
You Never Stop Dancing: Non-freezing Dance
Generation via Bank-constrained Manifold Projection

Jiangxin Sun∗

Sun Yat-sen University
sunjx5@mail2.sysu.edu.cn

Chunyu Wang
Microsoft Research Asia
chnuwa@microsoft.com

Huang Hu
Peking University

tonyhu@pku.edu.cn

Hanjiang Lai
Sun Yat-sen University

laihanj3@mail.sysu.edu.cn

Zhi Jin
Sun Yat-sen University

jinzh26@mail.sysu.edu.cn

Jian-Fang Hu†

Sun Yat-sen University
hujf5@mail.sysu.edu.cn

Abstract

One of the most overlooked challenges in dance generation is that the auto-
regressive frameworks are prone to freezing motions due to noise accumulation.
In this paper, we present two modules that can be plugged into the existing mod-
els to enable them to generate non-freezing and high fidelity dances. Since the
high-dimensional motion data are easily swamped by noise, we propose to learn
a low-dimensional manifold representation by an auto-encoder with a bank of
latent codes, which can be used to reduce the noise in the predicted motions, thus
preventing from freezing. We further extend the bank to provide explicit priors
about the future motions to disambiguate motion prediction, which helps the pre-
dictors to generate motions with larger magnitude and higher fidelity than possible
before. Extensive experiments on AIST++, a public large-scale 3D dance motion
benchmark, demonstrate that our method notably outperforms the baselines in
terms of quality, diversity and time length.

1 Introduction

Dancing to music has been one of the most popular art forms since ancient days. It can vividly
express human’s emotions and fulfill social communications even before symbolic languages came
along. Nowadays, there are a booming number of people sharing their dance videos on the popular
media platforms such as YouTube and TikTok, which drives the strong need for automatic AI
choreography to help users create their own dances. The task is related to general human motion
prediction [22, 25, 31, 38, 39, 42] except that it poses new challenges: i) dance generation needs to
produce high-fidelity motions for about three minutes to cover a music which is much longer than that
in general motion prediction; ii) dance generation needs to handle more diverse and stylistic motions
(e.g., ballet Jazz, hip-pop, etc.). The high spatio-temporal complexity requires more expressive
models so as to generate high-fidelity dance motions.
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Figure 1: The motion prediction framework. It first uses the past motions to query TransitBank to
retrieve the priors about the future motions, which are fed to the predictor to get high-fidelity motion
predictions. Then RefineBank refines the predictions to reduce error accumulation.

The state-of-the-art methods follow a cross-modal prediction framework where the future motions are
predicted based on the past motions and music in an auto-regressive way [11,16,20,30]. However, the
generated motions are prone to freezing and converging to small-magnitude motions after only several
seconds. The main reason is that the prediction error will accumulate in the generation process, and
eventually can not be handled by the neural predictors. Besides, motion prediction suffers from
the huge uncertainty and ambiguity because of the high spatio-temporal complexity of the task. As
a result, the models tend to predict mean poses [42] instead of large-magnitude and high-fidelity
motions if there are not informative priors about the future motions.

In this paper, we present two modules that can be plugged into the existing auto-regressive models to
achieve non-freezing large-magnitude motion generation. Figure 1 illustrates an overview. Firstly,
to prevent from error accumulation, we present RefineBank to learn a low-dimensional manifold
representation for the high-dimensional motion data. It equips an auto-encoder with a bank of latent
codes to tightly constrain the manifold to be close to the ground-truth (GT) motions and meanwhile
far from the ones with noise. This representation allows us to remove the noise in the predicted
motions by projecting them to the learned manifold as illustrated in Figure 2. With RefineBank,
the baseline method [20] can already generate full choreography for complete musics in the dataset
without freezing motions. Secondly, inspired by the fact that most dances can be coarsely constructed
by a number of basic motion segments, we present TransitBank to learn and memorize the frequently
used <past, future> motion dynamics on top of the manifold. Given past motions, it provides explicit
priors about the future motions to reduce the uncertainty and ambiguity in prediction, which can
effectively facilitate the higher-fidelity dance motion generation with larger magnitude than before.

We conduct extensive experiments to evaluate our approach on the AIST++ dataset [20]. Not only
does our method notably outperform the baselines on the existing metrics, but also shows better results
on our newly introduced freezing rate metric. In addition, the user study indicates that people have
obvious preferences toward the dances generated by our method. Our contributions are summarized
as follows: 1) This is the first time we see evidence that the prediction-based methods can generate
long-term dance motions on AIST++, which paves the way for full choreography for entire music; 2)
We present RefineBank and TransitBank which can be plugged into most motion-prediction based
methods to achieve long-term non-freezing dance generation; 3) We introduce new metrics that can
quantitatively evaluate the freezing situations in the motion sequences.

2 Related Work

Prediction-based Methods This line of work treats dance generation as a motion prediction
problem and has achieved promising results. A number of network architectures have been proposed
including CNNs [9, 16], RNNs [1, 11, 32, 35, 41], GCNs [4, 26, 36], GAN [30] and Transformers
[12, 18–20]. Several works focus on the alignment of motion and music. For instance, Sun et al. [30]
and Li et al. [18] use a classifier to test the authenticity of the predicted motion conditioned on the
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Figure 2: RefineBank takes a motion sequence with l frames as input, projects them to a low-
dimensional manifold, and reconstructs the sequence with minimum noise.

music. Zhang et al. [41] and Huang et al. [12] learn the dance style embeddings to provide prior
information to the predictor. Few works have studied the freezing problem. Huang et al. [11] propose
a curriculum learning strategy to bridge the gap between training and inference by alternately feeding
predicted and GT motions to the predictor. Li et al. [20] present future-n full-attention to replace
the traditional shift-by-1 casual-attention to leverage the temporal context. However, the predicted
motions are still prone to freezing after several seconds. Our approach is also a prediction-based
method. But different from the previous methods, we present two plug-in modules that can achieve
longer-term non-freezing motion generation.

Retrieval-based Methods Some earlier works compose a complete dance by retrieval [14,24,27,28].
They select the closest predefined motion segments in a pre-built database based on music, and
construct a sequence with the proper transition routines. Lee et al. [17] and Ye et al. [37] use deep
networks to generate future motion segments from the input music and past motion segments. Duan
et al. [3] propose an attention-based MLP to translate all music phrases to motion segments. Chen
et al. [2] propose to predict dance sequences through traversing the node transition routines on a
motion graph and introduce the choreography-oriented constraints to compose the final dance motion
sequences. However, they cannot generate new motions beyond the database. Our approach is also
inspired by the retrieval-based methods in that we construct a bank/database to learn common motion
dynamics for the predictor. The core difference is that the bank is automatically learned from data
without manual efforts and our approach can generate new motions beyond the database.

3 Preliminaries

Given the past and future music features m1:t ∥mt+1:t+K , and the past dance motions d̂1:t, the task
aims to predict the future motions d̂t+1:t+K . The input music features mt ∈ R35 are obtained from
Librosa [23] consisting of 1-dim envelope, 20-dim MFCC, 12-dim chroma, 1-dim one-hot peaks and
1-dim one-hot beats. The motions are represented by SMPL [21] model, which consists of parameters
referring to body shape, human pose and translation. The shape parameters are dance-irrelevant values
which mainly capture the expansion/shrink of human body such as taller or shorter, we only consider
the prediction of parameters respecting to human pose and global translation in d̂t ∈ R219. We follow
the state-of-the-art dance generation architecture [20] as shown in Figure 1. It has a music feature
extractor Em, a dance feature extractor Ed and a cross-modal predictor Pc. The auto-regressive
prediction process can be formulated as:

d̂t+1:t+K = Pc(Em(m1:t+K), Ed(d̂1:t)). (1)

Although previous works such as [11, 20] have attempted to improve the long-term generation
performance, the predicted motions are still prone to freezing after only several seconds.
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Figure 3: TransitBank: Given first half of the motion sequence, it produces a prior representation for
the second half of the sequence by computing the weighted average of the values of the bank items to
reduce the uncertainty and ambiguity in motion prediction.

4 Method

The dance motions are believed to lie on a low-dimensional manifold since the body parts are highly
correlated [10, 29]. We take advantage of the nice property and present RefineBank (RB) to reduce
the noise in the motions. It learns an auto-encoder with a bank of latent codes to tightly represent
the compact motion manifold. By projecting noisy or corrupted motions onto the manifold, we can
remove the noise in the motions, which prevents error accumulation in the auto-regressive generation.
Secondly, we propose TransitBank (TB) on top of the learned manifold, which maintains a past-future
motion dynamics bank to provide explicit priors about the future motions. The priors narrow down
the motion prediction space which facilitates high-fidelity motion generation with large magnitude.
Mathematically, the prediction process can be formulated as:

d̂t+1:t+K = RB(Pc(Em(m1:t+K), Ed(d̂1:t), TB(d̂1:t) )). (2)

4.1 RefineBank

Figure 2 shows the components of RefineBank which has an encoder ERB , a decoder DRB , and a
manifold bank BM ∈ RC×N . The bank BM has N learnable latent codes of dimension C which
span the low-dimensional dance manifold. As will be described later, the bank is learned from the
GT motions so it can be interpreted as a prior probabilistic distribution where the motion data with
noise will have the small likelihood.

For a (noisy) motion sequence d̂1:l produced by the predictor, we first transform each of them to a
latent feature by a transformer-based encoder ERB . Concretely, we uniformly sample n features at
different time steps z =

{
zt|t ∈

{
0, l

n−1 ,
2l

n−1 , ..., l
}}

to represent the sequence. Then we project
each zt to the manifold represented by the bank to remove the prediction error. Specifically, for each
latent feature zt, we compute the similarity scores between zt and the latent codes in BM , and use
the learnable weights to project zt onto the manifold to get ẑt:

ẑt = BM · softmax(BT
Mzt). (3)

The projected latent features {ẑt} will be fed to the transformer-based decoder DRB to generate the
motions that we expect to have little noise.

Compared with previous bank-based autoencoder approaches for image generation such as VQ-
VAE [33], we have two unique designs in our RefineBank for dance generation. The first is to use
soft-assignment instead of hard nearest-neighbor assignment to prevent simply repeating existing
dance movements and improve the diversity of the generated dances. The second is that we follow
the multi-head implementation in transformers to encode the input motion sequence with several
different latent features such that more details can be preserved.

4.2 TransitBank

The high spatio-temporal complexity of the motion space increases the uncertainty and ambiguity of
motion prediction. Hence, the motion predictors are prone to generating small-magnitude motions.
To address the problem, we present TransitBank which is inspired by the fact that there exist a number
of basic short motion segments that are frequently used in many dances. TransitBank aims to exploit
such cues to estimate the prior distributions for future motion prediction.
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Figure 4: Constructing the past-future bank from the manifold bank.

Concretely, TransitBank works by dividing a motion sequence into past and future sub-sequences
and storing them as past-future pairs. Then given the past motions as input, it queries the bank and
reads the corresponding future motion dynamics from the bank. This prior information is fed to the
cross-modal predictor to reduce the uncertainty and ambiguity in motion prediction.

Figure 3 shows the structure of TransitBank. It consists of an query encoder ETB , a past-future
bank BPF , and a read decoder DTB . The past-future bank BPF =

{
(K,V)|K,V ∈ RC×N

}
is

directly constructed as the <past, future> extension of manifold bank BM . As for ETB and DTB ,
we use a simple transformer structure for encoder and decoder, respectively. To avoid information
leakage in case that the cross-modal predictor directly copies the motions in TransitBank, we design
the query-read process by using the attention mechanism rather than finding closest one which will
effectively blur the future motions. Specifically, we encode input motion d1:l via ETB and take the
average pooling of all outputs as the query vector q. Then we compute the similarity between q and
key features K following:

sim(K, q) = (K)Tq. (4)

In the read process, we compute the future motion prior r as the weighted average of the corresponding
values V:

r = V · softmax(sim(K, q)). (5)

Finally, we decode the vector r via DTB and feed it to the cross-modal predictor as additional tokens.

4.3 Model Learning

This section describes how we learn the two banks from training data. It is worth noting that the
two banks are not independent. Instead, TransitBank is a <past, future> extension of RefineBank
(i.e., mapping motion prefixes to suffixes). In the following part, we first illustrate how we learn the
bank in RefineBank and then describe how to derive the one in TransitBank. Finally, we describe the
training optimization strategy.

Bank in RefineBank We first initialize the manifold bank BM by clustering to obtain a proper
initialization where items are representative and widely used in GT motion. Specifically, we obtain
a number of motion segments by applying a sliding window with length l to all training motion
sequences. Then AP clustering [5] is used to obtain a number of cluster centers from the segments.
We apply a transformer-based encoder EM to encode each cluster center di

1:l and compute the average
of the encoding outputs of the l frames to initialize one bank elements bi ∈ BM .

After initialization, we train the encoder EM , decoder DM and the bank BM to reconstruct all motion
segments d1:l using the method described in Section 4.1. The only difference is that we project the
latent feature z to its closest item b of BM as:

ẑ = arg min
b∈BM

∥z − b∥ . (6)

Bank in TransitBank Constructing the past-future bank BPF from the manifold bank BM is
straightforward. As shown in Figure 4, for each element b ∈ BM , we decode it to a motion sequence
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d̂1:l via the learned transformer decoder DM . Then we divide the sequence into two parts: d̂1:l/2 and
d̂l/2+1:l, which are fed to the encoder EM to obtain the latent codes representing the past (K) and
future (V), respectively. In that way, we obtain BPF =

{
(K,V)|K,V ∈ RC×N

}
.

Optimization Strategy We train our model in three stages to ensure that the learned manifold bank
can accurately reconstruct the GT motions. In the first stage, we just follow the implementation in
VQ-VAE [33] and optimize the manifold bank by minimizing the following loss:

LManifoldBank =
∥∥∥d̂1:l − d1:l

∥∥∥2
2
+ ∥sg[z]− ẑ∥22 + β∥z − sg[ẑ]∥22. (7)

The first term minimizes the reconstruction error. The second part is the “item loss” [33] to update
items in manifold bank, where sg denotes “stop gradient”. This objective function moves the items
close to the outputs of the encoder. The sg[·] operator is implemented by the identification function
during forward computation with zero partial derivatives. The third part is “commitment loss” [33] to
ensure the output of encoder commits to an item and the value of β is set as 0.2, empirically. We
optimize the encoder with the first and third loss terms. The bank items are updated with only the
second loss term and the decoder is trained with only the first term. Once we finalize the manifold
bank, we can compute the past-future bank. Note that we do not update these two banks in the
following stages.

In the second stage, we train the encoder and decoders in RefineBank to reconstruct all motion
sequences of the training set with only reconstruction loss.

LRefineBank =
∥∥∥d̂1:l − d1:l

∥∥∥2
2
, (8)

In the third stage, we train the whole framework in an end-to-end manner with the L2 loss between
predicted motion and GT motion.

LPrediction =
∥∥∥d̂t+1:t+K − dt+1:t+K

∥∥∥2
2
, (9)

5 Experiments

5.1 Experimental Settings

Dataset We evaluate our method on the largest AIST++ [20] dance dataset that contains 60
music pieces belonging to 10 dance genres. In total, there are 992 3D pose sequences at 60 FPS.
Following [20], we use 952 samples for training and the rest 40 for evaluation.

Implementation Details The model takes 240 frames of music and 120 frames of motions as input
and predicts the next K = 20 frames of motions. We use the same network structures for the music
extractor, motion extractor and cross-modal predictor as FACT [20]. For the encoders and decoders
in RefineBank and TransitBank, we use transformers with 4 layers and 10 attention heads with 2048
hidden size. The number of items in manifold bank and past-future bank is 256 and each item is a
2048-dim latent vector. The input to RefineBank and TransitBank is a motion sequence with l = 120
frames. Since K < l, we concatenate the previous l−K frames of motions with the predictor output
to feed to RefineBank. We construct a separate manifold bank and past-future bank for each dance
genre. In the first training stage, we adopt Adam optimizer [15] with a learning rate of 1 × 10−4

to train the manifold bank for 50 epochs. In the second training stage, we pre-train the RefineBank
using Adam optimizer with a learning rate of 1× 10−4 for 25 epochs. In the third stage, we train the
whole framework with Adam optimizer for 150 epochs. The learning rate starts with 1× 10−4 and
decreases to

{
1× 10−5, 1× 10−6

}
after {30, 90} epochs, respectively. The whole training process

takes about four days on four NVIDIA GeForce RTX 2080Ti GPUs.

Metrics The previous works mainly evaluate the dance generation results from three aspects:
quality, diversity and alignment. Following [20], we compute FID [8] (Frechet Inception Distances)
on the kinetic features (denoted as FIDk) and geometric features (denoted as FIDg), respectively, to
measure quality. We use the fairmotion toolbox [6] to extract the features. For diversity, we compute
the average Euclidean distance in the kinetic (denoted as Distk) and geometric (denoted as Distg)
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Table 1: Comparison to the state-of-the-art methods on the AIST++ dataset.

Quality Diversity Align User Study
Method FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freeze ↓ Distk ↑ Distg ↑ BeatAlign ↑ Win Rate ↑

GT - - 3.28 1.16 18.7% 9.06 7.31 0.292 31.7%

Li et al. [19] 86.43 43.46 1.02 - 59.0% 6.85 3.32 0.232 95.8%
DanceNet [43] 69.18 25.49 1.25 0.80 46.8% 2.86 2.85 0.232 90.8%
Revolution [11] 73.42 25.92 - - - 3.52 4.87 0.220 84.2%
FACT [20] 35.35 22.11 1.33 1.07 39.0% 5.94 6.18 0.241 86.7%

Ours 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249 -

Table 2: Ablation study of RefineBank and TransitBank.

Quality Diversity Alignment
Method FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

Baseline 35.35 22.11 1.33 1.07 39.0% 5.94 6.18 0.241
+ RefineBank 28.67 16.38 1.53 1.15 32.1% 6.65 6.34 0.246
+ TransitBank 31.24 19.18 1.49 1.31 34.3% 7.42 6.47 0.245

Ours 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249

feature space across the generated motions. For dance-music alignment, we adopt Beat Alignment
Score in [20] to compute average distance between every kinematic beat and its nearest music beat.
Since the freezing problem is largely overlooked previously, there are no metrics available to evaluate.
We propose to compute the average values of the temporal differences of the pose and translation
parameters in the whole sequence, which are termed as ∆Pose and ∆Trans, respectively. In addition,
we also calculate the Freezing Rate of each sequence. We divide a sequence into non-overlapping
sub-sequences of 60 frames, and for each sub-sequence, if ∆Pose ≤ ∆gt

Pose and ∆Trans ≤ ∆gt
Trans where

∆gt is a predefined threshold statistically derived from the training set, we regard it as a freezing
sub-sequence. Then we compute the percentage of freezing sub-sequences.

5.2 Comparison to the State-of-the-arts

We compare our approach to a number of recent methods including Li et al. [19], Dancenet [43],
DanceRevolution [11], and FACT [20]. Our approach employs the same structure as FACT except that
it has RefineBank and TransitBank. For each music, we generate a motion sequence with 1200 frames
(20 seconds). The experiment results are shown in Table 1. Since DanceRevolution [11] predicts
3D keypoint positions, we cannot compute the SMPL-based freezing metrics. The approach in [19]
does not predict the translation parameters. As shown, our approach outperforms the state-of-the-art
methods on all metrics. Interestingly, the ∆Trans of our method is even larger than that of GT. We
visually compare our generated motions and GT motions and find that it is because GT often have
stationary poses at transition moments. By contrast, it seems difficult for learning-based methods to
predict stationary poses.

We present a detailed analysis for one sequence in Figure 5. As we can see, the motion and translation
changes of FACT gradually decrease to a small number suggesting that the freezing situation occurs.
In contrast, the numbers of our method are always above those of FACT and do not freeze. The
results validate that our proposed bank-based manifold projection and past-future dynamic priors
indeed improve the quality of the generated motions.

User Study We conduct a user study to investigate how people think of the dances generated by
our method and the other ones. We invite 20 participants and each participant is asked to watch
30 pairs of comparison videos. Each pair consists of our dance and one competitor’s generated
with the same music. We ask each participant to determine “which person is dancing better to the
music” and provide the statistics in Table 1 (last column). Our approach significantly outperforms the
other methods in user study. We can keep at least 84.2% win rate to the SOTA methods including
DanceRevolution and FACT. Notably, we can achieve 31.7% win rate compared to GT motions. We
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(a) Frame-level Pose Change (b) Frame-level Translation Change (c) Frame-level Freezing Determination

Figure 5: The top row shows the motions generated by FACT and our method for the same music. The
bottom provides frame-level statistics for the two sequences. In figure (c), 0 represents non-freezing
and 1 means freezing. Best viewed in color.

(a) Baseline (b) With Only RefineBank (c) With RefineBank & TransitBank

Figure 6: t-SNE visualization of the generated dances. Each dot represents a 3D pose and different
colors represent different genres of the music used to generate the poses. Best viewed in color.

also collect detailed feed-backs and find that our generated dance is generally thought to be more
diverse and non-freezing. The main problem with FACT is that the motions freeze frequently while
the problem with DanceRevolution is that the motions are unnatural. Compared to GT motions, ours
are thought to lack suitable transition motions and precise beat alignment which is a general problem
faced by most prediction-based methods.

5.3 Ablation Study

Ablation Study of RefineBank and TransitBank The experiment results are shown in Table 2.
Our first observation is that adding RefineBank to the baseline notably improves ∆Pose meaning
that the method reduces the chance of getting freezing motions. Meanwhile, the improvement also
brings benefits to dance quality and diversity. However, the variation of the global positions of the
dancers, i.e., ∆Trans, is only slightly improved. This is expected since RefineBank only guarantees
that the refined motions are on the manifold. In contrast, adding TransitBank notably improves ∆Trans.
Meanwhile the diversity metrics are also notably improved. The results suggest that by exploiting the
motion dynamic priors the method can predict high-fidelity and diverse motions with large magnitude
instead of mean poses. Finally, the two modules are complementary to each other and combining
them will further improve the results on all metrics.
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Table 3: Comparison of the bank-based AE and other options.

Quality Diversity Align
Method FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

AE 29.85 17.64 1.52 1.32 33.5% 7.48 6.49 0.245
VAE 29.67 17.05 1.53 1.32 33.1% 7.49 6.50 0.245
Bank-AE (Discrete) 27.48 15.19 1.60 1.34 30.4% 7.45 6.48 0.247
Bank-AE (Ours) 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249

Table 4: Evaluation on the number of latent features.

Quality Diversity Alignment
FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

n=1 27.94 15.61 1.59 1.34 31.2% 7.51 6.52 0.246
n=2 26.72 14.78 1.62 1.35 30.6% 7.63 6.57 0.248
n=3 26.15 13.95 1.64 1.36 29.9% 7.66 6.59 0.249
n=4 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249
n=5 26.67 13.88 1.63 1.35 30.1% 7.72 6.63 0.248

Table 5: Evaluation on the number of bank items.

Quality Diversity Alignment
FIDk ↓ FIDg ↓ ∆Pose ↑ ∆Trans ↑ Freezing ↓ Distk ↑ Distg ↑ BeatAlign ↑

N=32 29.74 17.34 1.53 1.32 32.9% 7.50 6.49 0.245
N=64 29.14 16.98 1.54 1.33 31.7% 7.56 6.52 0.246
N=128 27.31 14.86 1.61 1.35 30.2% 7.62 6.54 0.248
N=256 25.96 13.42 1.64 1.36 29.6% 7.68 6.59 0.249
N=512 26.39 14.07 1.63 1.35 29.9% 7.64 6.56 0.248

Table 6: Evaluation of our module applicability
to other models for dance generation.

Quality Diversity
Method FIDk ↓ FIDg ↓ Distk ↑ Distg ↑

Revolution [11] 73.42 25.92 3.52 4.87
+ Our Modules 50.83 23.75 5.13 5.69

Table 7: Evaluation of our module applicability
to other models for motion prediction.

Reconstruction error ↓
Method 10 20 30 40 50

PHD [40] 64.4 67.1 81.1 98.5 125.9
+ Our Modules 62.9 64.3 77.2 93.5 117.8

We visualize the poses in the generated dances using t-SNE [34] in Figure 6. We can see that the
dances generated by the baseline tend to be mixed together with other genres. It means the motions
may have lower fidelity, smaller magnitude and lack uniqueness. We think this is caused by the
freezing problem and the high spatio-temporal complexity of the prediction space. In contrast, adding
RefineBank alleviates the freezing problem which allows the poses to preserve the high-fidelity
details and to be differentiable from other dances. Further adding TransitBank allows to generate
more diverse dances with larger motion magnitude.

Bank-based Auto-encoder We compare our bank-based auto-encoder with other options such as
vanilla AE and VAE. The experimental results are shown in Table 3. Our bank-based auto-encoder
achieves clearly better results than the other methods. This is because the bank of latent codes provide
a tight characterization of the dance manifold. The tightness requires that the generated motion
sequences strictly follow the dance styles.

We also compare to a discrete variant of Bank-AE. Different from our current method, it uses the
closest bank item instead of convex combinations of the neighboring items to reconstruct each datum
similar to VQ-VAE [33]. We can see that it also reduces the the freezing rate. However, the quality
and diversity metrics are notably worse than our method. This is because the discrete variant has
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limited capability to reconstruct data with sufficient accuracy, compared to our approach using convex
combinations of multiple bank items.

Number of Latent Features We study the impact of the number of latent features n for representing
a motion segment as discussed in section 4.1. The results are shown in Table 4. In general, using
more latent features improves the prediction performance because it can capture more details. But
keep increasing the number may lead to degeneration.

Number of Bank Items We study the impact of the number of elements N in the two banks. The
results are shown in Table 5. Initially, increasing the number of elements improves the results. This is
reasonable because the expressive power of the bank is improved and more details can be preserved
after projection. However, keep increasing N to 512 begins to have negative effects. We think this
is because using too many items may increase the risk of over-fitting to the small levels of noise in
the GT data. In addition, the introduced redundancy may also bring negative effects. Nevertheless,
the method is relatively robust to this parameter and achieves reasonably good results when N is
between 128 and 512.

Evaluation of Applicability Our proposed two modules RefineBank & TransitBank can be plugged
into other prediction-based methods to achieve long-term non-freezing dance generation. As shown
in table 6, our proposed modules can clearly improve motion quality and generation diversity over
the RNN-based prediction method Dance Revolution [11].

Besides the adaption of other approaches for dance generation, we also try to adapt our proposed
modules to the more general 3D human motion prediction task. We add our proposed modules to a
strong open source method PHD [40]. Following the settings in [40], we report PA-MPJPE (mean
error of per joint position after applying Procrustes Alignment [7]) in mm through 50 frames and
evaluate the performance on a large 3D human motion dataset Human3.6M [13]. As shown in Table
7, we can observe that our proposed approach can clearly improve the prediction accuracy, which
demonstrates that our proposed approach can be used for other tasks related to human motion.

6 Conclusion

In this work, we presented two general modules that can be plugged into the existing methods to
address the freezing problem in dance motion generation. This largely overlooked problem has
limited motion generation to short segments of only several seconds. By reducing noise accumulation
and exploiting dynamic priors, our approach can generate motions for at least 30 seconds with 60
FPS, which is the maximum music length in current dataset AIST++, without freezing. Our user
study also shows that our method has obvious advantages over other methods in terms of quality and
diversity. The method paves the way for addressing a more valuable problem of full choreography for
entire musics instead of short clips.

Broader Impact We believe that our work has values for not only dance generation but also
for more general motion prediction. This benefits areas including media platforms, robotics, and
autonomous driving. On the other hand, our method can have negative downstream consequences
such as being extended to generate fake videos conditioned on the generated human motions with
GANs. The potential limitation is that due to the relatively short duration of music pieces in AIST++
dataset, the test performance is not a precise evaluation for long-term dance generation capability.
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Akarun, Cristian Canton-Ferrer, Joëlle Tilmanne, et al. An audio-driven dancing avatar. Journal on
Multimodal User Interfaces, 2(2):93–103, 2008.

[25] Mathis Petrovich, Michael J Black, and Gül Varol. Action-conditioned 3d human motion synthesis with
transformer vae. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10985–10995, 2021.

11



[26] Xuanchi Ren, Haoran Li, Zijian Huang, and Qifeng Chen. Self-supervised dance video synthesis condi-
tioned on music. In Proceedings of the 28th ACM International Conference on Multimedia, pages 46–54,
2020.

[27] Takaaki Shiratori and Katsushi Ikeuchi. Synthesis of dance performance based on analyses of human
motion and music. Information and Media Technologies, 3(4):834–847, 2008.

[28] Takaaki Shiratori, Atsushi Nakazawa, and Katsushi Ikeuchi. Dancing-to-music character animation. In
Computer Graphics Forum, volume 25, pages 449–458. Wiley Online Library, 2006.

[29] Li Siyao, Weijiang Yu, Tianpei Gu, Chunze Lin, Quan Wang, Chen Qian, Chen Change Loy, and Ziwei
Liu. Bailando: 3d dance generation by actor-critic gpt with choreographic memory. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11050–11059, 2022.

[30] Guofei Sun, Yongkang Wong, Zhiyong Cheng, Mohan S Kankanhalli, Weidong Geng, and Xiangdong
Li. Deepdance: music-to-dance motion choreography with adversarial learning. IEEE Transactions on
Multimedia, 23:497–509, 2020.

[31] Jiangxin Sun, Zihang Lin, Xintong Han, Jian-Fang Hu, Jia Xu, and Wei-Shi Zheng. Action-guided 3d
human motion prediction. Advances in Neural Information Processing Systems, 34, 2021.

[32] Taoran Tang, Jia Jia, and Hanyang Mao. Dance with melody: An lstm-autoencoder approach to music-
oriented dance synthesis. In Proceedings of the 26th ACM international conference on Multimedia, pages
1598–1606, 2018.

[33] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

[34] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[35] Nelson Yalta, Shinji Watanabe, Kazuhiro Nakadai, and Tetsuya Ogata. Weakly-supervised deep recurrent
neural networks for basic dance step generation. In 2019 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2019.

[36] Sijie Yan, Zhizhong Li, Yuanjun Xiong, Huahan Yan, and Dahua Lin. Convolutional sequence generation
for skeleton-based action synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4394–4402, 2019.

[37] Zijie Ye, Haozhe Wu, Jia Jia, Yaohua Bu, Wei Chen, Fanbo Meng, and Yanfeng Wang. Choreonet: Towards
music to dance synthesis with choreographic action unit. In Proceedings of the 28th ACM International
Conference on Multimedia, pages 744–752, 2020.

[38] Ye Yuan and Kris Kitani. Dlow: Diversifying latent flows for diverse human motion prediction. In
European Conference on Computer Vision, pages 346–364. Springer, 2020.

[39] Jason Y Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik. Predicting 3d human dynamics from
video. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7114–7123,
2019.

[40] Jason Y Zhang, Panna Felsen, Angjoo Kanazawa, and Jitendra Malik. Predicting 3d human dynamics from
video. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 7114–7123,
2019.

[41] Xinjian Zhang, Yi Xu, Su Yang, Longwen Gao, and Huyang Sun. Dance generation with style embedding:
Learning and transferring latent representations of dance styles. arXiv preprint arXiv:2104.14802, 2021.

[42] Yi Zhou, Zimo Li, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. Auto-conditioned recurrent
networks for extended complex human motion synthesis. In International Conference on Learning
Representations, 2018.

[43] Wenlin Zhuang, Congyi Wang, Jinxiang Chai, Yangang Wang, Ming Shao, and Siyu Xia. Music2dance:
Dancenet for music-driven dance generation. ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), 18(2):1–21, 2022.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See section 6
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See section

6
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

12



(b) Did you include complete proofs of all theoretical results? [N/A]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [No] Code and
models will be released upon acceptance to ensure the reproducibility.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See section 5.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Results reported in this paper are the mean results for
three repeating experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See section 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See section 5.
(b) Did you mention the license of the assets? [Yes] We provide the license in the supple-

mental material.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes] See section 5.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [No]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Considering that user study can be completed
in less than half an hour, we offer each participant a payment of 10 dollars.

13


	Introduction
	Related Work
	Preliminaries
	Method
	RefineBank
	TransitBank
	Model Learning

	Experiments
	Experimental Settings
	Comparison to the State-of-the-arts
	Ablation Study

	Conclusion

