8192. This result, however, is still worse than that
of MAD. Figs. 3a,3b display the average distillation loss (avg LKD) curves of DFKD-Mem w.r.t.
different memory sizes. We see that increasing the memory size increases the avg LKD on memory
samples but does not affect the avg LKD on samples from G. It is because the avg LKDon memory
samples is very small compared to the counterpart on samples from G.

16

512 1024 2048 4096 8192
memory size

56

58

60

62

64

Ac
cu

ra
cy

 (%
)

60.69 61.16
62.11

61.48 61.25

MAD
ABM
DFKD-Mem

(a) CIFAR100

512 1024 2048 4096 8192
memory size

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

42.65 42.83 43.04 43.12 43.30

MAD
ABM
DFKD-Mem

(b) ImageNet

Figure 7: Classification accuracies of DFKD-Mem with different memory sizes and of MAD, ABM
on CIFAR100 and ImageNet.

0 1 2 3 4 5 6
step (x1000)

0.05

0.10

0.15

0.20

KL
 D

iv
er

ge
nc

e

512
4096

1024
8192

2048

(a) LKD on memory samples

0 1 2 3 4 5 6
step (x1000)

0.2

0.4

0.6

0.8

KL
 D

iv
er

ge
nc

e
512
8192

1024
no_ema

2048
ema

4096

(b) LKD on samples from G

0 1 2 3 4 5 6
step (x1000)

0.2

0.4

0.6

0.8

1.0

KL
 D

iv
er

ge
nc

e

no_ema ema

(c) LKD on samples from G̃

Figure 8: Distillation loss curves on memory samples (a) and samples generated by G (b) and G̃ (c).
The numbers in the legends denote DFKD-Mem with the corresponding memory sizes. “no_ema”
and “ema” denote ABM and MAD, respectively. The dataset is ImageNet.

B.3 Empirical Analysis of Different Types of Generators

In Fig. 9, we show the results of MAD on ImageNet with three different types of generators which
are unconditional (“uncond”), conditional-via-concatenation (“cat”), conditional-via-summation
(“sum”). MAD with the “uncond” generator eventually collapses during training but not with the
“cat” or the “sum” generators (Fig. 9a). This is because the “uncond” generator has learned to jump
between different spurious solutions as visualized in Fig. 10. Among all types of generators, the
“sum” generator enables stable training of our model and gives the best accuracy and crossentropy
on Dtest (Figs. 9a,b). The “cat” generator only yields good results at λ3 = 0.3 (λ3 is the coefficient
of LNLL in Eq. 6). The reason is that if λ3 is too small (e.g., 0.1), LNLL will be high (Fig. 9g) and
spurious solutions of G cannot be suppressed. G will jump between these solutions, leading to high
variance when maximizing LKD (Fig. 9f). By contrast, if λ3 is too big (e.g., 3.0, 10.0), G will be
optimized towards predicting y correctly (small LNLL as shown in Fig. 9g) rather than generating good
adversarial samples for knowledge transfer from T to S (small LKD as shown in Fig. 9f). This causes
S to achieve tiny LKD (Fig. 9e) and match T very well (Fig. 9d) on samples from G but generalizes
poorly to unseen sample from Dtest (Fig. 9a). However, for any value of λ3, MAD with the “cat”
generator performs worse than the counterpart with the “sum” generator, and even worse than the
counterpart with the “uncond” generator during early epochs of training (Fig. 9a). To explain this
phenomenon, we first provide the formulas of the first layers of the three kinds of generators below
as these generators are only different in the first layer:

uncond: h = Wz + b

cat: h = Wz + Uey + b

sum: h = Wz +Wey + b

where W , U , b are trainable weights and bias. We hypothesize that due to the stochasticity of z
sampled from a fixed distribution, W tends to be robust to changes. And since the “sum” generator
uses W to transform ey , its output will not be affected much by the update of ey . In other words, the

17

uncond
cat_1.0

sum
cat_3.0

cat_0.1
cat_10.0

cat_0.3

0 1 2 3 4 5 6
step (x1000)

0

10

20

30

40
Ac

cu
ra

cy
 (%

)

0 1 2 3 4 5 6
step (x1000)

2

4

6

8

10

12

Cr
os

se
nt

ro
py

0 1 2 3 4 5 6
step (x1000)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0 1 2 3 4 5 6
step (x1000)

40

60

80

100

Te
a-

St
u

Pr
ed

. M
at

ch
 (%

)

(a) Test accuracy (b) Test crossentropy (c) Accuracy of T (d) T-S match

0 1 2 3 4 5 6
step (x1000)

0.0

0.2

0.4

0.6

0.8

KL
 D

iv
er

ge
nc

e

0 1 2 3 4 5 6
step (x1000)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

KL
 D

iv
er

ge
nc

e

0 1 2 3 4 5 6
step (x1000)

0

5

10

15

20

Cr
os

se
nt

ro
py

(e) LKD in training S (Eq. 4) (f) LKD in training G (Eq. 6) (g) LNLL in training G (Eq. 6)

0 1 2 3 4 5 6
step (x1000)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Da
ta

 L
og

it
Re

gu
la

riz
at

io
n

0 1 2 3 4 5 6
step (x1000)

5

10

15

20

25

M
ax

 A
bs

. D
at

a
Lo

gi
t

0 1 2 3 4 5 6
step (x1000)

0.00

0.05

0.10

0.15

Cl
as

s L
og

it
Re

gu
la

riz
at

io
n

0 1 2 3 4 5 6
step (x1000)

5

10

15

20

25

M
ax

 A
bs

. C
la

ss
 L

og
it

(h) max(|Glg| − 20, 0) (Eq. 11) (i) Avg. of max |Glg| over pixels (j) max(|T(G)| − 20, 0) (Eq. 11) (k) Avg. of max |T(G)| over classes

Figure 9: Various learning curves of MAD with different types of generators: unconditional (“un-
cond”), conditional-via-summation (“sum”), and conditional-via-concatenation (“cat”). For the
“uncond” generator, ey is set to non-trainable zero vector and λ3, λ4 in Eq. 6 are set to 0. For “cat”
generators, the number behind “cat” in the legend indicates the coefficient of LNLL (λ3) in Eq. 6. We
tried different coefficients and found that λ3 = 0.3 works best for the “cat” generator. Except for
Test accuracy and Test crossentropy which are computed on samples Dtest, all other quantities are
computed on synthetic samples from G.

Train. Step 3900 3910 3920 3930 3940
Pred. Class 107 494 438 711 854

Confidence (%) 77.6 40.4 97.5 18.7 99.3

Figure 10: Visualization of generated samples from the unconditional generator whose has learning
curves shown in Fig. 9. It is obvious that this generator jumps between different spurious solutions
during training, which results in the collapse of the student in Fig. 9a.

noise in updating ey is absorbed into the stochasticity of z via summation. The “cat” generator, on
the other hand, uses a different weight matrix U to transform ey . Since the update of U only depends
on the current version of ey and vice versa, and ey can change arbitrarily, updating both U and ey
simultaneously in case of the “cat” generator can lead to unstable and nonoptimal2 training. The
“uncond” generator does not encounter any problem with ey like the “cat” generator so it can enable
MAD to learn faster than the “cat” generator.

2During the backward pass at step t, Ut+1 is optimal for ey,t and ey,t+1 is optimal for Ut. However, in the
forward pass at step t+ 1, Ut+1 is used for ey,t+1 which leads to nonoptimality.

18

C Derivation of LNormReg in Section 3.2

Recall that in our design of the class-conditional generator, we use K trainable class embedding
vectors e1, ..., eK to representK classes in the training data. These embedding vectors can be regarded
as the centers of K Gaussian distributions (or clusters) N (ek, I) (k = 1, ...,K) corresponding to
K classes and are optimized together with the generator G via Eq. 6. To prevent these embedding
vectors from changing arbitrarily, we need to constraint their norms to be smaller than a threshold by
minimizing the loss LNormReg in Eq. 8. An important question is “What is a reasonable upper bound
for the norm of each embedding vector ek ?”.

Let ξ denote the upper bound for the norm of ek. By constraining ‖ek‖2 to be smaller than ξ, we
ensure that ek is inside a hyperball of radius ξ. Intuitively, we should choose ξ so that the K Gaussian
clusters won’t overlap each other. Note that in high dimensional space, we can generally treat each
Gaussian clusterN (ek, I) as a hypersphere of radius

√
de centered at ek (de = dim(ek)). One simple

way to allow these K hyperspheres not to overlap each other when their centers are inside a hyperball
of radius ξ is to make sure that the total volume of K hyperballs of radius

√
de is smaller than the

volume of the hyperball of radius ξ. Mathematically, it means:

K × Vde
(√

de

)
< Vde (ξ)

⇔K ×
(√

de

)de
× Vde (1) < ξde × Vde (1)

⇔K1/de
√
de < ξ

where Vd(r) denotes the volume of a d-ball of radius r. When de is large, K1/de ≈ 1 and can be
ignored. Thus, we should choose ξ to have the form γ ×

√
de with γ ≥ 1.

19

