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Abstract

One of the most overlooked challenges in dance generation is that the auto-
regressive frameworks are prone to freezing motions due to noise accumulation.
In this paper, we present two modules that can be plugged into the existing mod-
els to enable them to generate non-freezing and high fidelity dances. Since the
high-dimensional motion data are easily swamped by noise, we propose to learn
a low-dimensional manifold representation by an auto-encoder with a bank of
latent codes, which can be used to reduce the noise in the predicted motions, thus
preventing from freezing. We further extend the bank to provide explicit priors
about the future motions to disambiguate motion prediction, which helps the pre-
dictors to generate motions with larger magnitude and higher fidelity than possible
before. Extensive experiments on AIST++, a public large-scale 3D dance motion
benchmark, demonstrate that our method notably outperforms the baselines in
terms of quality, diversity and time length.

1 Introduction

Dancing to music has been one of the most popular art forms since ancient days. It can vividly
express human’s emotions and fulfill social communications even before symbolic languages came
along. Nowadays, there are a booming number of people sharing their dance videos on the popular
media platforms such as YouTube and TikTok, which drives the strong need for automatic Al
choreography to help users create their own dances. The task is related to general human motion
prediction [22},25|31138},39,42]] except that it poses new challenges: i) dance generation needs to
produce high-fidelity motions for about three minutes to cover a music which is much longer than that
in general motion prediction; ii) dance generation needs to handle more diverse and stylistic motions
(e.g., ballet Jazz, hip-pop, etc.). The high spatio-temporal complexity requires more expressive
models so as to generate high-fidelity dance motions.
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Figure 1: The motion prediction framework. It first uses the past motions to query TransitBank to
retrieve the priors about the future motions, which are fed to the predictor to get high-fidelity motion
predictions. Then RefineBank refines the predictions to reduce error accumulation.

The state-of-the-art methods follow a cross-modal prediction framework where the future motions are
predicted based on the past motions and music in an auto-regressive way [[11}/1612030]. However, the
generated motions are prone to freezing and converging to small-magnitude motions after only several
seconds. The main reason is that the prediction error will accumulate in the generation process, and
eventually can not be handled by the neural predictors. Besides, motion prediction suffers from
the huge uncertainty and ambiguity because of the high spatio-temporal complexity of the task. As
a result, the models tend to predict mean poses [42] instead of large-magnitude and high-fidelity
motions if there are not informative priors about the future motions.

In this paper, we present two modules that can be plugged into the existing auto-regressive models to
achieve non-freezing large-magnitude motion generation. Figure[I]illustrates an overview. Firstly,
to prevent from error accumulation, we present RefineBank to learn a low-dimensional manifold
representation for the high-dimensional motion data. It equips an auto-encoder with a bank of latent
codes to tightly constrain the manifold to be close to the ground-truth (GT) motions and meanwhile
far from the ones with noise. This representation allows us to remove the noise in the predicted
motions by projecting them to the learned manifold as illustrated in Figure 2] With RefineBank,
the baseline method [20] can already generate full choreography for complete musics in the dataset
without freezing motions. Secondly, inspired by the fact that most dances can be coarsely constructed
by a number of basic motion segments, we present TransitBank to learn and memorize the frequently
used <past, future> motion dynamics on top of the manifold. Given past motions, it provides explicit
priors about the future motions to reduce the uncertainty and ambiguity in prediction, which can
effectively facilitate the higher-fidelity dance motion generation with larger magnitude than before.

We conduct extensive experiments to evaluate our approach on the AIST++ dataset [20]. Not only
does our method notably outperform the baselines on the existing metrics, but also shows better results
on our newly introduced freezing rate metric. In addition, the user study indicates that people have
obvious preferences toward the dances generated by our method. Our contributions are summarized
as follows: 1) This is the first time we see evidence that the prediction-based methods can generate
long-term dance motions on AIST++, which paves the way for full choreography for entire music; 2)
We present RefineBank and TransitBank which can be plugged into most motion-prediction based
methods to achieve long-term non-freezing dance generation; 3) We introduce new metrics that can
quantitatively evaluate the freezing situations in the motion sequences.

2 Related Work

Prediction-based Methods This line of work treats dance generation as a motion prediction
problem and has achieved promising results. A number of network architectures have been proposed
including CNNs [9,/16], RNNs [[1,{11,{32,35,4 1], GCNs [4}26}/36]], GAN [30] and Transformers
[12,18H20]]. Several works focus on the alignment of motion and music. For instance, Sun et al. [30]
and Li et al. [[18]] use a classifier to test the authenticity of the predicted motion conditioned on the



Figure 2: Re neBank takes a motion sequence witdframes as input, projects them to a low-
dimensional manifold, and reconstructs the sequence with minimum noise.

music. Zhang et al. [41] and Huang et al. [12] learn the dance style embeddings to provide prior
information to the predictor. Few works have studied the freezing problem. Huang et al. [11] propose
a curriculum learning strategy to bridge the gap between training and inference by alternately feeding
predicted and GT motions to the predictor. Li et al. [20] present future-n full-attention to replace
the traditional shift-by-1 casual-attention to leverage the temporal context. However, the predicted
motions are still prone to freezing after several seconds. Our approach is also a prediction-based
method. But different from the previous methods, we present two plug-in modules that can achieve
longer-term non-freezing motion generation.

Retrieval-based Methods Some earlier works compose a complete dance by retrieval [14,24,27,28].
They select the closest prede ned motion segments in a pre-built database based on music, and
construct a sequence with the proper transition routines. Lee et al. [17] and Ye et al. [37] use deep
networks to generate future motion segments from the input music and past motion segments. Duan
et al. [3] propose an attention-based MLP to translate all music phrases to motion segments. Chen
et al. [2] propose to predict dance sequences through traversing the node transition routines on a
motion graph and introduce the choreography-oriented constraints to compose the nal dance motion
sequences. However, they cannot generate new motions beyond the database. Our approach is also
inspired by the retrieval-based methods in that we construct a bank/database to learn common motion
dynamics for the predictor. The core difference is that the bank is automatically learned from data
without manual efforts and our approach can generate new motions beyond the database.

3 Preliminaries

Given the past and future music featunes.; k m 41 1+ k , and the past dance motiods,, the task

aims to predict the future motiods. 1. ¢+ « . The input music featurem; 2 R* are obtained from

Librosa [23] consisting of 1-dim envelope, 20-dim MFCC, 12-dim chroma, 1-dim one-hot peaks and
1-dim one-hot beats. The motions are represented by SMPL [21] model, which consists of parameters
referring to body shape, human pose and translation. The shape parameters are dance-irrelevant values
which mainly capture the expansion/shrink of human body such as taller or shorter, we only consider
the prediction of parameters respecting to human pose and global translafiod iR?°. We follow

the state-of-the-art dance generation architecture [20] as shown in Figure 1. It has a music feature
extractorE,, a dance feature extractBly and a cross-modal predict®g. The auto-regressive
prediction process can be formulated as:

Qi1 t+k = Pe(Em (M 1es i ); Ea(d1n)): 1)

Although previous works such as [11, 20] have attempted to improve the long-term generation
performance, the predicted motions are still prone to freezing after only several seconds.



Figure 3:TransitBank: Given rst half of the motion sequence, it produces a prior representation for
the second half of the sequence by computing the weighted average of the values of the bank items to
reduce the uncertainty and ambiguity in motion prediction.

4 Method

The dance motions are believed to lie on a low-dimensional manifold since the body parts are highly
correlated [10, 29]. We take advantage of the nice property and pfieseréBank RB ) to reduce

the noise in the motions. It learns an auto-encoder with a bank of latent codes to tightly represent
the compact motion manifold. By projecting noisy or corrupted motions onto the manifold, we can
remove the noise in the motions, which prevents error accumulation in the auto-regressive generation.
Secondly, we proposEansitBank T B) on top of the learned manifold, which maintains a past-future
motion dynamics bank to provide explicit priors about the future motions. The priors narrow down
the motion prediction space which facilitates high- delity motion generation with large magnitude.
Mathematically, the prediction process can be formulated as:

Qi1 t+k = RB(Pe(Em(M sk ); Ea(die); TB(d1))): 2

4.1 Re neBank

Figure 2 shows the components of Re neBank which has an enéogler a decodebgg , and a
manifold bankBy 2 RS N. The bankBy hasN learnable latent codes of dimensiGnwhich

span the low-dimensional dance manifold. As will be described later, the bank is learned from the
GT motions so it can be interpreted as a prior probabilistic distribution where the motion data with
noise will have the small likelihood.

For a (noisy) motion sequendg., produced by the predictor, we rst transform each of them to a
latent feature by a trangformerpased encdtigy . Lpncretely, we uniformly samplefeatures at

differenttime stepz = zjt2 O0; ﬁ; %; 21 torepresent the sequence. Then we project
eachz; to the manifold represented by the bank to remove the prediction error. Speci cally, for each
latent featurez;, we compute the similarity scores betwerrand the latent codes By , and use

the learnable weights to projert onto the manifold to get;:

2 = By softmaxB}, zy): )

The projected latent featur&g, g will be fed to the transformer-based decole{z to generate the
motions that we expect to have little noise.

Compared with previous bank-based autoencoder approaches for image generation such as VQ-
VAE [33], we have two unique designs in our Re neBank for dance generation. The rstis to use
soft-assignment instead of hard nearest-neighbor assignment to prevent simply repeating existing
dance movements and improve the diversity of the generated dances. The second is that we follow
the multi-head implementation in transformers to encode the input motion sequence with several
different latent features such that more details can be preserved.

4.2 TransitBank

The high spatio-temporal complexity of the motion space increases the uncertainty and ambiguity of
motion prediction. Hence, the motion predictors are prone to generating small-magnitude motions.
To address the problem, we present TransitBank which is inspired by the fact that there exist a number
of basic short motion segments that are frequently used in many dances. TransitBank aims to exploit
such cues to estimate the prior distributions for future motion prediction.



Figure 4: Constructing the past-future bank from the manifold bank.

Concretely, TransitBank works by dividing a motion sequence into past and future sub-sequences
and storing them as past-future pairs. Then given the past motions as input, it queries the bank and
reads the corresponding future motion dynamics from the bank. This prior information is fed to the
cross-modal predictor to reduce the uncertainty and ambiguity in motion prediction.

Figure 3 shows the structure of TransitBank. It consists of an query enEgg@era past-future
bankBpr , and a read decod&+g . The past-future banBpr = (K;V)jK;V 2R N s

directly constructed as the <past, future> extension of manifold Bank As forEtg andDg,

we use a simple transformer structure for encoder and decoder, respectively. To avoid information
leakage in case that the cross-modal predictor directly copies the motions in TransitBank, we design
the query-read process by using the attention mechanism rather than nding closest one which will
effectively blur the future motions. Speci cally, we encode input motign via Etg and take the
average pooling of all outputs as the query vegtofhen we compute the similarity betwegrand

key featureX following:

sim(K;q) = (K)"q: (4)

In the read process, we compute the future motion pris the weighted average of the corresponding
valuesV :

r =V softmaxXsimK;q)): (5)

Finally, we decode the vectorviaD 1 and feed it to the cross-modal predictor as additional tokens.

4.3 Model Learning

This section describes how we learn the two banks from training data. It is worth noting that the
two banks are not independent. Instead, TransitBank is a <past, future> extension of Re neBank
(i.e., mapping motion pre xes to suf xes). In the following part, we rst illustrate how we learn the
bank in Re neBank and then describe how to derive the one in TransitBank. Finally, we describe the
training optimization strategy.

Bank in Re neBank We rst initialize the manifold bankB\, by clustering to obtain a proper
initialization where items are representative and widely used in GT motion. Speci cally, we obtain

a number of motion segments by applying a sliding window with lemdthall training motion
sequences. Then AP clustering [5] is used to obtain a number of cluster centers from the segments.
We apply a transformer-based encolgr to encode each cluster centr, and compute the average

of the encoding outputs of tHérames to initialize one bank elemens2 By, .

After initialization, we train the encodé&ty, , decodeDy, and the baniB), to reconstruct all motion
segmentsl,.; using the method described in Section 4.1. The only difference is that we project the
latent feature to its closest itenb of By as:

2 =arg br’znlignM kz bk: (6)

Bank in TransitBank Constructing the past-future baler from the manifold baniBy, is
straightforward. As shown in Figure 4, for each elemet B\, , we decode it to a motion sequence



@1, via the learned transformer decod®y; . Then we divide the sequence into two pac’t‘§q:2 and
d\=5.1. 1, which are fed to the encodEr, to obtain the latent codes representing the péstand
future (V), respectively. In that way, we obtaBpr = (K;V)jK;V 2 R¢ N

Optimization Strategy We train our model in three stages to ensure that the learned manifold bank
can accurately reconstruct the GT motions. In the rst stage, we just follow the implementation in
VQ-VAE [33] and optimize the manifold bank by minimizing the following loss:

2
L ManifoldBank = d\lzl dy 5 + ksdz] 2‘k§ + kz qu‘]kgi @)

The rst term minimizes the reconstruction error. The second part is the “item loss” [33] to update
items in manifold bank, where sg denotes “stop gradient”. This objective function moves the items
close to the outputs of the encoder. TheJsgperator is implemented by the identi cation function
during forward computation with zero partial derivatives. The third part is “commitment loss” [33] to
ensure the output of encoder commits to an item and the valugso$et as 0.2, empirically. We
optimize the encoder with the rst and third loss terms. The bank items are updated with only the
second loss term and the decoder is trained with only the rst term. Once we nalize the manifold
bank, we can compute the past-future bank. Note that we do not update these two banks in the
following stages.

In the second stage, we train the encoder and decoders in Re neBank to reconstruct all motion
sequences of the training set with only reconstruction loss.

2

L Re neBank = c/j\lzl dy 2; 8

In the third stage, we train the whole framework in an end-to-end manner with the L2 loss between
predicted motion and GT motion.

2
— N .
I-Prediction— dt+1: t+ K dt+1: t+ K 2' (9)

5 Experiments

5.1 Experimental Settings

Dataset We evaluate our method on the largest AIST++ [20] dance dataset that co6fains
music pieces belonging tt0 dance genres. In total, there &@2 3D pose sequences & FPS.
Following [20], we usé@52samples for training and the ret for evaluation.

Implementation Details The model takes 240 frames of music and 120 frames of motions as input
and predicts the neX = 20 frames of motions. We use the same network structures for the music
extractor, motion extractor and cross-modal predictor as FACT [20]. For the encoders and decoders
in Re neBank and TransitBank, we use transformers with 4 layers and 10 attention heads with 2048
hidden size. The number of items in manifold bank and past-future bank is 256 and each itemis a
2048-dim latent vector. The input to Re neBank and TransitBank is a motion sequence=witA0

frames. Sinc&K < | , we concatenate the previous K frames of motions with the predictor output

to feed to Re neBank. We construct a separate manifold bank and past-future bank for each dance
genre. In the rst training stage, we adopt Adam optimizer [15] with a learning rate of0 *

to train the manifold bank for 50 epochs. In the second training stage, we pre-train the Re neBank
using Adam optimizer with a learning rate bf 10 4 for 25 epochs. In the third stage, we train the
whole framework with Adam optimizer for 150 epochs. The learning rate startslwithi0 * and
decreasestol 10 ;1 10 ® afterf30;90g epochs, respectively. The whole training process
takes about four days on four NVIDIA GeForce RTX 2080Ti GPUs.

Metrics The previous works mainly evaluate the dance generation results from three aspects:
quality, diversity and alignment. Following [20], we compute FID [8] (Frechet Inception Distances)
on the kinetic features (denoted@® ) and geometric features (denotedmdb ¢), respectively, to
measure quality. We use the fairmotion toolbox [6] to extract the features. For diversity, we compute
the average Euclidean distance in the kinetic (denotdisig) and geometric (denoted &ssty)



Table 1: Comparison to the state-of-the-art methods on the AIST++ dataset.

Quality Diversity Align User Study
Method FIDk # FIDg #  pose”  Trans" Freeze#\ Dist, " Disty " \BeatAIign" Win Rate"
GT | - - 328 116 18.7% 9.06 7.31| 0.292 | 317%
Lietal.[19] | 86.43 43.46 1.02 - 59.0% 6.85 3.32| 0.232 95.8%
DanceNet [43]| 69.18 2549 1.25 0.80 46.8% 2.86 2.85| 0.232 90.8%
Revolution [11]] 73.42 25.92 - - - | 352 487| 0220 84.2%
FACT [20] 35.35 2211 1.33 1.07 39.0% 594 6.18| 0.241 86.7%
Ours | 25.96 1342 1.64 136 29.6% 7.68 6.59| 0.249 | -

Table 2: Ablation study of Re neBank and TransitBank.

Quality Diversity Alignment

Method FIDk # FIDg # pose”  Tans" Freezing#|Dist " Disty " | BeatAlign"
Baseline 3535 2211 1.33 1.07  39.0% 594 6.18]| 0.241
+ReneBank| 28.67 16.38 153 115 32.1% 6.65 6.34| 0.246
+TransitBank 31.24 19.18 149  1.31  34.3% 7.42 6.47| 0.245
Ours | 25.96 1342 1.64 136  29.6%| 7.68 6.59 | 0.249

feature space across the generated motions. For dance-music alignment, wead@gignment
Scorein [20] to compute average distance between every kinematic beat and its nearest music beat.
Since the freezing problem is largely overlooked previously, there are no metrics available to evaluate.
We propose to compute the average values of the temporal differences of the pose and translation
parameters in the whole sequence, which are termedhagand 11ans respectively. In addition,
we also calculate thEreezing Rateof each sequence. We divide a sequence into non-overlapping
sub-sequences 60 frames, and for each sub-sequence, ghse  Bpse@Nd  Trans ¢ nsWhere

9 is a prede ned threshold statistically derived from the training set, we regard it as a freezing
sub-sequence. Then we compute the percentage of freezing sub-sequences.

5.2 Comparison to the State-of-the-arts

We compare our approach to a number of recent methods including Li et al. [19], Dancenet [43],
DanceRevolution [11], and FACT [20]. Our approach employs the same structure as FACT except that
it has Re neBank and TransitBank. For each music, we generate a motion sequence with 1200 frames
(20 seconds). The experiment results are shown in Table 1. Since DanceRevolution [11] predicts
3D keypoint positions, we cannot compute the SMPL-based freezing metrics. The approach in [19]
does not predict the translation parameters. As shown, our approach outperforms the state-of-the-art
methods on all metrics. Interestingly, the ans Of our method is even larger than that of GT. We
visually compare our generated motions and GT motions and nd that it is because GT often have
stationary poses at transition moments. By contrast, it seems dif cult for learning-based methods to
predict stationary poses.

We present a detailed analysis for one sequence in Figure 5. As we can see, the motion and translation
changes of FACT gradually decrease to a small number suggesting that the freezing situation occurs.
In contrast, the numbers of our method are always above those of FACT and do not freeze. The
results validate that our proposed bank-based manifold projection and past-future dynamic priors
indeed improve the quality of the generated motions.

User Study We conduct a user study to investigate how people think of the dances generated by
our method and the other ones. We invite 20 participants and each participant is asked to watch
30 pairs of comparison videos. Each pair consists of our dance and one competitor's generated
with the same music. We ask each participant to determine “which person is dancing better to the
music” and provide the statistics in Table 1 (last column). Our approach signi cantly outperforms the
other methods in user study. We can keep at least 84.2% win rate to the SOTA methods including
DanceRevolution and FACT. Notably, we can achieve 31.7% win rate compared to GT motions. We



Figure 5: The top row shows the motions generated by FACT and our method for the same music. The
bottom provides frame-level statistics for the two sequences. In gure (c), 0 represents non-freezing
and 1 means freezing. Best viewed in color.

Figure 6: t-SNE visualization of the generated dances. Each dot repregthtsose and different
colors represent different genres of the music used to generate the poses. Best viewed in color.

also collect detailed feed-backs and nd that our generated dance is generally thought to be more
diverse and non-freezing. The main problem with FACT is that the motions freeze frequently while
the problem with DanceRevolution is that the motions are unnatural. Compared to GT motions, ours
are thought to lack suitable transition motions and precise beat alignment which is a general problem
faced by most prediction-based methods.

5.3 Ablation Study

Ablation Study of Re neBank and TransitBank The experiment results are shown in Table 2.
Our rst observation is that adding Re neBank to the baseline notably improvgg. meaning

that the method reduces the chance of getting freezing motions. Meanwhile, the improvement also
brings bene ts to dance quality and diversity. However, the variation of the global positions of the
dancersi.e., Tmans iS Only slightly improved. This is expected since Re neBank only guarantees
that the re ned motions are on the manifold. In contrast, adding TransitBank notably impraeugs
Meanwhile the diversity metrics are also notably improved. The results suggest that by exploiting the
motion dynamic priors the method can predict high- delity and diverse motions with large magnitude
instead of mean poses. Finally, the two modules are complementary to each other and combining
them will further improve the results on all metrics.
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