
A Experimental Setup

We provide detailed experimental setup in this section.

A.1 Dataset

Under GPU memory constraints when computing Gram matrix of our models, we limit the size of
dataset we use. The dataset is a 1,000-sample subset from CIFAR-10 (Krizhevsky et al. [17]) (https:
//www.cs.toronto.edu/~kriz/cifar.html). To make it a binary dataset, we constructed it by
selecting the first 500 samples of class 0 and 1, respectively.4 Then we label the samples by ±1. In
the experiments in Appendix B and D, we fix the objective as training on the 1000-example subset
of CIFAR-10.

A.2 Network Architecture

In general settings, we experiment with three architectures from simple models to more complicated
models: one-hidden-layer linear neural network, four-hidden-layer fully-connected network, convolu-
tional network and a ResNet18 (He et al. [11]) model. The initialization of each layer follows the
default initialization of PyTorch (Paszke et al. [27]).

Linear Network We first use a simple two-layer linear neural network. The hidden layer has 200
neurons. We empirically show that even a simple linear network can enter the EOS regime.

Table 1: Linear network

Layer # Name Layer In shape Out shape

1 Flatten() (3, 32, 32) 3072
2 fc1 nn.Linear(3072, 200) 3072 200
3 fc2 nn.Linear(200, 1) 200 1

Fully-connected Network We conduct further experiments on several different fully-connected
networks with 4 hidden layers with various activation functions. We consider tanh, ReLU, ELU
activations. For example, the structure of a fully-connected tanh network is shown in Table 2.

Table 2: Fully-connected network

Layer # Name Layer In shape Out shape

1 Flatten() (3, 32, 32) 3072
2 fc1 nn.Linear(3072,200,bias=False) 3072 200
3 nn.tanh() 200 200
4 fc2 nn.Linear(200,200,bias=False) 200 200
5 nn.tanh() 200 200
6 fc3 nn.Linear(200,200,bias=False) 200 200
7 nn.tanh() 200 200
8 fc4 nn.Linear(200,200,bias=False) 200 200
9 nn.tanh() 200 200
10 fc5 nn.Linear(200,1,bias=False) 200 1

Convolutional Network We also conduct experiments on several different convolutional networks
with two convolutional layers and two max-pooling layers. Like the fully-connected network experi-
ments, we consider tanh, ReLU and ELU activations. For example, the structure of a convolutional
tanh network is shown in Table 3.

4Cohen et al. [6] selects the first 5,000 examples from CIFAR-10. Our subset is smaller because of the
computation limitation when calculating the Gram matrix. Experiments show that the properties along GD
trajectory (e.g. the loss, the sharpness) is similar on both datasets.
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Table 3: Convolutional network

# Name Layer In shape Out shape

1 conv1 nn.Conv2d(3,32,kernel_size=3,padding=1) (3, 32, 32) (32,32,32)
2 nn.tanh() (32,32,32) (32,32,32)
3 nn.MaxPool2d(2) (32,32,32) (32,16,16)
4 conv2 nn.Conv2d(32,32,kernel_size=3,padding=1) (32,16,16) (32,16,16)
5 nn.tanh() (32,16,16) (32,16,16)
6 nn.MaxPool2d(2) (32,16,16) (32,8,8)
7 Flatten() (32,8,8) 2048
8 fc1 nn.Linear(2048,1,bias=False) 2048 1

ResNet18 We also conduct experiment on the ResNet18 architecture proposed by He et al. [11].
We use the default architecture implemented in PyTorch (Paszke et al. [27]). When calculating the
sharpness, we use the numerical methods in the package (Golmant et al. [10]) to calculate the top
eigenvalue of the Hessian matrix.

B Further Experiments and Discussions

In this appendix, we use the 1000-sized subset of CIFAR-10 introduced in Appendix A to conduct
further experiments on various architectures. We verify our main observation about the correlation
between the sharpness and the weight norm of the output layer (A-norm) of the neural network
through the following experiments.

We consider simple linear networks, fully-connected networks, convolutional networks in this
appendix. For nonlinear networks, we choose tanh, ReLU, ELU as activation functions. We train
the networks with MSE loss. Here we exclude ResNet18 experiment since it is not feasible to
compute the Gram matrix or the leading Gram matrix eigenvector due to GPU memory limitation.
The sharpness and A-norm correlation of ResNet18 are included in Figure 2 in Section 3.2.

Here we run full-batch gradient descent with a selected step size η such that the sharpness at
initialization is smaller than 2/η.

B.1 Further Experiments

B.1.1 Linear Networks

We first verify our four-phase division of EOS phenomena in a simple linear network. This experiment
shows that even linear networks can also enter EOS regime and the four-phase division of the gradient
descent trajectory is quite apparent in this setting. The following Figure 4 illustrates the positive
correlation between the sharpness and the A-norm, and the relationship between the loss ∥D(t)∥2
and ∥R(t)∥2 along the trajectory.
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Figure 4: Fully-connected linear network. In Figure (a), we verify the correlation between sharpness
and A-norm in convolutional network setting. In Figure (b), we show that in this case, even though
the total loss L(t) = ∥D(t)∥2/n oscillates considerably, ∥R(t)∥2/n decreases more steadily.
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B.1.2 Fully-connected networks

We train three 5-layer fully-connected networks with different activation functions: tanh, ReLU,
and ELU activations. In Figure 5, 6, and 7, we verify that in these fully-connected networks, the
sharpness is positively correlated to the dynamics output layer norm (A-norm) most of the time in the
progressive sharpening stage and the first few oscillations.

Note that anomaly points appear much more frequently after a few oscillations. Meanwhile, the
sharpness oscillates more frequently around 2/η in every few iterations. We further discuss the
phenomenon in Appendix B.2, in which we elaborate the complicated relationship of the sharpness,
A-norm and parameters of other layers.
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Figure 5: Fully-connected tanh Network. Refer to Figure 4 for more information.
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Figure 6: Fully-connected ReLU Network. Refer to Figure 4 for more information.
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Figure 7: Fully-connected ELU Network. Refer to Figure 4 for more information.
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B.1.3 Convolutional Networks

We train three convolutional networks with different activation functions: ReLU, tanh, and ELU
activations. In Figure 8, 9, and 10, we verify that in convolutional networks, the positive correlation
between the sharpness and the output layer norm (A norm) is still correct in the training process. In
the first few oscillations of the sharpness, the four-phase division is also valid. On the other hand, we
notice that the same anomaly appears in this convolutional setting as in the fully-connected examples.
We defer the discussion to Section B.2.
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Figure 8: Conv. tanh Network. In Figure (a), we verify the correlation between sharpness and A-norm
in convolutional network setting. In Figure (b), we show that in this case, even though the total loss
L(t) = ∥D(t)∥2/n oscillates considerably, ∥R(t)∥2/n decreases more steadily.
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Figure 9: Conv. ReLU Network. Refer to Figure 8 for more information.
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Figure 10: Conv. ELU Network. Refer to Figure 8 for more information.

B.1.4 Gaussian Data on Linear Networks

In this section, we train two-layer fully-connected linear networks with datapoints sampled from
Gaussian distribution and different label vectors.
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In Figure 11, we train two-layer fully-connected linear networks with datapoints sampled from
Gaussian distribution. In particular, the width of the network is 200. The data X is 1000 datapoints
sampled from N (0, I3072), where I3072 ∈ R3072×3072 is the identity matrix. The label Y is uniformly
sampled from Unif{−1, 1}n.

In Figure 11, we verify that even with simple two-layer linear network and Gaussian data, progressive
sharpening and EOS can still be observed. However, because Gaussian data is easy for the network
to learn, the convergence is so fast that within tens of epochs the training loss converges to zero. In
this case, the EOS phenomenon is not quite typical.
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Figure 11: Two-layer Linear Network. Trained
with data sampled from the standard Gaussian dis-
tribution. Both progressive sharpening and EOS
are observed.

To further explore the effect of different fac-
tors on the degree of progressive sharpening, we
train the network with data points sampled from
Gaussian distribution and different label vectors.
In particular, the width of the network is 400.
The input X consists of 500 data points sampled
from N (µ,Σ), where the mean µ ∈ R3072 and
the covariance Σ ∈ R3072×3072 are the mean
vector and the covariance matrix of 5000 CIFAR-
10 data points, respectively. We note that to illus-
trate the degree of progressive sharpening, we
choose a very small learning rate η = 2/20000
(so that the training converges before EOS can
happen).

In Figure 12(a), the label Y is uniformly sam-
pled from Unif{−1, 1}n. Comparing the exper-
imental results with those obtained using the
same network trained with 500 CIFAR-10 data
points, we find out that both have a similar de-
gree of progressive sharpening. In Figure 12(b)
and Figure 12(c), we let the label Y be

√
nv1 and

√
nv400 respectively. The result shows that

when the label vector is aligned with the top eigenvector v1, the degree of progressive sharpening
is relatively small, and when the label vector is aligned with a bottom eigenvector, the degree of
progressive sharpening is relatively large.

This phenomenon is consistent with our intuition. Empirically we found that a dataset that is easier to
learn leads to faster convergence rate, which then leads to a smaller degree of progressive sharpening.
For example, training standard Gaussian distributed dataset converges faster than that with CIFAR-
10 dataset, hence the degree of progressive sharpening of the former is much smaller; as another
example (Figure 12(b) and Figure 12(c)), if the label vector is aligned with the top eigenvector, the
convergence in the first phase (the PS phase) is faster, which leads to a shorter first phase and thus a
smaller degree of progressive sharpening compared to the other case.

B.2 Further Discussions on the Relation between A-norm and Sharpness

In our paper, we use the observation that ∥A∥2 shares the same trend as the sharpness to explain the
dynamics of the sharpness. However, as shown in the experiments in this section (see Figure 5, 6, 7,
8, 9, 10), anomaly points exist during the training process. Here we briefly discussion these anomaly
points further. We divide them into three kinds.

At the time that ∥A∥2 changes its trend: This kind of anomaly points appear when ∥A∥2 changes
its trend. When ∥A∥2 changes its trend, its changing rate (or differential, the D⊤F term) changes its
sign, hence the changing rate’s absolute value is small. Now because the dynamics of the sharpness
is effected by both ∥A∥2 and the inner layers, when changing rate of ∥A∥2 is small, the inner layers
may play a larger role in the direction of sharpness, which may cause the anomaly.

When the sharpness oscillates more frequently: We notice that in some cases, ∥A(t)∥2 and the
sharpness Λ(t) have very similar overall trend, but the sharpness oscillates more frequently but the
magnitude is small (i.e., the sharpness curve has higher frequency oscillations. See Figure 6 or
Figure 10). In this case, while we believe the change of ∥A∥2 is a major driving force of the change
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Figure 12: progressive sharpening of two-layer fully-connected linear networks trained with data
points sampled from anisotropic Gaussian distribution. In Figure (a), the label Y is uniformly
sampled from Unif{−1, 1}n and the result is compared with that trained with CIFAR data points. In
Figure (b) and (c), the label Y takes

√
nv1 and

√
nv400 respectively.

of the sharpness, other layers must be taken into consideration for understanding such small and
frequent oscillations of sharpness.

In late training phases: We notice that in the late training phases in most settings, sharpness
oscillates and crosses 2/η more frequently (it changes directions in a few iterations). In this case,
our four-phase division does not strictly apply. At the same time, ∥A∥2 may also change direction
more frequently, resulting more anomaly points during this period of time. Hence, understanding the
behavior of the late stages is beyond our current analysis and requires new insights.

C Proof for Section 4

C.1 Detailed Settings

Model: In this section, we study a two-layer neural network with linear activation, i.e.

f(x) =

m∑
q=1

1√
m
aqwqx =

1√
m
A⊤Wx

where W = [w1,w2, ...,wm]⊤ ∈ Rm×d is the hidden layer’s weight matrix, and A =
[a1, a2, ..., am] ∈ Rm is the weight vector of the output layer. x ∈ Rd is the input vector.

Input distribution: Denote by X = [x1,x2, ...,xn] ∈ Rd×n the training data matrix and by Y =
(y1, y2, ..., yn) ∈ Rn the label vector. We assume yi = ±1 for all i ∈ [n], and ∥X⊤X∥ = Θ(n).5 We

5This property is mentioned in Hu et al. [12]. Empirically, for a randomly selected k-sample subset from
CIFAR-10, ∥X⊤X∥/k is nearly constant.
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assume X⊤X has rank r, and we decompose X⊤X and Y according to the orthonormal basis {vi},
the eigenvectors of X⊤X: X⊤X =

∑r
i=1 λiviv

⊤
i , Y =

∑r
i=1(Y

⊤vi)vi :=
∑r

i=1 zivi where
vi is the eigenvector corresponding to the i-th largest eigenvalue λi of X⊤X. zi = Y ⊤vi is the
projection of Y onto the direction vi. Here we assume that n ≫ r.

Also, we suppose there exists some parameter A∗, W ∗, s.t.

Y ⊤ = A∗⊤W ∗X

Note when n ≫ d, the matrix X⊤X cannot be full rank. This condition guarantees that Gradient
Descent (GD) only travels in the column space of X⊤X according to Lemma E.10 at Appendix E.

Define the output vector as F and the residual vector as D in the training process.

F = (f(x1), f(x2), ..., f(xn)) ∈ Rn,D = F − Y

(Note that they are functions of time t. So we use D(t),F (t),A(t),W (t) to denote D,F ,A,W at
time t.)

Consider the mean square error MSE loss during the training process:

L(A,W ) =
1

n

n∑
i=1

(f(xi)− yi)
2 =

1

n
∥D∥2

Initialization: We run GD on the loss and start from symmetric initialization for the weights, which
guarantees F (0) = 0.

aq ∼ Unif({−1, 1}), aq+m/2 = −aq, q = 1, 2, ...,m/2

m/2∑
q=1

wqw
⊤
q =

m

2d
Id,wq+m/2 = wq, q = 1, 2, ...,m/2

where Id ∈ Rd×d is the identity matrix of d-dimension.

Sharpness: Recall the definition of the sharpness: Λ(t) = λmax(M(t)), where M(t) is the Gram
matrix (8).

Learning rate selection: We select a learning rate η such that Λ(0) < 2/η. Specially, based on our
method of initialization, Λ(0) = mλ1(d+1)

d · 2
mn , hence we have

η <
nd

(d+ 1)λ1
(5)

Gradient Descent Update Rule: Following GD, the training dynamics is as follows:

aq(t+ 1)− aq(t) = −η
∂L
∂aq

= − 2η

n
√
m

n∑
i=1

(f(xi)− yi)wqxi, ∀q ∈ [m]

Similarly, we have

wq(t+ 1)−wq(t) = − 2η

n
√
m

n∑
i=1

(f(xi)− yi)aqxi, ∀q ∈ [m]

Write them into matrix forms and we have:

A(t+ 1)−A(t) = − 2η

n
√
m
W (t)XD(t)

W (t+ 1)−W (t) = − 2η

n
√
m
A(t)D(t)⊤X⊤

(6)

Then we have the ∥A(t)∥’s dynamics according to (6):

∥A(t+ 1)∥2 − ∥A(t)∥2 = −2ηA(t)⊤
∂L
∂A

+ η2∥ ∂L
∂A

∥2 = −4η

n
F (t)⊤D(t) + η2∥ ∂L

∂A
∥2 (7)
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where F (t)⊤D(t) = D(t)⊤F (t) ∈ R is a real number.

Define the Gram matrix as:

M(t) =
2

mn
(∥A(t)∥2X⊤X+X⊤W (t)⊤W (t)X) (8)

We can also show the dynamics of D(t) according to (6) and (8). See Appendix E for a proof.

Lemma C.1. (See Lemma E.8) The update rule of the residual vector of D(t):

D(t+ 1)⊤ −D(t)⊤ = −ηD(t)⊤M(t) +
4η2

n2m
D(t)⊤(F (t)⊤D(t))X⊤X (9)

We define some extra notations for preparation.

M∗(t) = M(t)− 4η

n2m
(D(t)⊤F (t))X⊤X

Γ(t) =
2

mn
(X⊤W (t)⊤W (t)X− m

d
X⊤X)

M̃(t) = M∗(t)− Γ(t)

(10)

Remark. Here we explain the notations above and what they are for.

• M∗(t) is the Gram matrix M(t) plus a second order term (− 4η
n2m (D(t)⊤F (t))X⊤X).

Since the second order term is small, we have M(t) ≈ M∗(t). Also, in Section C.3 we
prove M∗(t) is almost a linear interpolation of M(t) and M(t+ 1), which corroborates
this argument.

• Γ(t) is the difference between 2
mnX

⊤W (t)⊤W (t)X and 2
mnX

⊤W (0)⊤W (0)X. Note
that Γ(0) = 0 because of the initialization condition. In the following proof, we will show a
small upper bound of the norm of Γ(t). Hence, we can show that the eigenvectors of M(t)
are approximately aligned with the eigenvectors of X⊤X.

• M̃(t) is the Gram matrix with the second order term, yet with Γ(t) excluded. M̃(t) is used
for bounding the main part of Γ(t) (i.e., the terms without the noise e(t), e.g. (A1),(A5))
which is defined in Theorem 3) in the proof of Theorem 3. Note that there exists some
number γ s.t. M̃(t) = γX⊤X. This is because

M̃(t) = M∗(t)− Γ(t) =
2

mn
(∥A(t)∥2 + m

d
− 2η

n
(D(t)⊤F (t)))X⊤X (11)

Hence for any eigenvector vi of X⊤X, λi(M̃(t)) = v⊤
i M̃(t)vi.

Then the dynamics of D(t) can be written as:

D(t+ 1) = (In − ηM∗(t))D(t) (12)

Update Rule of M(t): Using the update rule of A(t) and W (t), we can also derive the update rule
of the Gram matrix M(t) (see Appendix E for the proof detail):

Lemma C.2. (See Lemma E.9) The update rule of the Gram matrix M(t) is,

M(t+ 1)−M(t) =− 4η

n2m

(
2(F (t)⊤D(t))X⊤X+ F (t)D(t)⊤X⊤X+X⊤XD(t)F (t)⊤

)
+

8η2

n3m2
(D(t)⊤X⊤W (t)⊤W (t)XD(t))X⊤X

+
8η2

n3m2
∥A(t)∥2 X⊤XD(t)D(t)⊤X⊤X
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C.2 Phase I and Progressive Sharpening

We suppose X⊤X has rank r, and we decompose X⊤X and Y into a basis {vi} composed of
orthonormal eigenvectors of X⊤X.

X⊤X =

r∑
i=1

λiviv
⊤
i ,Y =

r∑
i=1

(Y ⊤vi)vi :=

r∑
i=1

zivi

where vi is the eigenvector corresponding to the i-th largest eigenvalue λi of X⊤X. zi = Y ⊤vi is
the Y ’s projection onto the direction vi. In particular, v1 is the eigenvector corresponding to the
largest eigenvalue of X⊤X.

Recall that the sharpness Λ(t) = λmax(M(t)). Here we propose an approximation of sharpness Λ
by the eigenvector v1:

Λ∗(t) = v⊤
1 M(t)v1 (13)

The following corollary rationalizes this approximation. The proof is deferred to Corollary C.2 in
Section C.3.

Corollary C.1. There exists some constant c2, c4, s.t. for all time t ⟨v1,u⟩2 ≥ 1− c4

√
1

nm and

Λ(t) ≥ Λ∗(t) ≥ Λ(t)− 2c2
m

where u is the top eigenvector of M(t).

By this corollary, we can see that the top eigenvector of M(t) is approximately v1, and the approxi-
mation Λ∗(t) is very close to the real sharpness Λ(t). Thus, we consider Λ∗(t) as an approximation
of the sharpness and analyze its dynamics.

We first show the main theorem of progressive sharpening under Assumption C.1 and C.2 below.

Assumption C.1. There exists some constant χ > 1, s.t. for all i ∈ [r − 1], λi(X
⊤X) ≤

χλi+1(X
⊤X). Moreover, λ1(X

⊤X) ≥ 2λ2(X
⊤X).

Assumption C.2. There exists κ = Ω(r−1) such that mini∈[r]{zi/
√
n} ≥ κ.

The first assumption is about the eigenvalue spectrum of X⊤X. It guarantees the gap between two
adjacent eigenvalues is not very large, and there is a gap between the largest and the second largest
eigenvalue. Note the second part of the assumption is a relaxed version of Assumption 3.7. In
our CIFAR-10 1k-subset with samples’ mean subtracted, λ1/λ2 = χ ≈ 3 (See Appendix D.2.1,
Figure 19). The second assumes that all components zi = Y ⊤vi are not too small.

Under the two assumptions, we have the following theorem:

Theorem 3 (Progressive Sharpening). Suppose Assumption C.1, C.2 hold. Suppose λr =

λmin(X
⊤X) > 0, λ1 = λmax(X

⊤X) = Θ(n). For any ϵ > 0, if m = Ω(n
2

λ2
r
), and

n = max{Ω(λr

κ2 ),Ω(
λ2
r

κ2 ),Ω(
λ2
r

κ4ϵ2 ),Ω(
λ4
r

κ4ϵ2 )}, we have the following properties for t = 1, 2, ..., t0−1

where t0 is the time when ∥D(t)∥2 = O(ϵ2) or λmax(M
∗(t)) > 1/η for the first time.

• (Progressive Sharpening) (Lemma C.6) Λ∗(t+ 1)− Λ∗(t) > 0.

• (Lemma C.3) ∥Γ(t)∥ = O(1/m).

We first prove Lemma C.3, which implies that D(t) approximately converges independently in
each direction of X⊤X’s non-zero eigenspace. Lemma C.3 also proves the second point ∥Γ(t)∥ ≤
O(1/m). (Recall that ∥Γ(t)∥ is defined in (10).)

Then, based on the conclusion in Lemma C.3, Assumption C.1 and C.2, we prove that ∥A(t)∥2 grows
in Lemma C.4 and Lemma C.5. Specifically, here we prove a sufficient condition of −D(t)⊤F (t) >
0.
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Finally, we use the dynamics of Λ∗(t) and its dependence on ∥A(t)∥2 dynamics to prove the sharpness
grows (Lemma C.6), thus finishing the proof.

Remark 1. In the theorem, λmax(M
∗(t)) > 1/η is the termination condition for this theorem. Here,

M∗(t) is the Gram matrix M(t) plus the second order term (− 4η
n2m (D(t)⊤F (t))X⊤X). Since

the second order term is small, we have M(t) ≈ M∗(t). Also, in Section C.3, we prove M∗(t)
is almost a linear interpolation of M(t) and M(t + 1). Thus, λmax(M

∗(t)) can be seen as an
approximation of the sharpness.

Remark 2. From the experiments, one can see that gradient descent is in progressive sharpening phase
until the sharpness crosses the threshold 2/η. Right now, our proof only works till λmax(M

∗(t))
reaches 1/η. It would be interesting to extend our result to 2/η.

Remark 3. In this theorem, we require mild over-parameterization (m = Ω(n2), assuming λr =
Θ(1), to prove the direction guarantee of the Gram matrix M(t) and the monotone increment of
∥A(t)∥2. Astute readers may find it similar to the NTK regime, where the parameters do not move
far from the initialization. However, we stress that our analysis does not necessarily require NTK
regime, and can go beyond NTK. We defer the discussion on the difference between our results and
the NTK regime to Appendix C.4.

Then we break the proof of theorem into lemmas. The first lemma (Lemma C.3) proves that the
Gram matrix M(t) ≈ 2

mn (∥A(t)∥2 + m
d )X

⊤X by bounding the movement of ∥Γ(t)∥. In this
way, D(t) ≈ −

∏t−1
j=0(In − ηM̃(j))Y can approximately descend in each eigenvector vi of X⊤X

independently. Also, by proving M(t) ≈ 2
mn (∥A(t)∥2 + m

d )X
⊤X, we justify ∥A(t)∥2 as an

indicator of the sharpness.

Lemma C.3 (Direction Guarantee). Along GD training trajectory, if m ≥ 112c1n
2

λ2
r

, we have the
following properties until λmax(M

∗(t)) > 1/η:

1. ∥A(t)∥2 ≥ m/2 and ∥Γ(t)∥ ≤ Rw := 40/m.

2. D(t) = −
∏t−1

j=0(In − ηM̃(j))Y + e(t), where ∥e(t)∥2 ≤ 40n3/2

λrm

3. λr(M̃(t)) ≥ λr/n, λr(M
∗(t)) ≥ λr/n.

Proof. We prove the theorem by induction.

We first consider the base case. For property 1, ∥A(0)∥2 = m and ∥Γ(0)∥ = 0. For property 2, with
symmetric initialization, F (0) = 0, hence D(0) = −Y , ∥e(0)∥ = 0. For property 3,

M∗(0) = M̃(0) = M(0) ⪰ 2

nm
∥A(0)∥2X⊤X

The minimal eigenvalue of 2
nm∥A(0)∥2X⊤X is 2λr/n > λr/n. Thus all the properties hold at

iteration t = 0.

Suppose for all k ≤ t, these properties hold. Then we consider the case in iteration t+ 1.

We first show a worst-case upper bound for ∥D(t)∥.

∥D(t)∥ =

∥∥∥∥∥
t−1∏
k=0

(I − ηM∗(k))D(0)

∥∥∥∥∥
≤

∥∥∥∥∥
t−1∏
k=0

(I − ηM∗(k))

∥∥∥∥∥ ∥D(0)∥

≤ (1− ηλr

n
)t∥Y ∥ =

√
n(1− ηλr

n
)t (D)

The second inequality uses property 3 in k ≤ t. Note ∥Y ∥ =
√
n in our setting, so the last equality

holds. That means ∥D(t)∥ ≤
√
n and ∥F (t)∥ = ∥D(t) + Y ∥ ≤ 2

√
n.

Now, we show the error e(t) is bounded. We have
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D(t+ 1) = (I − ηM̃(t))D(t)− ηΓ(t)D(t)

= −
t∏

j=0

(I − ηM̃(j))Y + (I − ηM̃(t))e(t)− ηΓ(t)D(t)

= −
t∏

j=0

(I − ηM̃(j))Y + (I − ηM∗(t))e(t)− ηΓ(t)

t−1∏
j=0

(I − ηM̃(j))D(0).

Hence we have e(t+ 1) = e(t)(I − ηM∗(t))− ηΓ(t)
∏t−1

j=0(I − ηM̃(j))D(0).

Then we can have the following bound by this recursion:

∥e(t+ 1)∥2 ≤ ∥e(t)∥2∥I − ηM∗(t)∥2 + η∥D(0)∥2

∥∥∥∥∥∥
t−1∏
j=0

(I − ηM̃(j))

∥∥∥∥∥∥
2

∥Γ(t)∥2

≤ ∥e(t)∥2
(
1− ηλr

n

)
+ η

√
n

(
1− ηλr

n

)t

Rw

≤
t∑

k=0

η
√
n

(
1− ηλr

n

)t

Rw (E1)

≤
√
n

1
nλr

·Rw

≤ 40n3/2

mλr

Here the third inequality holds because ∥e(0)∥ = 0. Thus the second property holds for t+ 1.

Then we consider the lower bound of ∥A(t)∥2.

Consider the dynamics of ∥A(t)∥2 in (7) and sum the difference up from 0 to t. Recall that we
proved ∥D(t)∥ ≤

√
n by (D) above.

∥A(t+ 1)∥2 − ∥A(0)∥2 =
4η

n

t∑
k=0

(−D(k)⊤F (k)) + η2
t∑

k=0

∥ ∂L(k)
∂A(k)

∥2

≥ −4η

n

t∑
k=0

D(k)⊤(D(k) + Y ) [∥ ∂L(k)
∂A(k)

∥2 > 0]

≥ −4η

n

t∑
k=0

(∥D(k)∥2 + ∥D(k)∥∥Y ∥) [ℓ2-norm inequality]

≥ −4η

n

t∑
k=0

∥D(k)∥(
√
n+

√
n) [∥D(t)∥ ≤

√
n]

≥ −8η

n

t∑
k=0

n(1− ηλr

n
)k [ by (D)]

≥ −8n

λr
≥ −m

2
(#)

Since ∥A(0)∥2 = m, we have the lower bound ∥A(t)∥2 ≥ m/2.

Next, we lower bound the minimal non-zero eigenvalue (i.e. the r-th largest eigenvalue since X⊤X

is rank r) of M∗(t+ 1) and M̃(t+ 1).

For M∗(t+ 1) and M̃(t+ 1), since the X⊤W (t)⊤W (t)X part is PSD, we have
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M∗(t+ 1) ⪰ 2

mn
∥A(t+ 1)∥2X⊤X− 4η

n2m
(D(t+ 1)⊤F (t+ 1))X⊤X

M̃(t+ 1) ⪰ 2

mn
∥A(t+ 1)∥2X⊤X− 4η

n2m
(D(t+ 1)⊤F (t+ 1))X⊤X

From the inequality in (#), and from (D) ∥D(t)∥ ≤
√
n, ∥F (t)∥ ≤ 2

√
n, we know

∥A(t+ 1)∥2 − ∥A(0)∥2 − 2η

n
(D(t+ 1)⊤F (t+ 1)) ≥ −8n

λr
− 2η

n

√
n · 2

√
n ≥ −m/2

M∗(t+ 1) ⪰ 2

mn
(∥A(t+ 1)∥2 − 2η

n
(D(t+ 1)⊤F (t+ 1)))X⊤X ⪰ 1

n
X⊤X

Thus M∗(t+ 1) (and also M̃(t+ 1)) has its smallest eigenvalue larger than λr/n. Property 3 holds.
To extend this conclusion, we actually have λi(M̃(t+ 1)) ≥ λi/n for all i ∈ [r] from the argument
above.

Finally we bound ∥Γ(t+ 1)∥. We first write down the dynamics of Γ(t) according to Lemma C.2.

Γ(t+ 1)− Γ(t) =
2

nm

(
X⊤(W (t+ 1)⊤W (t+ 1)−W (t)⊤W (t))X

)
=

2

nm

(
X⊤((W (t+ 1)⊤ −W (t)⊤)W (t) +W (t)⊤(W (t+ 1)−W (t)))X

+X⊤(W (t+ 1)⊤ −W (t)⊤)(W (t+ 1)−W (t))X
)

(Use Equation (6))

= − 4

n2m
η
(
F (t)D(t)⊤X⊤X+X⊤XD(t)F (t)⊤

)
+

8η2

n3m2
∥A(t)∥2 ·X⊤XD(t)D(t)⊤X⊤X

Hence we sum it up and get:

∥Γ(t+ 1)− Γ(0)∥2 =

∥∥∥∥∥ 4

n2m
η

t∑
k=0

(
F (t)D(t)⊤X⊤X+X⊤XD(t)F (t)⊤

)
+

8η2

n3m2

t∑
k=0

∥A(t)∥2 ·X⊤XD(t)D(t)⊤X⊤X

∥∥∥∥∥
2

(Triangle Inequality)

≤ 4

n2m
η

∥∥∥∥∥
t∑

k=0

(
D(t)D(t)⊤X⊤X+X⊤XD(t)D(t)⊤

)∥∥∥∥∥
2

(G1)

+
4

n2m
η

∥∥∥∥∥
t∑

k=0

(
Y D(t)⊤X⊤X+X⊤XD(t)Y ⊤)∥∥∥∥∥

2

(G2)

+
8η2

n3m2

∥∥∥∥∥
t∑

k=0

∥A(t)∥2 ·X⊤XD(t)D(t)⊤X⊤X

∥∥∥∥∥
2

(G3)

Then we bound these three terms one by one.

Term (G1): 4
n2mη

∥∥∥∑t
k=0

(
D(t)D(t)⊤X⊤X+X⊤XD(t)D(t)⊤

)∥∥∥
2

By symmetry, we just consider the first term D⊤(t)D(t)X⊤X.

D(t)D(t)⊤X⊤X =

t−1∏
j=0

(In − ηM̃(j))Y Y ⊤
t−1∏
j=0

(In − ηM̃(j))X⊤X (A1)
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+ e(t)Y ⊤
t−1∏
j=0

(In − ηM̃(j))X⊤X (A2)

+

t−1∏
j=0

(In − ηM̃(j))Y e(t)⊤X⊤X (A3)

+ e(t)e(t)⊤X⊤X (A4)

We bound each term in ℓ2-norm and then add them up.

Term (A1)

4η

n2m

∥∥∥∥∥∥
t∑

k=0

k−1∏
j=0

(In − ηM̃(j))Y Y ⊤
k−1∏
s=0

(In − ηM̃(s))X⊤X

∥∥∥∥∥∥
2

=
4η

n2m

∥∥∥∥∥∥
t∑

k=0

k−1∏
j=0

(In − ηM̃(j))

r∑
i=1

zivi

r∑
j′=1

zj′v
⊤
j′

k−1∏
s=0

(In − ηM̃(s))X⊤X

∥∥∥∥∥∥
2

=
4η

n2m

∥∥∥∥∥∥
t∑

k=0

 r∑
i=1

k−1∏
j=0

(1− ηλi(M̃(j)))zivi

 r∑
j′=1

v⊤
j′zj′

k−1∏
s=0

(1− ηλj′(M̃(s)))λj′

∥∥∥∥∥∥
2

where λj(M̃) = v⊤
j M̃vj (See (11)). We know since ∥A(t)∥2 ≥ m/2, λj(M̃(t)) ≥ 1

n
λj , ∀t, j

=
4η

n2m

∥∥∥∥∥∥
r∑

i=1

r∑
j′=1

t∑
k=0

k−1∏
j=0

(1− ηλi(M̃(j)))zizj′(1− ηλj′(M̃(j)))λj′

viv
⊤
j′

∥∥∥∥∥∥
2

≤ 4η

n2m

∥∥∥∥∥∥
r∑

i=1

r∑
j′=1

t∑
k=0

k−1∏
j=0

(1− ηλi(M̃(j)))zizj′(1− ηλj′(M̃(j)))λj′

viv
⊤
j′

∥∥∥∥∥∥
F

=
4η

n2m

√√√√√ r∑
i=1

r∑
j′=1

 t∑
k=0

k−1∏
j=0

(1− ηλi(M̃(j)))zizj′(1− ηλj′(M̃(j)))λj′

2

≤ 4η

n2m

√√√√√ r∑
i=1

r∑
j′=1

(
t∑

k=0

(1− η
1

n
λj′)kzizj′(1− η

1

n
λi)kλj′

)2

≤ 4

n2m

√√√√ r∑
i=1

r∑
j′=1

z2i z
2
j′λ

2
j′

η2

( 1nη(λi + λj′)− η2

n2λiλj′)2

≤ 4

n2m

√
∥Y ∥42 · n2

=
4

m

The first inequality comes from ∥ ·∥2 ≤ ∥·∥F . The last three inequalities require that ηλmax (M
∗) <

1.

Combined with its symmetric counterpart in X⊤XD(t)D(t)⊤, the sum of (A1) is smaller than 8
m .

Term (A2) and (A3):

4η

n2m

∥∥∥∥∥∥
t∑

k=0

e(k)Y ⊤
k−1∏
j=0

(In − ηM̃(j))X⊤X+

k−1∏
j=0

(In − ηM̃(j))Y e(k)⊤X⊤X

∥∥∥∥∥∥
2
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≤ 8η

n2m

∥∥∥∥∥∥
t∑

k=0

e(k)Y ⊤
k−1∏
j=0

(In − ηM̃(j))X⊤X

∥∥∥∥∥∥
2

(Triangle Inequality)

≤ 8η

n2m

t∑
k=0

∥e(k)∥2

∥∥∥∥∥∥Y ⊤
k−1∏
j=0

(In − ηM̃(j))

∥∥∥∥∥∥
2

∥∥X⊤X
∥∥
2

(Cauchy-Schwarz)

≤ 8

n2m

(
t∑

k=0

η(1− η

n
λr)

k
√
n

)
· n

3/2

λr
Rw · c1n ((E1) and Algebra)

≤8c1n
2

mλ2
r

Rw

Similarly, we have their symmetric counterpart added and get a bound of 16c1n
2

mλ2
r
Rw.

Term (A4):

4η

n2m

∥∥∥∥∥
t∑

k=0

e(k)e(k)⊤X⊤X

∥∥∥∥∥
2

≤ 4

n2m
η

t∑
k=0

∥e(k)∥2∥X⊤X∥2 (Cauchy-Schwarz)

(∥e(k)∥2 ≤ ∥D(k)∥+ ∥
k−1∏
j=0

(I − ηM̃(j))Y ∥ ≤ 2
√
n(1− η

n
λr)

k)

≤ 4η

N2m

t∑
k=0

2(1− η

n
λr)

k
√
n · n

3/2

λr
Rw · c1n ((E1) and Algebra)

≤8n2c1
mλ2

r

Rw

Similarly, we can combine its symmetric counterpart and get a bound of 16c1n
2

mλ2
r
Rw.

Add them up, and we can get the bound of the first part.

∥(1)∥2 ≤ 8

m
+

32c1n
2

mλ2
r

Rw

Term (G2):

4

n2m
η

∥∥∥∥∥
t∑

k=0

(
Y D(t)⊤X⊤X+X⊤XD(t)Y ⊤)∥∥∥∥∥

2

(Triangle Inequality)

≤ 8

N2m
η

∥∥∥∥∥∥
t∑

k=0

Y Y ⊤
k−1∏
j=0

(In − ηM̃(j))X⊤X

∥∥∥∥∥∥
2

(A5)

+
8

N2m

∥∥∥∥∥
t∑

k=0

Y e(k)⊤X⊤X

∥∥∥∥∥
2

(A6)

We bound the two parts separately.

Term (A5):

8

N2m
η

∥∥∥∥∥∥
t∑

k=0

Y Y ⊤
k−1∏
j=0

(In − ηM̃(j))X⊤X

∥∥∥∥∥∥
2

(Cauchy-Schwarz)
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≤ 8η

n2m
∥Y Y ⊤∥2

∥∥∥∥∥
t∑

k=0

r∑
i=1

(1− η
1

n
λi)

kλiviv
⊤
i

∥∥∥∥∥
2

≤ 8

m
(Algebra)

Term (A6):

8

n2m

∥∥∥∥∥
t∑

k=0

Y e(k)⊤X⊤X

∥∥∥∥∥
2

≤ 8

n2m
∥Y ∥2

∥∥∥∥∥
t∑

k=0

e(k)

∥∥∥∥∥
2

· c1n (Cauchy-Schwarz)

≤ 8

n2m

√
nη

t∑
k=0

η
√
nk(1− η

1

n
λr)

k−1Rwc1n

((E1) and ∥Y ∥ =
√
n)

≤8c1
m

η2
t∑

k=0

t−1∑
j=k

(1− η
1

n
λr)

jRw (Abel’s lemma)

≤8c1
m

η2
t∑

k=0

n

ηλr
(1− η

1

n
λr)

kRw (Algebra)

≤8c1
m

n2

λ2
r

Rw =
8c1n

2

mλ2
r

Rw

Sum up and we get

∥(2)∥2 ≤ 8

m
+

8c1n
2

mλ2
r

Rw

Term (G3):

8η2

n3m2

∥∥∥∥∥
t∑

k=0

∥A(t)∥2 X⊤XD(t)D(t)⊤X⊤X

∥∥∥∥∥
2

(Since X⊤XD(t)D(t)⊤X⊤X is PSD)

≤ 4η

n2m
η

2

mn
max

t

∥∥∥A(t)∥2X⊤X
∥∥
2
·

∥∥∥∥∥
t∑

k=0

D(t)D(t)⊤X⊤X

∥∥∥∥∥
2

(Since λmax(M
∗) < 1/η)

≤ 4η

n2m

∥∥∥∥∥
t∑

k=0

D(t)D(t)⊤X⊤X

∥∥∥∥∥
2

≤ 4

m
+

16c1n
2

mλ2
r

Rw

The last inequality is the same one as in the term (G1) bound.

Adding the three terms together and using the induction hypothesis, we have

∥(G1)∥2 + ∥(G2)∥2 + ∥(G3)∥2 ≤ 40

m
.

Property 1 holds. Therefore the proof is completed.

Lemma C.3 tells us that D(t) decreases along GD trajectory in some fixed directions independently
depending on X⊤X. After we have this GD trajectory, we can have the following Lemma C.4 about
the dynamics of ∥A(t)∥2 under the condition in Lemma C.3. It shows a sufficient condition for
∥A(t)∥2 to grow.
Lemma C.4. Under the Assumption C.1 and Assumption C.2, if

n > (70λr + 25λ2
r)/(196κ

2 min{a1 − a21, a2 − a22})
and as long as there exist two number a1, a2 (to be determined) and some i ∈ [r] at time t s.t.

0 < a1 ≤
t−1∏
j=0

(1− ηλi(M̃(j))) ≤ a2 < 1 (14)
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we have −D(t)⊤F (t) > 0.

Proof. We use property 2 of Lemma C.3 to obtain the following expression:

−D(t)⊤F (t) = Y ⊤
t∏

j=0

(In − ηM̃(j))(In −
t∏

j=0

(In − ηM̃(j)))Y

+ Y ⊤(2

t∏
j=0

(In − ηM̃(j))− In)e(t)− ∥e(t)∥2 (Use (E1) and m ≥ 112c1n
2

λ2
r

)

≥
r∑

i=1

z2i

t−1∏
j=0

(1− ηλi(M̃(j))(1−
t−1∏
j=0

(1− ηλi(M̃(j)))− 40n2

λrm
− 1600n3

λ2
rm

2

≥ κ2nmax
i


t−1∏
j=0

(1− ηλi(M̃(j))(1−
t−1∏
j=0

(1− ηλi(M̃(j)))

− 5λr

14
− 25λ2

r

196

(C.4)

Notice that all inequalities hold since λi(M
∗(t)) < 1/η for all i. In the first inequality, we use the

∥e(t)∥ bound in (E1), and in the second we just replace m with its lower bound 112c1n
2

λ2
r

. Then we
use n > (70λr + 25λ2

r)/(196κ
2 min{a1 − a21, a2 − a22}) and complete the proof.

−D(t)⊤F (t) ≥ κ2nmin{a1 − a21, a2 − a22} −
5λr

14
− 25λ2

r

196
> 0

Then, we use Assumption C.1 to prove the next lemma. It tells that condition (14) is satisfied under
this assumption in a time interval. That means −D(t)⊤F (t) > 0 during this period.

Lemma C.5. Under Assumption C.1, we have condition (14) satisfied with a2 = e(a1−1)/χ in the
time interval [t1, t2). Here, t1 is the iteration that

∏t−1
j=0(1 − ηλ1(M̃(j))) < a2 for the first time,

and t2 is the iteration when
∏t−1

j=0(1− ηλr(M̃(j))) < a1 for the first time.

Proof. We prove for all i ∈ [r − 1],

If
t−1∏
j=0

(1− ηλi(M̃(j))) < a1, then
t−1∏
j=0

(1− ηλi+1(M̃(j))) < e(a1−1)/χ. (15)

In this way, the only two possibility that all i ∈ [r] doesn’t satisfy the condition (14) is: (1) the∏t−1
j=0(1 − ηλ1(M̃(j))) > a2; (2)

∏t−1
j=0(1 − ηλr(M̃(j))) < a1. Otherwise, there must be some

i s.t.
∏t−1

j=0(1 − ηλi(M̃(j))) ∈ [a1, a2]. Thus, if condition (15) is satisfied, we have this lemma
proved.

Now suppose
∏t−1

j=0(1− ηλi(M̃(j))) < a1. By Bernoulli’s inequality,

(1 + x1)(1 + x2)...(1 + xn) ≥ 1 + x1 + x2 + ...+ xn, if xi ≥ −1, ∀i ∈ [n]

since −ηλi(M̃(j)) > −1 for all i, we have
t−1∑
j=0

ηλi(M̃(j)) > 1− a1

By Jensen inequality, we have
t−1∑
j=0

log(1− ηλi(M̃(j))/χ) ≤ t log

(
1−

∑t−1
j=0 ηλi(M̃(j))

tχ

)
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Hence we have the following inequalities:
t−1∏
j=0

(1− ηλi+1(M̃(j))) ≤
t−1∏
j=0

(1− ηλi(M̃(j))/χ)

≤ exp

{
t log

(
1−

∑t−1
j=0 ηλi(M̃(j))

tχ

)}

≤ (1 +
a1 − 1

tχ
)t

≤ e(a1−1)/χ

So we complete the proof.

Then we pay attention back to sharpness. We have the sharpness’s dynamics by Lemma C.2.

Λ∗(t+ 1)− Λ∗(t) = v⊤
1 (M(t+ 1)−M(t))v1 (Definition (13))

= − 8ηλ1

n2m
(D(t)⊤F (t) + (D(t)⊤v1)(F (t)⊤v1))

+
8η2λ1

m2n3
(D(t)⊤X⊤W⊤(t)W (t)XD(t) + ∥A(t)∥2λ1(D(t)⊤v1)

2)

This equation shows that the dynamics of sharpness is closely related to the dynamics of ∥A(t)∥2, i.e.
highly dependent on −D(t)⊤F (t). Based on the lemmas above, we can prove progressive sharpening
happens almost along the whole training trajectory (Lemma C.6) until the loss L = 1

n∥D(t)∥2
converges to O(n−1).

Lemma C.6. Under Assumption C.1 and C.2, if m > 112c1n
2

λ2
r

and

n > max{(70λr + 25λ2
r)/(98κ

2 min{e−1/χ − e−2/χ, ηc1(1− ηc1)}), (
70λr + 25λ2

r

98κ2ϵ
)2}

we have Λ∗(t+ 1)− Λ∗(t) > 0 until the time t when ∥D(t)∥2 ≤ ϵ2 + 5ϵλr

7
√
n
+

25λ2
r

196n .

Remark. When a1 = ϵ/
√
n, a2 = e(a1−1)/χ < e−1/χ, the lower bound of n guarantee that

κ2nmin{a1 − a21, a2 − a22, (1− ηc1)ηc1} >
5λr

7
− 25λ2

r

98
(16)

Proof. Note that the second order term

8η2λ1

m2n3
(D(t)⊤X⊤W (t)⊤W (t)XD(t) + ∥A(t)∥2λ1(D(t)⊤v1)

2)

is larger than 0. So as long as the first order term

−8ηλ1

n2m
(D(t)⊤F (t) + (D(t)⊤v1)(F (t)⊤v1)) > 0

the approximate sharpness will grow.

First, we give a lower bound for the number −(D(t)⊤v1)(F (t)⊤v1):

−(D(t)⊤v1)(F (t)⊤v1) =z21

t−1∏
j=0

(1− ηλ1(M̃(j))(1−
t−1∏
j=0

(1− ηλ1(M̃(j)))

+ z1(2

t−1∏
j=0

(1− ηλ1(M̃(j)))− 1)(e(t)⊤v1)− (e(t)⊤v1)
2

≥− |z1|∥e(t)∥ − ∥e(t)∥2 (λ1(M
∗(t)) < 1/η)
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≥− 40n2

λrm
− 1600n3

λ2
rm

2
(Use (E1))

≥− 5λr

14
− 25λ2

r

196
(m ≥ 112c1n

2

λ2
r

)

where the first equation holds due to Property 2 of Lemma C.3.

With the lower bound of −(D(t)⊤v1)(F (t)⊤v1), we show the dynamics of the first order term by
similar technique in the expression (C.4) :

−D(t)⊤F (t)− (D(t)⊤v1)(F (t)⊤v1) (Property 2 of Lemma C.3)

= Y ⊤
t∏

j=0

(In − ηM̃(j))(In −
t∏

j=0

(In − ηM̃(j)))Y + Y ⊤(2

t∏
j=0

(ηM̃(j)− In)− In)e(t)

− ∥e(t)∥2 − (D(t)⊤v1)(F (t)⊤v1) (Use (E1) and m ≥ 112c1n
2

λ2
r

)

≥ κ2nmax
i


t−1∏
j=0

(1− ηλi(M̃(j))(1−
t−1∏
j=0

(1− ηλi(M̃(j)))

− 5λr

14
− 25λ2

r

196

+ (−5λr

14
− 25λ2

r

196
) (Property 2 of Lemma C.3)

≥ κ2nmax
i


t−1∏
j=0

(1− ηλi(M̃(j))(1−
t−1∏
j=0

(1− ηλi(M̃(j)))

− 5λr

7
− 25λ2

r

98

≥ κ2n(1− ηc1)ηc1 −
5λr

7
− 25λ2

r

98
> 0

The last inequality holds due to the lower bound of n (16) assumed in Lemma C.6.

Now,
∏t−1

j=0(1 − ηλ1(M̃(j))) begins to decrease each iteration. Before the time when
∏t−1

j=0(1 −
ηλ1(M̃(j))) becomes smaller than ϵ√

n
, −D(t)⊤F (t) > 0 always holds because of the lower bound

of n (16) assumed in Lemma C.6.

Then, after the time t1 when
∏t−1

j=0(1− ηλ1(M̃(j)) < ϵ√
n

and before the time t2 when
∏t−1

j=0(1−
ηλi(M̃(j)) < ϵ√

n
for all i, we enter the time interval [t1, t2) where Lemma C.5 begins to hold. We

use Lemma C.5 to show that there exists some i to make
t−1∏
j=0

(1− ηλi(M̃(j)) ∈ [
ϵ√
n
, e−1/χ]

Before the time t2, we have this inequality always hold. Thus
−D(t)⊤F (t)− (D(t)⊤v1)(F (t)⊤v1) > 0

holds until the iteration t2. Thus during this period, Λ∗(t) keeps increasing.

At this iteration,
∥∥∥∏t−1

j=0(In − ηM̃(j))
∥∥∥ ≤ ϵ√

n
, and we can bound the norm of the residual D(t)

with the inequality below. We have

∥D(t)∥2 = ∥ −
t−1∏
j=0

(In − ηM̃(j))Y + e(t)∥2 (Triangle Inequality)

≤

∥∥∥∥∥∥
t−1∏
j=0

(In − ηM̃(j))Y

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
t−1∏
j=0

(In − ηM̃(j))Y

∥∥∥∥∥∥ ∥e(t)∥+ ∥e(t)∥2

(Cauchy-Schwarz)

≤

∥∥∥∥∥∥
t−1∏
j=0

(In − ηM̃(j))

∥∥∥∥∥∥
2

∥Y ∥2 + 2

∥∥∥∥∥∥
t−1∏
j=0

(In − ηM̃(j))

∥∥∥∥∥∥ ∥Y ∥ ∥e(t)∥+ ∥e(t)∥2

(∥Y ∥ =
√
n)
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≤ nmax
i


t−1∏
j=0

(1− ηλi(M̃(j))


2

+
80n2

λrm
max

i


t−1∏
j=0

(1− ηλi(M̃(j))

+
1600n3

λ2
rm

2

< ϵ2 +
5ϵλr

7
√
n
+

25λ2
r

196n
(
∥∥∥∏t−1

j=0(In − ηM̃(j))
∥∥∥ ≤ ϵ√

n
)

Thus, before the norm of the residual D(t) decreases to this value, Λ∗(t) keeps increasing.

C.3 Edge of Stability (Phase II-IV)

In the edge of stability regime, we focus on the largest eigenvalue Λ and its corresponding eigenvector
u. Since M(t) has a large similarity with X⊤X in progressive sharpening phase, we consider the
eigenvector v1 corresponding to the largest eigenvalue λ1 of X⊤X.

After Λ ≥ 2/η, the proof in Section C.2 does not extend to this phase. However, the bound of ∥Γ(t)∥
(Lemma C.3) still holds up to a constant factor empirically (See Figure 20). Hence, we make this
bound an assumption as follows.

Assumption C.3. There exists some constant c2 > 0, such that for any time t,

∥Γ(t)∥ ≤ c2
m

Note that in above progressive sharpening stage, the assumption holds by Theorem 3. We propose
this assumption to keep the gram matrix from deviating too far from the original trajectory even in
other phases. The verification of this assumption can be found in Appendix D.2.2.

Corollary C.2. Recall that v1 is the largest eigenvector of X⊤X and u is the largest eigenvector of

M . There exists a constant c4, such that ⟨v1,u⟩2 ≥ 1− c4

√
1

nm , and Λ(t) ≥ Λ∗(t) ≥ Λ(t)− 2c2
m .

Proof. By difinition of Γ(t) in 10, M = γ(t)X⊤X+ Γ(t), here γ(t) = 2
mn (∥A(t)∥2 + m

d ) ≥
2
nd .

Let ⟨v1,u⟩ = cos θ and decompose u by u = v cos θ + v⊥ sin θ. Then we have Λ = u⊤Mu ≤
λ1γ(t) cos

2 θ + λ1

2 sin2 θγ(t) + c2
m .

Also we have Λ ≥ v⊤
1 Mv1 ≥ γ(t)λ1 − c2

m . So λ1γ(t) cos
2 θ + λ1

2 sin2 θγ(t) + c2
m ≥ γ(t)λ1 − c2

m ,

which induces sin2 θ ≤ 2c2
mγ(t) ·

2
λ1

≤ 2c22d
mλ1

. Because in our setting λ1 = Θ(n), there exists a constant

c4 such that cos θ ≥
√

1− c24
nm ≥ 1− c4

√
1

mn .

The inequality Λ(t) ≥ Λ∗(t) is because u⊤Mu ≥ v⊤
1 Mv1 by definition of u. The other side can

be proved as the following:

v⊤
1 Mv1 =v⊤

1 (M − Γ)v1 + v⊤
1 Γv1

≥u⊤(M − Γ)u− c2/m

≥u⊤Mu− 2c2/m.

To prove the main theorem (Theorem 4), we need two more assumptions.

Assumption C.4. There exists some constant c3 such that |D(t)⊤v1| > c3
√
n/m for some t = t0

at the beginning of phase II.

Assumption C.5. There exists some constant β > 0, such that

4

η
(1− β) ≥ Λ
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The above assumption is consistent with Assumption 3.4, in which we assume an upper bound of the
sharpness. Lewkowycz et al. [19] showed that 4/η is a upper bound of the sharpness in two-layer
linear network with one datapoint, otherwise the training process would diverge. Here we make it an
assumption.
Theorem 4. Suppose the smallest nonzero eigenvalue λr = λr(X

⊤X) > 0, λ1 = λmax(X
⊤X).

Under Assumption C.3, C.5, C.4, and λ1(X
⊤X) ≥ 2λ2(X

⊤X) in Assumption C.1, there exists
constants C1, C2, C3, such that if n > c1λrη,m > max{C2d

2n2

λ2
r

, C3η}, we have

• (Lemma C.13) There exists ρ = O(1) which is related to c3 such that if Λ(t0) > 2
η (1 + ρ)

for some t0, there must exist some t1 > t0 such that Λ(t1) < 2
η (1 + ρ).

• (Lemma C.11) If Λ(t),Λ(t+ 1) > 2
η (1 + ρ), then there is a constant c7 > 0 (related to c3)

such that |D(t+ 1)⊤v1| > |D(t)⊤v1|(1 + c7).

• (Lemma C.10) Define R(t) := (I − v1v
⊤
1 )D(t), and R′(t) := (I − ηM∗(t)(I −

v1v
⊤
1 ))R

′(t− 1). We have ∥R(t)−R′(t)∥ = O(
√
n3d

λr
√
m
).

Next, we prove this theorem in three parts: first we prove the third statement, which gives R(t) an
upper bound (Lemma C.10), then we prove the second statement, in which we use Assumption C.4 to
prove that when sharpness is above 2/η, D⊤v1 increases geometrically (Lemma C.11), and lastly
we prove that the sharpness eventually drops below 2/η (Lemma C.13), which is the first statement
in our theorem.

Now we first give a key equation:
Lemma C.7. The dynamics of the approximation on sharpness is:

Λ∗(t+ 1)− Λ∗(t)

=− 8ηλ1

mn2

(
F (t)⊤D(t) + (F (t)⊤v1)(D(t)⊤v1)−

η

2
(D(t)⊤v1)

2Λ∗(t)

−η

2
R(t)⊤Γ(t)R(t)− ηR(t)⊤Γ(t)

(
v1v

⊤
1 D(t)

)
− η

mn
R(t)⊤

(m
d
X⊤X

)
R(t)

)
.

(17)

The proof of the equation is long and tedious, so we leave that in Lemma E.11.

Next we deal with the gap between M(t) and M∗(t). Note that M is the Gram Matrix, but in
gradient descent trajectory, D(t+ 1)−D(t) = −M∗(t)D(t), so M∗ is the one that truly controls
D’s dynamics. From the following lemma, we can see that M∗(t) is a smoothed version of M(t)
and M(t+ 1) plus a small perturbation.
Lemma C.8. If m ≥ ηc2(d + 1) (recall that c2 is defined in Assumption C.3), then there exists
ks ∈ [0, 1) and a constant c6 such that ∥M∗(t)− (1− ks)M(t)− ksM(t+ 1)∥ ≤ c6

m .

Proof. Recall that M∗(t) = M(t) − 4η
N2m (D(t)⊤F (t))X⊤X. Then we consider two different

cases.

Case 1: |D(t)⊤F (t)| ≤ d+1
d−2 (1 +

d+1
d−2 )n.

In this case ∥M∗ − M∥2 ≤ 4ηλ1

mn2
d+1
d−2 (1 + d+1

d−2 )n = O(ηλ1

mn ) = O( 1
m ). Here the last inequality

follows from the inequality (5).

Case 2: |D(t)⊤F (t)| > d+1
d−2 (1 +

d+1
d−2 )n.

We claim that in this case we have F (t)⊤D(t) > ( 2η
mn

m
d λ1 +

c2η
m )∥D(t)∥2. If it does not hold, then

R.H.S. ≥ F (t)⊤D(t) ≥ ∥D(t)∥2 − ∥D(t)∥∥Y ∥. Hence we can have

∥Y ∥ ≥ ∥D(t)∥(1− 2η

mn

m

d
λ1 −

c2η

m
)

= ∥D(t)∥(1− 2ηλ1

nd
− ηc2

m
)

≥ ∥D(t)∥(1− 2

d+ 1
− 1

d+ 1
)
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The last inequality uses the restriction of m in this lemma and the inequality (5). Hence we have
|F (t)⊤D(t)| ≤ ∥D(t)∥(∥D(t)∥+ ∥Y ∥) ≤ d+1

d−2 (1 +
d+1
d−2 )n, which leads to a contradiction.

Hence now F (t)⊤D(t) > ( 2η
mn

m
d λ1 +

c2η
m )∥D(t)∥2 holds. Since X⊤W⊤WX = m

d X
⊤X+ Γ(t)

and ∥X⊤X∥ = λ1, ∥Γ(t)∥ ≤ c2
m , we can have:

F (t)⊤D(t) >
2η

mn
D(t)⊤X⊤W⊤WXD(t).

Now let ks :=
F (t)⊤D(t)

2F (t)⊤D(t)− 2η
mnD(t)⊤X⊤W⊤WXD(t)

, by the inequality above we have ks < 1.

By the equation

M(t+ 1)−M(t) =
2

mn

(
∥A(t+ 1)∥2 − ∥A(t)∥2

)
X⊤X+ (Γ(t+ 1)− Γ(t))

∥A(t+ 1)∥2 − ∥A(t)∥2 = −4η

n
F (t)⊤D(t) +

4η2

n2
· 1

m
D(t)⊤X⊤W⊤WXD(t)

we have M∗ = M(t)+ks(M(t+1)−M(t)− (Γ(t+1)−Γ(t)). Hence ∥M∗− (1−ks)M(t)−
ksM(t+1)∥ ≤ 2c2

m . Now combining the conclusions in both cases together, we finish the proof.

Then we consider a corollary of this lemma. Basically, since M∗(t) is a weighted sum of M(t) and
M(t+ 1) adding a small perturbation and M(t) has a decomposition to the X⊤X component and a
small noise Γ(t), M∗(t) can also be decomposed into the X⊤X component and a small noise.

Corollary C.3. M∗ can be decomposed to M∗(t) = γ∗(t)X⊤X+ Γ∗(t), where ∥Γ∗(t)∥ < c2+c6
m

and for any eigenvector u of X⊤X except v1, and if let τ = 2λr

nd ,

τ ≤ u⊤(M∗(t)− Γ∗(t))u ≤ 2

η
− τ

Proof. By Lemma C.8, if we denote Γ′(t) = M∗(t)−ksM(t+1)−(1−ks)M(t), then ∥Γ′(t)∥ ≤
c6
m .

Hence, we can see

M∗(t) =ksM(t+ 1) + (1− ks)M(t) + Γ′

=
2

mn
(ks∥A(t+ 1)∥2 + (1− ks)∥A(t)∥2 + 2m

d
)X⊤X

+ ksΓ(t+ 1) + (1− ks)Γ(t) + Γ′(t)

Denote ksΓ(t+1)+(1−ks)Γ(t)+Γ′(t) by Γ∗(t). By Assumption C.3 and Lemma C.8, ∥Γ∗(t)∥ <
c2+c6
m .

Note that by Assumption C.1, λi(X
⊤X) ≤ 1

2λ1 for any i > 1. Then, we can see that

v⊤
1 (M(t)− Γ(t))v1 =

2λ1

mn
(∥A(t)∥2 + m

d
) ≥ 4λi

mn
(∥A(t)∥2 + m

d
)

Hence, we can see
2λi

mn
(∥A(t)∥2 + m

d
) ≤1

2
v⊤
1 (M(t)− Γ(t))v1

≤1

2
(Λ +

c2
m
)

≤2

η
(1− β) +

c2
2m

.

Here the last inequality holds due to Assumption C.5.

Now the inequality above shows that for any eigenvector u of X⊤X except v1,

u⊤(M∗(t)− Γ∗(t))u ≤ 2

η
− (

2β

η
− c2

2m
).
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On the other side, 2λi

mn (∥A(t)∥2 + m
d ) ≥

2λr

nd .

Take τ = min{ 2λr

nd , 2β
η − c2

2m}. Now because m = Ω(η) and β is some constant, we can see

τ = min{ 2λr

nd , 2β
η − c2

2m} = 2λr

nd .

Before using this corollary to derive the dynamics of R(t) (and thus gives an upper bound of ∥R(t)∥),
we need an upper bound for ∥D(t)∥.

Lemma C.9. For any constant c5 < min{2β, d
d+1}, if m > 3ηc2

2d
d+1−2c5

and m > ηc2
2β−c5

, there exists

a constant c3 such that ∥D(t)∥ ≤ c3
√
nm.

Proof. First we analyze the right hand side of equation (17). We can get

R.H.S.

= −8ηλ1

mn2

(
F (t)⊤D(t) + (F (t)⊤v1)(D(t)⊤v1)−

η

2
(D(t)⊤v1)

2λ1

−η

2
R(t)⊤Γ(t)R(t)− ηR(t)⊤Γ(t)

(
v1v

⊤
1 D(t)

)
− η

mn
R(t)⊤

(m
d
X⊤X

)
R(t)

)
≤ −8ηλ1

mn2

(
∥D(t)∥2 + (D(t)⊤v1)

2 − η

2
(D(t)⊤v1)

2λ
1
− η

2
∥R(t)∥2∥Γ(t)∥2

−η∥R(t)∥ · ∥D(t)∥ · ∥Γ(t)∥2 −
ηλ1

nd
∥R(t)∥2 + Y ⊤D(t) +

(
Y ⊤v1

)
(D(t)⊤v1)

)
≤ −8ηλ1

mn2

(
2β(D(t)⊤v1)

2 + ∥R(t)∥2 − c2η

2m
∥R(t)∥2

−c2η

m
∥R(t)∥∥D(t)∥ − 1

d+ 1
∥R(t)∥2 − ∥Y ∥ · ∥D(t)∥ − ∥Y ∥(D(t)⊤v1)

)
≤ −8ηλ1

mn2

(
2β(D(t)⊤v1)

2 +

(
d

d+ 1
− ηc2n

2m

)
∥R(t)∥2 − c2η

m
∥D(t)∥2 − 2∥Y ∥ · ∥D(t)∥

)
≤ −8ηλ1

mn2

(
c5∥D(t)∥2 − 2∥Y ∥ · ∥D(t)∥

)
Here the third inequality follows from inequality (5) which is ηλ1

nd < 1
d+1 , and the last inequality

holds because 2β − c2η
m > c5 and d

d+1 − 3ηc2
2m > c5 by the restriction of m in this lemma.

On the other hand, the left hand side of equation (17) is Λ∗(t+ 1)− Λ∗(t) ≥ 0− Λ(t) > − 4
η . Here

the first inequality follows because of Λ∗(t) ≥ 0 and Corollary C.2, and the second inequality holds
because of Assumption C.5.

Hence we have 4
η > 8

n2
ηλ1

m (c5∥D(t)∥2 − 2∥Y ∥∥D(t)∥). Now if ∥D(t)∥ > 2∥Y ∥
c5

+ n
√
m 1

η
√
2λ1

,
the inequality cannot hold. Note that ∥Y ∥ =

√
n and λ1 ∈ Θ(n), and also from inequality (5),

η < λ1

n = O(1), we finish the proof.

Now we can give a lemma on R(t) := (I − v1v
⊤
1 )D(t). The proof idea is similar to Lemma 3.5 in

Section 3.

Lemma C.10. Define R′(t) := (I − ηM∗(t)(I − v1v
⊤
1 ))R

′(t− 1). We have ∥R(t)−R′(t)∥ =

O(
√
n3d

λr
√
m
).

Proof. We consider the update rule for R(t), whose proof is in Lemma E.12:

R(t+ 1) = (I − ηM∗(t))R(t) + η
(
v1v

⊤
1 Γ(t)− Γ(t)v1v

⊤
1

)
D(t) (18)

Hence if we denote e1(t) = R(t+ 1)− (I − ηM∗(t)(I − v1v
⊤
1 ))R(t), then we have
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e1(t) = −ηM∗v1v
⊤
1 R(t)+η

(
v1v

⊤
1 Γ(t)− Γ(t)v1v

⊤
1

)
D(t) = η

(
v1v

⊤
1 Γ(t)− Γ(t)v1v

⊤
1

)
D(t).

Using the upper bound of ∥D(t)∥ in Lemma C.9, and Assumption C.3 we have

∥e1(t)∥ ≤ 2η∥Γ(t)∥∥D(t)∥ ≤ 2η
c2
m
c3
√
nm = 2c2c3η

√
n

m
.

Now we consider the sequence R′(t).

First by Corollary C.3, we can see that the eigenvalues of (M∗(t)− Γ∗(t))(I − v1v
⊤
1 ) are all the

eigenvalues of M∗(t)−Γ∗(t) except the largest one, hence are in (τ, 2/η− τ). Hence because m =
Ω(n2), if we let λr

nd < c2+c6
m , then by Corollary C.3 we have all eigenvalues of M∗(t)(I − v1v

⊤
1 )

are in (τ ′, 2/η − τ ′) where τ ′ = λr

nd . Hence ∥I − ηM(t)(I − v1(t)v1(t)
⊤)∥ ≤ 1− ητ ′.

By the calculations above we can get

∥R(t+ 1)−R′(t+ 1)∥ = ∥(I − ηM∗(t)(I − v1v
⊤
1 ))(R(t)−R′(t)) + e1(t)∥

≤ ∥(I − ηM(t)(I − v1v
⊤
1 ))(R(t)−R′(t))∥+ ∥e1(t)∥

≤ ∥I − ηM(t)(I − v1v
⊤
1 )∥∥R(t)−R′(t)∥+ ∥e1(t)∥

≤ ∥R(t)−R′(t)∥(1− ητ ′) + 2c2c3η

√
n

m
.

Thus if we denote ∥R(t)−R′(t)∥− 2c2c3η
√

n
m

ητ ′ by p(t), and replace ∥R(t)−R′(t)∥ in the inequality

above by p(t) +
2c2c3η

√
n
m

ητ ′ , we can get |p(t+ 1)| ≤ |p(t)|(1− ητ ′). Hence, we can have |p(t)| <

|p(0)| = 2c2c3η
√

n
m

ητ ′ for any time t. Therefore, we can obtain ∥R(t)−R′(t)∥ <
2c2c3η

√
n
m

ητ ′ +|p(0)| =
4c2c3

√
n
m

τ ′ = O(d
√

n3

m /λr).

Now based on Theorem C.10, we can give an upper bound of ∥R(t)∥. Because ∥R′(t)∥ is always

decreasing and ∥R′(0)∥ =
√
n, hence if m = Ω(n2d2/λ2

r), we can have O(d
√

n3

m /λr) = O(
√
n).

Hence
∥R(t)∥ ≤ ∥R′(t)∥+O(

√
n) = O(

√
n). (19)

Let ∥R(t)∥ ≤ c7
√
n.

Next we can use Assumption C.4 to prove that D(t)⊤v1 increases geometrically when Λ > 2/η,
which then causes the drop of the sharpness.

Lemma C.11. Let ρ∗ = (c2+c6)c7
2c3

, ρ = ρ∗+ η
2
5c2+c6

m , ϵ1 = 2η(ρ∗− (c2+c6)c7
2c3

). If Λ(t),Λ(t+1) >
2
η (1 + ρ), we have |D(t+ 1)⊤v1| > (1 + ϵ1)D(t)⊤v1.

Proof.
D(t+ 1)⊤v1 = D(t)⊤ (I − ηM∗(t))v1

= D(t)⊤
(
I − ηγ∗(t)X⊤X

)
v1 − ηD(t)⊤Γ∗(t)v1

= (1− ηγ∗(t)λ1)D(t)⊤v1 − ηD(t)⊤Γ∗(t)v1

First by Lemma C.8 and Corollary C.2:

γ∗(t)λ1 = v⊤
1 (ks(M(t+ 1)− Γ(t+ 1)) + (1− ks)(M(t)− Γ(t)))v1

≥ ksΛ
∗(t+ 1) + (1− ks)Λ

∗(t)− 2c2
m

≥ 2(1 + ρ)

η
− 4c2

m
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Also we have
∣∣D(t)⊤Γ∗(t)v1

∣∣ ≤ c2+c6
m ∥D(t)∥ ≤ c2+c6

m |(D(t)⊤v1|+ ∥R(t)∥).
Hence

|D(t+ 1)⊤v1| ≥ |1− ηγ∗(t)λ1||D(t)⊤v1| − η|D(t)⊤Γ∗(t)v1|

≥ | − 1− 2ρ+
4c2η

m
+

(c2 + c6)η

m
|

≥ (1 + 2ηρ∗)|D(t)⊤v1| − η
c2 + c6

m
c7
√
n

≥ (1 + ϵ1)|D(t)⊤v1|

Here the third inequality holds by the definition of ρ∗.

Now we state a lemma which proves that if D(t)⊤v1 is large enough, then the sharpness will decrease
in the next iteration.

Lemma C.12. Assume m = Ω(η). There exists constant c8, c9 > 0 such that if D(t)⊤v1 > c8
√
n,

then v⊤
1 M(t+ 1)v1 − v⊤

1 M(t)v1 < −c9/m.

Proof. Recall Equation (17). Also we have ∥R(t)∥ ≤ c7
√
n by (19). Hence

Λ∗(t+ 1)− Λ∗(t)

=− 8ηλ1

mn2

(
F (t)⊤D(t) + (F (t)⊤v1)(D(t)⊤v1)−

η

2
(D(t)⊤v1)

2Λ∗(t)

−η

2
R(t)⊤Γ(t)R(t)− ηR(t)⊤Γ(t)

(
v1v

⊤
1 D(t)

)
−R(t)⊤

(m
d
X⊤X

)
R(t)

η

mn

)
≤− 8ηλ1

mn2

(
2β(D(t)⊤v1)

2 + ∥R(t)∥2 − ηc2
2m

∥R(t)∥2

−c2η

m
∥R(t)∥ · ∥D(t)∥ − ηλ1

dn
∥R(t)∥2 − 2∥Y ∥ · ∥D(t)∥

)
≤− 8ηλ1

mn2

(
2β(D(t)⊤v1)

2 + ∥R(t)∥2(1− c2η

2m
)

−c2η

m
∥R(t)∥ · (∥R(t)∥+ |D(t)⊤v1|)−

ηλ1

dn
∥R(t)∥2 − 2∥Y ∥ · (∥R(t)∥+ |D(t)⊤v1|)

)
≤− 8ηλ1

mn2

(
2β
(
D(t)⊤v1

)2 − (
ηc7c2

√
n

m
+ 2

√
n) · |D(t)⊤v1|

+c27n(1−
c2η

2m
− c2η

m
− ηλ1

dn
)− 2c7n

)
=− 8ηλ1

mn2

(
2β(D(t)⊤v1)

2 − c10
(
D(t)⊤v1

)
+ c11

)
Here c10 := ηc7

√
n · c2m +2

√
n = Θ(

√
n), c11 := c27n

(
1− c2η

2m − c2η
m − ηλ1

dn

)
− 2c7n = Nn), and

the first inequality holds because of Assumption C.5, Assumption C.3 and ∥D(t)∥2 = (D(t)⊤v1)
2+

∥R(t)∥2, the second inequality holds because of ∥D(t)∥ ≤ |D(t)⊤v1| + ∥R(t)∥, and the third
inequality follows from the upper bound (19) of ∥R(t)∥.

Note that it is a quadratic function of D(t)⊤v1. Hence if D(t)⊤v1 > |c10|
2β +

√
|c11|
2β , we have

Λ∗(t+ 1)− Λ∗(t) < −8ηλ1

n2m
·
|c10|

√
|c11|

2β
= Θ(

η

m
)

Hence we finish the proof.

Now we can prove the final part (the first conclusion) of Theorem 4.
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Lemma C.13. Let ρ be the one defined in Theorem C.11. If Λ(t0) > 2
η (1 + ρ) for some t0, there

exists some t1 > t0 such that Λ(t1) < 2
η (1 + ρ).

Proof. Otherwise, for any t > t0, Λ(t) > 2
η (1 + ρ). Then by Theorem C.11, D(t)⊤v1 increases

geometrically, hence there exists t2 > t0, such that D(t)⊤v1 > c8
√
n. Now by Lemma C.12, each

iteration Λ∗(t) will decrease by at least a fixed amount. Hence there must exist a time t3 > t0 such
that Λ∗(t3) <

2
η − 2c2/m. Then by Corollary C.2, we get a contradiction.

C.4 Our Results and the NTK Regime

In this subsection, we explain why our results (Theorem 3, Theorem 4) are sufficiently different from
the quadratic setting (e.g., linear regression) or the recent convergence analysis in NTK setting.

A key requirement in the convergence analysis in the NTK regime is that the learning rate is very
small and the GD trajectory almost tracks the gradient flow, hence converges to the global minimum.
However, we consider typical learning rate used in practice, which can be much larger. In particular,
η > 2/Λ can happen in our setting, which causes instability (i.e., such as the growth of loss in Lemma
C.11) along the training trajectory. Such instability cannot be captured by any existing convergence
analysis in NTK regime at all. Hence, all existing NTK convergence results do not directly apply
here.

Equally importantly, we find that even when W (t) changes slightly (several orders of magnitude
smaller than its initialization), PS and EOS still happen with a not so small learning rate η. To support
our claim, we include the experimental results in Appendix D.2.3. In Figure 22, we can see that the
initialization W (0) is much larger than the change of W (t) and the norm of W (t) grows larger
when m becomes larger. However, we still observe that PS and EOS occur in this setting. Hence, the
setting we study in this paper and our results are intrinsically different from the quadratic setting (in
which case EOS cannot happen).

Last, in our proofs in Section C.2 and C.3, our current bound requires that m = Ω(n2) and we
also assume λr = Ω(1). This may create an impression that we need a very wide network which
operates in the NTK regime. However, we remark that if our analysis can be tightened to m = O(n),
one can formally prove that ∥A(t)∥ can actually change significantly (∥A(t)∥2 − ∥A(0)∥2) has the
same scale as the initialization ∥A(0)∥2), resulting a significant change of sharpness as well, hence
beyond the NTK regime. For example, in the proof of EOS (Section C.3), we prove a loose O(

√
mn)

upper bound of ∥D(t)∥ (Lemma C.9). However by Lemma C.12, when ∥D(t)∥ reaches O(
√
n), the

sharpness starts dropping quickly. So if a better upper bound of ∥D(t)∥ = O(
√
n) can be proven

(this is true empirically for all of our experiments), the width m can be set to Θ(n), and this suffices
to implies a significant change of ∥A(t)∥2. We leave these improvements as future directions.

D Verification for Assumptions

In this section, we first justify the assumptions we made in Section 3 and Section 4 empirically. Then
we present the experiment described in Section 5.

D.1 Assumptions in Section 3

In this subsection, we conduct experiments to verify the assumptions in Section 3. The detailed
experiment settings can be found in Appendix A.

D.1.1 MA has small eigenvalues

In Section 3.2, we mentioned that the largest eigenvalue of MA := ( ∂F∂A )( ∂F∂A )⊤ is much smaller
than the sharpness. We verify this assumption under different settings in Figure 13, including a
fully-connected linear network, a fully-connected network with tanh activation and a convolutional
one. Observe that ∥MA∥ (the blue curve) is very close to 0 and hardly increases during the training
process along the whole trajectory.
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(a) Fully-connected Linear Network
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(b) Fully-connected tanh Network
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(c) Convolutional tanh Network

Figure 13: In this figure, we show that ∥MA∥ is much smaller than the sharpness. Note that ∥MA∥
(the blue curve) is very close to 0 and hardly increases during the training process along the whole
trajectory. The sharpness (the steel-blue curve) strictly dominates ∥MA∥ for all time. The detailed
experiment settings can be found in Appendix A.

D.1.2 Assumption 3.7

In this assumption, we assume that there is a large gap between the largest and the second largest
eigenvalue, and thus the second largest eigenvalue is always below 1/η. We verify the outlier
assumption by calculating the largest and the second largest eigenvalue of M(t). In Sagun et al.
[28, 29], the sharpness is much larger than the largest eigenvalue in the bulk (the (K + 1)-th largest
eigenvalue of M where K is the number of classes). In our binary setting K = 1. In Figure 16, we
show that the largest eigenvalue indeed dominates the second one, and the second one never reaches
1/η, which verifies Assumption 3.7.
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(a) Fully-connected linear network
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(b) Fully-connected tanh network
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ELU activation

Figure 14: The second largest eigenvalue (the orange curve) of M is much smaller than the sharpness
(the steel-blue curve). Also, the second largest eigenvalue never reaches 2/η.

D.1.3 Assumption 3.2 (First Order Approximation of GD)

In Assumption 3.2, we assume the gradient descent trajectory is close to the first order approximation.
To verify that the first order term is indeed dominant along the trajectory, for both the residual
D(t) and the output layer norm ∥A(t)∥2, we plot the norms of the actual GD update, the first
order approximation order approximation and the higher order terms of the update rule in Figure 15.
Observe that in the progressive sharpening phase, the first order approximation is almost the same
as the actual gradient update; while in the EOS phase, the first order approximation is still close
to the actual gradient most of the time. We can see that the norm of the higher order terms spikes
occasionally, but when this happens the first order term spikes much higher.
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(b) Fully connected tanh network

Figure 15: This figure shows the norm of the full gradient ∥D(t + 1) − D(t)∥, the first order
approximation ∥ηM(t)D(t)∥ and the higher order terms ∥D(t+ 1)−D(t) + ηM(t)D(t)∥ in the
training process. Observe that in both the ∥A(t)∥2 and D(t) dynamics, the first order approximation
(the blue curve) almost overlaps with the actual update (the green curve) in the PS phase. While in
the EOS phase, though the norm of the higher order terms (the orange curve) spikes, the first order
approximation is still close to the actual update.

D.1.4 Assumption 3.3 (Gradient flow for the PS phase)

In Assumption 3.3, we assume that in the progressive sharpening phase, the gradient descent trajectory
is close to the gradient flow trajectory. We refer to Appendix J in Cohen et al. [6] for more experiments
about this claim. Here for readers’ convenience, we duplicate their Figure 29 in Appendix J as
Figure 16.

Figure 16: Left: the picture shows the ℓ2 distance between the gradient flow trajectory at t iteration
and the gradient descent trajectory at t/η iteration. The vertical dotted line is the time when the
sharpness reaches 2/η. Right: the plot of sharpness where (iteration × learning rate) is on the
x-axis.

D.1.5 Assumption 3.5 (iii) (principal directions moves slowly)

In Figure 17 we verify Assumption 3.5 (iii) and as well as the discussion after Assumption 3.5 (i).
In general models, we find that the eigenvectors corresponding to small eigenvalues may change
drastically. But for the largest eigenvector, it indeed changes slowly from the initialized direction. In
Figure 17, we can see that over a long training time the similarity of v1(t) with its initialization is still
larger than at least 0.98. Mulayoff et al. [24] also proved that near the minima, the top eigenvectors of
the Hessian matrices tend to align. That is, the directions of these top eigenvectors are approximately
parallel. This fact also corroborates our assumption near the minima.

39



0 200 400 600 800 1000
epoch

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

1-
v1

(t)
v1

(0
)^

T

v1 changes direction slowly
1-v1(t)v1(0)^T

(a) Fully-connected linear network
0 50 100 150 200 250 300

epoch

0.000

0.005

0.010

0.015

0.020

0.025

1-
v1

(t)
v1

(0
)^

T

v1 changes direction slowly
1-v1(t)v1(0)^T

(b) Fully-connected tanh network
0 200 400 600 800 1000

epoch

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

1-
v1

(t)
v1

(0
)^

T

v1 changes direction slowly
1-v1(t)v1(0)^T

(c) Convolutional network with ELU
activation

Figure 17: In this figure, we show that under various architectures, the first eigenvector of M changes
slowly throughout the training process, even when Edge of Stability phenomenon occurs.

D.2 Assumptions in Section 4

In this subsection, we present the assumptions in Section 4, and conduct experiments to verify them.
We add a scale coefficient 1√

m
in the linear network to be consistent with the settings of theoretical

analysis.

D.2.1 Assumption 4.1

In Assumption 4.1, we assume the ratio λi/λi+1 between the two adjacent eigenvalues of X⊤X is
bounded by a small constant. In the 1000-example subset of CIFAR-10, we verify this assumption by
experiments. We plot the eigenvalues and their ratio in Figure 18. It shows that Assumption 4.1 holds
and the constant χ ≈ 38, since almost all the ratios are close to 1, and the largest ratio is λ1/λ2 ≈ 38.
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Figure 18: (a): The full eigenvalue spectrum of of X⊤X. Observe that the maximal ratio
max{λi/λi+1} = λ1/λ2. (b): The ratio between two adjacent eigenvalues λi/λi+1, i ≥ 2. We
exclude the largest eigenvalue to make the figure clearer.

If we further consider a mean-subtracted version of this subset of CIFAR-10 (See Figure 19), we can
reduce the ratio to χ ≈ 3.
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Figure 19: (a): The full eigenvalue spectrum of of X⊤X when samples’ mean is subtracted. (b):
the ratio between two adjacent eigenvalues λi/λi+1. In Figure (b), observe that the maximal ratio
max{λi/λi+1} = λ1/λ2 ≈ 3. Remark. Note we should exclude the minimal eigenvalue if the
mean of examples is subtracted, because when we subtract the mean from the dataset, it cannot be
full rank. The minimal eigenvalue of X⊤X is 0, thus it is unnecessary to check it for our assumption.

D.2.2 Assumption 4.3

In Appendix C.2, by Theorem 3 we prove that ∥Γ(t)∥ is bounded by Rw = O(1/m) in the progressive
sharpening phase. When gradient descent enters EOS, the proof does not hold and we make this
bound into an assumption (Assumption 4.3). We empirically verify that the bound can only increase
by a constant factor (despite some spikes in EOS). See Figure 20. In this figure ∥Γ(t)∥ ≤ 24

m with
m = 40, 80, 160, 200.
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(b) ∥Γ(t)∥, m = 40, 80, 160, 200

Figure 20: In this figure, we show that even when GD enters EOS, the bound of ∥Γ(t)∥ is still
Θ(1/m) along the whole trajectory. The corresponding constant c2 ≈ 24.

Actually there are two interesting empirical facts related to ∥Γ(t)∥. One is the noticeable fact that
∥Γ(t)∥ spikes, the other is that the values of ∥Γ(t)∥ are overall quite small (despite the fact that
W changes non-trivially in our experiments) and decreases as m becomes larger. Our assumption
tries to model the second fact (see Figure 20, ∥Γ(t)∥ (despite the spikes) decreases as the width m
grows, and the largest ∥Γ(t)∥ is almost 24/m in all these experiments). However, we admit that
our results do not reflect the first fact (the spikes of ∥Γ(t)∥ ), and it is an interesting fact that is
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worth investigating. We have strong intuition that ∥Γ(t)∥ only grows by at most a constant factor,
but currently do not have a formal proof yet. Nevertheless, the spiking behavior does not directly
contradict our assumption.

Remark: Note that Assumption 4.3 is not equivalent to a small movement of W (t). Actually, in the
experiments above (m = 40, 80, 160, 200) the movement of W (t) is quite significant compared to
the norm of W (0) at initialization. See Figure 21.
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(b) W (t)&∥∆W (t)∥, m = 80
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(c) W (t)&∥∆W (t)∥, m = 160
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(d) W (t)&∥∆W (t)∥, m = 200

Figure 21: In this figure, we show that even the Γ(t) is small and bounded, the movement
∥∆W (t)∥ := ∥W (t) − W (0)∥ (the dark orange curve) is close to ∥W (t)∥ (the blue curve),
implying that W (t) moves considerably.

D.2.3 Comparison with the NTK regime: the non-quadratic property

Here we illustrate why our setting and results are sufficiently different from the quadratic setting (e.g.,
linear regression) or the recent convergence analysis in NTK setting. In particular, we show that even
when the movement of W (t) is comparably negligible compared to the initialization W (0), EOS
can still happen. Here we take a larger initialization of W (0), which is ten times of the standard
initialization in order to dwarf the movement of W (t). The widths are m = 1000, 2000, 4000, 8000.
We can see that the initialization W (0) is much larger than the change of W (t) and the norm of
W (t) grows larger when m becomes larger. See Figure 22. Detailed comparison is in Appendix C.4.

D.3 Experiments in Section 5

In this subsection we show some empirical results that may reveal some interesting relation between
the inner layers and the sharpness, which is not yet reflected in our theory. Our experimental
results show that all layers seem to work together to influence the sharpness, and contribute to the
progressive sharpening and edge of stability phenomena. In our experiment, while the sharpness is
still calculated by the gradient of all parameters, we freeze some of the layers in the training process.
The experimental results show that the more layers we freeze, the slower progressive sharpening
happens and the weaker the oscillation of the sharpness is (See Figure 23, Figure 24). This indicates
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(a) The sharpness, m = 1000(η = 2/54), 2000(η = 2/52), 4000(η = 2/53), 8000(η = 2/52)
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(b) The loss, m = 1000, 2000, 4000, 8000
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(c) W (t)&∥∆W (t)∥, m = 1000, 2000, 4000, 8000

Figure 22: In this figure, we show that even when W (t) stays close to its initialization, EOS can
still happen. In particular, Figure (c) shows the ∥W (t)∥ (the blue curve) and ∥W (t) − W (0)∥
(the orange curve). Here for m = 1000, 2000, 4000, 8000, observe that the EOS still happens
when ∥W (t)∥/∥W (t)−W (0)∥ > 10. That indicates the intrinsic non-quadratic property of neural
networks in the EOS regime.

that layers other than the output layer has nontrivial influence on the sharpness, but since different
layers seem to work in the same direction, further justifying our assumption that ∥A∥ is positively
related with the sharpness.

Fully-connected tanh Network:
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Figure 23: We conduct the experiment on a 5-layer tanh fully-connected network. Four lines in the
plot show the sharpness for four independent training processes but with 0,1,2,3 outer layers locked.
All other hyper-parameters are the same. The result shows that all layers have cooperative effect on
the sharpness.
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Fully-connected Linear Network:
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(a) Fully-connected linear network 0 layer frozen
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(b) Fully-connected linear network 1 layer frozen
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(c) Fully-connected linear network 2 layers frozen
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(d) Fully-connected linear network 3 layers frozen

Figure 24: The sharpness after 0,1,2,3 outer layers are locked. Details refer to Figure 23.

E Missing proofs

E.1 Proofs in Section 3

In this section, we provide the missing proofs in Section 3.
Lemma E.1. (Lemma 3.1) For all t in Phase I, under Assumption 3.5 (i) and 3.3, it holds that
D(t)⊤F (t) < 0.

Proof. Consider the inner product D(t)⊤vi. Recall vi is the i-th eigenvector of M . By Assump-
tion 3.5(i), vi does not change with t. By Assumption 3.3, we have

dD(t)⊤vi

dt
= −D(t)⊤M(t)vi = −λi(t)D(t)⊤vi

where λi(t) ≥ 0 is the corresponding eigenvalue of vi.

Since F (0) = 0, D(0) = F (0)− Y = −Y . Then the differential equation has the solution

D(t)⊤vi = e−
∫ t
0
λi(t)dt ·D(0)⊤vi = −e−

∫ t
0
λi(t)dt · Y ⊤vi

Plug it into the expression D(t)⊤F (t) = D(t)⊤(D(t) + Y ) and we have:

D(t)⊤F (t) =

n∑
i=1

D(t)⊤vi(D(t)⊤vi + Y ⊤vi) = −
n∑

i=1

(Y ⊤vi)
2e−

∫ t
0
λi(t)dt(1− e−

∫ t
0
λi(t)dt)

since (Y ⊤vi)
2e−

∫ t
0
λi(t)dt(1− e−

∫ t
0
λi(t)dt) > 0 for all i ∈ [n], D(t)⊤F (t) < 0.
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Lemma E.2. (Lemma 3.2) Suppose Assumption 3.5 (iii) and 3.6 hold during this phase (with
constants ϵ2 > 0 and c > 1). If Λ(t) = (2 + τ)/η and τ > 1

1−ϵ2−1/c − 1, then D(t)⊤v1(t)

increases geometrically with factor (1 + τ)(1− ϵ2 − 1/c) > 1 for t ≥ t0 in this phase.

Proof. First by (3), we have D(t+1)⊤v1(t) = D(t)⊤(I−ηM(t))v1(t) = (1−ηΛ(t))D(t)⊤v1(t).

Then we have

|D(t+ 1)⊤v1(t+ 1)| ≥ |D(t+ 1)⊤v1(t)(1− ϵ2)| − ϵ2∥D(t+ 1)∥
≥ |D(t)⊤v1(t)|(1− ϵ2)(ηΛ(t)− 1)− (ηΛ(t)− 1)ϵ2∥D(t)∥
≥ |D(t)⊤v1(t)|(1− ϵ2)(ηΛ(t)− 1)− (ηΛ(t)− 1)|D(t)⊤v1(t)|/c
= |D(t)⊤v1(t)|(ηΛ(t)− 1)(1− ϵ2 − 1/c)

= |D(t)⊤v1(t)|(1 + τ)(1− ϵ2 − 1/c)

where first inequality holds due to Assumption 3.5 (iii) and the third follows from Assumption 3.6.

Proposition E.1. (Proposition 3.1) If ∥D(t)∥ > ∥Y ∥, then D(t)⊤F (t) > 0.

Proof. This proposition can be proved by simply noticing that D(t)⊤F (t) = D(t)⊤(D(t) −
Y (t)) ≥ ∥D∥2 − ∥D∥∥Y ∥ > 0 when ∥D(t)∥ ≥ ∥Y ∥.

Proposition E.2. (Proposition 3.2) Under Assumption 3.2, if ∥D(t)∥ > ∥Y ∥, then ∥A(t+ 1)∥2 −
∥A(t)∥2 < − 4η

n (∥D(t)∥ − ∥Y ∥)2.

Proof. Use Assumption 3.2 and notice that D(t)⊤F (t) ≥ ∥D(t)∥2 − ∥D(t)∥∥Y ∥ > (∥D(t)∥ −
∥Y ∥)2.

Lemma E.3. (Lemma 3.3) If Λ(t) < 2/η, then for any vector u ∈ Rn, ∥u⊤(I − ηM(t))∥ ≤
(1− ηα)∥u∥, where α = min{2/η − Λ(t), λmin(M(t))}. In particular, replacing u with D(t), we
can see ∥D(t+ 1)∥ ≤ (1− ηα)2∥D(t)∥.

Proof. For any vector u ∈ Rn,

∥u⊤(I − ηM(t))∥2 =

n∑
i=1

∥(u⊤vi(t))vi(t)
⊤(I − ηM(t))∥2

=

n∑
i=1

(1− ηλi)
2(u⊤vi(t))

2 ≤ (1− ηα)2
n∑

i=1

(u⊤vi(t))
2 = (1− ηα)2∥u∥2.

Then the second statement is due to Assumption 3.2.

Lemma E.4. (Lemma 3.4) Suppose Assumption 3.5 (iii) holds. R(t) satisfies the following:

R(t+ 1) = (I − ηM(t))R(t) + e1(t), where ∥e1(t)∥ ≤ 6
√
ϵ2∥D(t)∥(BΛ − 1)

Proof. We consider the update rule for R(t):

R(t+ 1) = (I − v1(t+ 1)v1(t+ 1)⊤)(I − ηM(t))D(t)

= (I − ηM(t))R(t)− (v1(t+ 1)v1(t+ 1)⊤)(I − ηM(t))(I − v1(t)v1(t)
⊤)D(t)

+ (I − v1(t+ 1)v1(t+ 1)⊤)(I − ηM(t))(v1(t)v1(t)
⊤)D(t)

= (I − ηM(t))R(t)− (1− ηΛ(t))(v1(t+ 1)v1(t+ 1)⊤)(I − v1(t)v1(t)
⊤)D(t)

+ (1− ηΛ(t))(I − v1(t+ 1)v1(t+ 1)⊤)(v1(t)v1(t)
⊤)D(t)

Now if we decompose v1(t+ 1) = (1− δ(t))v1(t) +
√

1− (1− δ)2v⊥(t), where ⟨v1(t),v⊥⟩ = 0.
Then we have

∥(I − v1(t+ 1)v1(t+ 1)⊤)v1(t)v1(t)
⊤∥
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= ∥v1(t)− (v1(t)
⊤v1(t+ 1))v1(t+ 1)∥

= ∥(1− (1− δ(t))2)v1(t) +
√
1− (1− δ(t)2)v⊥(t)∥

≤
√

(2δ(t)− δ(t)2)(1− δ(t)) + (2δ(t)− δ(t)2)2

≤
√

2δ(t) + 4δ(t)2

≤ 3
√

δ(t)

≤ 3
√
ϵ2.

Similar result can be obtained for the term (v1(t+ 1)v1(t+ 1)⊤)(I − v1(t)v1(t)
⊤).

Therefore, ∥(ηΛ(t)− 1)(I − v1(t+ 1)v1(t+ 1)⊤)(v1(t)v1(t)
⊤)D(t)∥ ≤ 6

√
ϵ2(BΛ − 1)BD.

Lemma E.5. (Lemma 3.5) Define an auxiliary sequence R′(t) by R′(0) = R(0), and R′(t+ 1) =
(I − ηM(t)(I − v1(t)v1(t)

⊤))R′(t). If Assumption 3.4, Assumption 3.5 (iii), Assumption 3.7 hold,
and for any time t there exists a quantity λr > 0, such that the smallest eigenvalue of M(t), i.e.
λmin(M(t)) > λr, then there exists a constant cr > 0 such that ∥R(t)−R′(t)∥ ≤ cr

BD(BΛ−1)
√
ϵ2

ηλr
.

Proof. First we can see that the eigenvalues of M(t)(I − v1(t)v1(t)
⊤) are all the eigenvalues of

M except the largest one. Hence with Assumption 3.7, all eigenvalues of M(t)(I − v1(t)v1(t)
⊤)

are in (λr, 1/η). Thus ∥I − ηM(t)(I − v1(t)v1(t)
⊤)∥ ≤ 1− ηλr.

Hence by Assumption 3.4 we can get
∥R(t+ 1)−R′(t+ 1)∥

= ∥(I − ηM(t))R(t)− (I − ηM(t)(I − v1(t)v1(t)
⊤))R′(t) + e1(t)∥

= ∥(I − ηM(t)(I − v1(t)v1(t)
⊤))(R(t)−R′(t)) + e1(t)∥

≤ ∥(I − ηM(t)(I − v1(t)v1(t)
⊤))(R(t)−R′(t))∥+ ∥e1(t)∥

≤ ∥I − ηM(t)(I − v1(t)v1(t)
⊤)∥∥R(t)−R′(t)∥+ ∥e1(t)∥

≤ ∥R(t)−R′(t)∥(1− ηλr) + 3BD(BΛ − 1)
√
ϵ2.

Thus if we denote ∥R(t) − R′(t)∥ − 3BD(BΛ−1)
√
ϵ2

ηλr
by p(t), and replace ∥R(t) − R′(t)∥ in the

inequality above by p(t) +
3BD(BΛ−1)

√
ϵ2

ηλr
, we can get |p(t+ 1)| ≤ |p(t)|(1− ηλr). Hence, we can

see that |p(t)| < |p(0)| = 3BD(BΛ−1)
√
ϵ2

ηλr
for any time t. Therefore, we obtain that

∥R(t)−R′(t)∥ <
3BD(BΛ − 1)

√
ϵ2

ηλr
+ |p(0)| <

6BD(BΛ − 1)
√
ϵ2

ηλr
.

Taking cr = 6, we finish the proof.

Lemma E.6. For all t in Phase I, under Assumption 3.5 (i) and Assumption 3.7, it holds that
R′(t)⊤(R′(t) + Y ) < 0 where R′(t) is defined in Lemma 3.5.

Proof. Consider the inner product R′(t)⊤vi. Recall vi is the i-th eigenvector of M . By Assump-
tion 3.5 (i), vi does not change with t.

By Assumption 3.7, λi(t) < 1/η for i > 1, where λi(t) ≥ 0 is the corresponding eigenvalue of vi.

By definition of R′(t) and Assumption 3.5 (i), R′(t+ 1) = (I − ηM(t)(I − v1v
⊤
1 ))R

′(t), hence
R′(t + 1)⊤vi = (1 − ηλi(t))R

′(t)⊤vi for i > 1 and R′(t)⊤v1 = 0. Hence for any i > 1, t > 0,
R′(t)⊤vi

R′(0)⊤vi
=
∏t−1

j=0(1− ηλi(j)) ∈ (0, 1).

Since R′(0) = R(0) = (I − v1v
⊤
1 )Y , hence R′(0)⊤vi = −Y ⊤vi for any i > 1.

Plug it into the expression R′(t)⊤(R′(t) + Y ) and we have:

D(t)⊤F (t) =

n∑
i=2

R′(t)⊤vi(R
′(t)⊤vi + Y ⊤vi) =

n∑
i=2

(R′(t)⊤vi)
2(1− R′(0)⊤vi

R′(t)⊤vi
) < 0

46



E.2 Progressive Sharpening under Weaker Assumptions

We prove Lemma 3.1 in Section 3, i.e. progressive sharpening happens under Assumption 3.5 (i)
that the set of eigenvectors of the Gram matrix M(t) is fixed throughout. However, empirically,
the eigenvectors of M(t) change non-negligibly (see Figure 26). In this section, we show that it is
possible to relax Assumption 3.5 (i) to more realistic assumption on the eigenspace of M(t). To
this end, we first present a dynamical system view of the dynamics of D(t), then prove Lemma E.7
which is analogue of Lemma 3.1 but under weaker assumptions.

E.2.1 A dynamical system view

Recall that we assume that D(t) follows the gradient flow trajectory: dD(t)
dt = −M(t)D(t). This is

a linear dynamical system with changing coefficients −M(t). In order to understand this dynamics,
we first consider the linear dynamical system with constant coefficients −M , dD(t)

dt = −MD(t),
which is much better understood. The corresponding phase portrait is shown in Figure 25(a). Here,
O is only fixed point. In this figure, we consider the ball B ⊂ Rn such that the south pole of B is
the origin O and the north pole N of B is fixed to be −Y , which is the initial point −D(t). Recall
that F (t) = D(t) + Y and D(0) = −Y . We denote the tip of the vector D(t) as D. Hence,
−−→
DO = D(t) and

−−→
ND = F (t). A useful geometric observation is the following:

Observation E.1. D(t) ∈ B if and only if D(t)⊤F (t) = D(t)⊤(D(t)− (−Y )) < 0 (equivalently,
the angle ∡(NDO) ≥ π/2).

Let {vi(t)}i be the set of eigenvectors of M(t). By symmetry, we can assume the direction of
all {vi(t)}i are pointing inside B (or equivalently, −vi(t)

⊤Y ≥ 0). We also define the hypercube
H(t), which is defined by {vi(t)}i as the edges and ON as the diagonal (see the dashed rectangle in
Figure 25(a). All vertices of H(t) are on the sphere ∂B. In our proof of Lemma 3.1 (in which we
assume the eigenvectors do not change), we have shown the entire trajectory of D(t) is contained in
H(t) which is always contained in B. In particular, we prove that the projection of D(t) onto each vi

decreases monotonically).

Now, we consider the more general case when the eigenvectors {vi(t)}i may change. In Lemma E.7
presented below, we show that if the eigenvectors change directions relatively slowly (precisely the
change rate satisfies (20)), D(t) is still contained in H(t), hence also in B. Then by Observation E.1
and (3), the norm ∥A∥ increases (hence the sharpness increases).

We also note that it is impossible to prove D(t) ∈ B for all t > 0 without any assumption on the
change of eigenvector directions. In particular, if the eigenvector changes fast enough so that D(t) is
out of the hypercube H(t), the trajectory may eventually go out of the ball B (e.g., the region inside the
dashed red box in Figure 25(b)). However, it seems that this region is fairly close to the origin O, and
the trajectory does not go very far away from B (implying D(t)⊤F (t) is not a large positive number).
Hence, the above geometric intuition suggests that it is possible to further relax the assumption
(inequality (20)) made in E.7 and prove that A-norm increases (hence sharpness increases) until the
sharpness reaches close to 2/η, after which gradient flow is not a good approximation of gradient
descent anymore. We leave it as an interesting future direction.

E.2.2 Progressive sharpening when eigendirections change slowly

Suppose at initialization F (0) = 0. By D(t) = F (t) − Y , we know D(0) = −Y . With loss of
generality, we assume D(0)⊤vi(0) > 0 at initialization for all i (Otherwise, we define vi(0) =
−vi(0) and this condition holds).
Lemma E.7. Suppose Assumption 3.3 holds, and the set of (unit) eigenvectors of M(t) is {vi(t)}.
Assume at all time t and direction vi(t), the following condition holds:

F (t)⊤
dvi(t)

dt
< λi(t)D(t)⊤vi(t). (20)

Then we have D(t)⊤F (t) < 0 for all t < t1, where t1 is the first time when there exists some i,
D(t)⊤vi(t) ≤ 0.
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(a) The dynamics of D(t) with constant coefficients. (b) The eigenvectors of M(t) change

Figure 25: The phase portraits of the dynamics of D(t) (projected to the first two principle directions).
We rotate the coordinate system so that south pole of B is the origin O and the north pole is −Y
which is the initial point D(t). v1 and v2 are the first two eigenvectors of M . In (b), v1 and v2

change directions to v′
1 and v′

2. The trajectory may go out of B from certain regions (the dashed red
box).

In the above lemma, we can see that inequality (20) holds if vi(t) changes relatively slowly. In
particular, if dvi(t)

dt = 0 for all i, the lemma reduces to Lemma 3.1. Note that in contrast to the fixed
eigenvector assumption, we cannot show that D(t)⊤vi(t) decreases in all directions all the time
(since M(t) may change). Instead, we show that D(t) is always in the hypercube H(t) under the
condition of the lemma.

Proof. We first notice the decomposition

D(t)⊤F (t) =

r∑
i=1

D(t)⊤vi(t)F (t)⊤vi(t).

We show for each vi(t), D(t)⊤vi(t)F (t)⊤vi(t) < 0 under the conditions of the lemma.

We first consider the dynamics of inner product D(t)⊤vi(t). According to Assumption 3.3, when
t < t1, D(t)⊤vi(t) > 0 due to the continuity. Moreover, by the dynamics of D(t) in Assumption 3.3,
we can see

dD(t)⊤vi(t)

dt
= −D(t)⊤M(t)vi(t) +D(t)⊤

dvi(t)

dt

= −λi(t)D(t)⊤vi(t) +D(t)⊤
dvi(t)

dt

With this dynamics above and F (t) = D(t) + Y , we can get F ’s dynamics:
dF (t)⊤vi(t)

dt
= −D(t)⊤M(t)vi(t) + F (t)⊤

dvi(t)

dt

= −λi(t)D(t)⊤vi(t) + F (t)⊤
dvi(t)

dt
(D1)

With (D1) and F (t)⊤ dvi(t)
dt ≤ λi(t)D(t)⊤vi(t), we know

dF (t)⊤vi(t)

dt
= −λi(t)D(t)⊤vi(t) + F (t)⊤

dvi(t)

dt
< 0.

In this way, we know F (t)⊤vi(t) always decreases for t < t1. Recall that F (0) = D(0) + Y = 0,
which makes F (0)⊤vi(0) = 0. So F (t)⊤vi(t) < 0 according to the dynamics. Geometrically, this
implies D(t) does not cross the facets of H(t) incident on the north pole N 6 (otherwise F (t)⊤vi(t)

6The hypercube H(t) has 2n facets, n of them incident on the south pole O and the others the north pole N .
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needs to change sign). See Figure 25). On the other hand, D(t)⊤vi(t) > 0 for t < t1, by the
definition of t1, which is equivalent to say that D(t)⊤vi(t) does not change sign or D(t) does not
cross the facets of H(t) incident on the south pole O.

Therefore we have D(t)⊤vi(t)F (t)⊤vi(t) < 0 and D(t) ∈ H(t) ⊂ B for all t < t1, where t1 is the
first time when D(t1)

⊤vi(t1) ≤ 0. Summing over all the components D(t)⊤vi(t)F (t)⊤vi(t) for
all i, we prove the lemma.

E.2.3 Empirical verification of inequality (20)

0.00

0.25

0.50 Dv1
Fdvdt / lambda1

0

1

2 Dv5
Fdvdt / lambda5

0 50 100 150 200 250 300

−1

0

1 Dv50
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Figure 26: Verification for inequality (20) when i = 1, 5, 50.

We verify the condition (20) in Lemma E.7 via experiments. See Figure 26. We can see that (20)
holds for i = 1, 5, 50 during the first hundred iterations of the training process. However, for very
large i, the eigenvectors corresponding to very small eigenvalues may change quickly and (20) does
not hold. The contributions (i.e., D(t)⊤vi(t)F (t)⊤vi(t)) from those corresponding to very small
eigenvalues tend to cancel each other empirically, hence does not affect the sign of the total sum∑r

i=1 D(t)⊤vi(t)F (t)⊤vi(t). Hence, it is possible to further relax the condition (20) and we leave
it as a future direction.

E.3 Proofs of equations in Appendix C

The proof of some equations in Appendix C is omitted, and we list them in this subsection.

Lemma E.8. (Lemma C.1) The update rule of the residual vector of D(t):

D(t+ 1)⊤ −D(t)⊤ = −ηD(t)⊤M(t) +
4η2

n2m
D(t)⊤(F (t)⊤D(t))X⊤X (21)

Proof.

D(t+ 1)⊤ −D(t)⊤ =
1√
m
(A(t+ 1)⊤W (t+ 1)−A(t)⊤W (t))X

=
1√
m

(
(A(t+ 1)⊤ −A(t)⊤)W (t+ 1) +A(t)⊤(W (t+ 1)−W (t))

)
X

=
1√
m

(
(A(t+ 1)⊤ −A(t)⊤)W (t) +A(t)⊤(W (t+ 1)−W (t))

)
X

+
1√
m
(A(t+ 1)⊤ −A(t)⊤)(W (t+ 1)−W (t))X

=
2η

nm

(
(−W (t)XD(t))⊤W (t)−A(t)⊤A(t)D(t)⊤X⊤)X

+
1√
m
(

2η

n
√
m
W (t)XD(t))⊤

2η

n
√
m
A(t)D(t)⊤X⊤X
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= −D(t)⊤
2η

nm
(X⊤W (t)⊤W (t)X+ ∥A(t)∥2X⊤X)

+
4η2

n2m
D(t)⊤(F (t)⊤D(t))X⊤X

= − ηD(t)⊤M(t) +
4η2

n2m
D(t)⊤(F (t)⊤D(t))X⊤X

Lemma E.9. (Lemma C.2) The update rule of the Gram matrix M(t) is,

M(t+ 1)−M(t) =− 4η

n2m

(
2(F (t)⊤D(t))X⊤X+ F (t)D(t)⊤X⊤X+X⊤XD(t)F (t)⊤

)
+

8η2

n3m2
(D(t)⊤X⊤W (t)⊤W (t)XD(t))X⊤X

+
8η2

n3m2
∥A(t)∥2 X⊤XD(t)D(t)⊤X⊤X

Proof. By the update rule of A(t) and W (t) in equation (6) and (7), we have

M(t+ 1)−M(t)

=
2

nm

(
(∥A(t+ 1)∥2 − ∥A(t)∥2)X⊤X+ X⊤(W (t+ 1)⊤W (t+ 1)−W (t)⊤W (t))X

)
(Use equation (7))

=
2

nm
(−4η

n
D(t)⊤F (t) + η2∥ ∂L

∂A
∥2)X⊤X

+
2

nm

(
X⊤((W (t+ 1)⊤ −W (t)⊤)W (t) +W (t)⊤(W (t+ 1)−W (t)))X

+X⊤(W (t+ 1)⊤ −W (t)⊤)(W (t+ 1)−W (t))X
)

(Use equation (6))

= − 8η

n2m
D(t)⊤F (t)X⊤X+

8

n3m2
η2(D(t)⊤X⊤W (t)⊤W (t)XD(t))X⊤X

− 4η

n2m

(
F (t)D(t)⊤X⊤X+X⊤XD(t)F (t)⊤

)
+

8η2

n3m2
∥A(t)∥2X⊤XD(t)D(t)⊤X⊤X

Rearrange the terms and we complete the proof.

Lemma E.10. For all iteration t, if any vector u ∈ Rn satisfies X⊤Xu = 0, then

Y ⊤u = D(t)⊤u = 0

Proof. If X⊤Xu = 0, then

u⊤X⊤Xu = 0 ⇒ Xu = 0.

So we have
Y ⊤u = −D(0)⊤u = A∗⊤W ∗Xu = 0

With the dynamics of D(t), we have

D(t+ 1)⊤u = D(t)⊤(In − ηM∗(t))u

While

M∗(t)u = M(t)u− 4η

n2m
(D(t)⊤F (t))X⊤Xu = M(t)u

=
2

mn
(∥A(t)∥2X⊤X+X⊤W⊤(t)W (t)X)u = 0
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Thus we have

D(t+ 1)⊤u = D(t)⊤(In − ηM∗(t))u = D(t)⊤u = ... = D(0)⊤u = 0

Lemma E.11. (Lemma C.7) Here we give the proof of the equation (17):

Λ∗(t+ 1)−Λ∗(t) = −8ηλ1

mn2

(
F (t)⊤D(t) + (F (t)⊤v1)(D(t)⊤v1)−

η

2
(D(t)⊤v1)

2Λ∗(t)

−η

2
R(t)⊤Γ(t)R(t)− ηR(t)⊤Γ(t)

(
v1v

⊤
1 D(t)

)
− η

mn
R(t)⊤

(m
d
X⊤X

)
R(t)

)
.

Proof. First, since W⊤W is initialized as m
d X

⊤X, by definition, we have

X⊤W⊤WX = mn
2 Γ(t) + m

d X
⊤X.

Then
Λ∗(t+ 1)− Λ∗(t)

=v⊤
1 M(t+ 1)v1 − v⊤

1 M(t)v1

=v⊤
1 (M(t+ 1)−M(t))v1

=− 8η

n2m

(
λ1F (t)⊤D(t) + λ1(F (t)⊤v1)(D(t)⊤v1)

)
+

8η2

n3m2

(
λ1D(t)⊤X⊤W⊤WXD(t) + ∥A∥2λ2

1(D(t)⊤v1)
2
)

Because

D(t)⊤X⊤W⊤WXD(t)

= D(t)⊤
(m
d
X⊤X+

mn

2
Γ(t)

)
D(t)

=
m

d
D(t)⊤

(
v1v

⊤
1 + I − v1v

⊤
1

)
X⊤X

(
D(t)⊤

(
v1v

⊤
1 + I − v1v

⊤
1

))⊤
+

mn

2
D(t)⊤Γ(t)D(t)

=
m

d
λ1(D(t)⊤v1)

2 +
m

d
R(t)⊤X⊤XR(t) +

mn

2
D(t)⊤Γ(t)D(t)

and
λ1

(m
d

+ ∥A∥2
)
=

mn

2
v⊤
1 (M(t)− Γ(t))v1 =

mn

2
Λ∗(t)− mn

2
v⊤
1 Γ(t)v1

we can see that

Λ∗(t+ 1)− Λ∗(t)

=− 8ηλ1

n2m

(
F (t)⊤D(t) + (F (t)⊤v1)(D(t)⊤v1)−

η

mn
(D(t)⊤v1)

2
(m
d

+ ∥A∥2
)
λ1·

− η

mn
· m
d
R(t)⊤X⊤XR(t)− η

2
D(t)⊤Γ(t)D(t)

)
=− 8ηλ1

mn2

(
F (t)⊤D(t) + (F (t)⊤v1)(D(t)⊤v1)−

η

2
(D(t)⊤v1)

2Λ∗(t)

+
η

2

(
v⊤
1 Γ(t)v1 · (D(t)⊤v1)

2 −D(t)⊤Γ(t)D(t)
)
− R(t)⊤

(m
d
X⊤X

)
R(t)

)
Note that

v1Γ(t)v
⊤
1 (D(t)⊤v1)

2 −D(t)⊤Γ(t)D(t)

=D(t)⊤v1v
⊤
1 Γ(t)v1v

⊤
1 D(t)−

(
R(t)⊤ +D(t)⊤v1v

⊤
1

)
Γ(t)

(
R(t) + v1v

⊤
1 D(t)

)
=−R(t)⊤Γ(t)R(t)− 2R(t)⊤Γ(t)

(
D(t)⊤v1v

⊤
1

)⊤
Now we finish the proof.
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Lemma E.12. (Equation 18) R(t+ 1) = (I − ηM∗(t))R(t) + η
(
v1v

⊤
1 Γ(t)− Γ(t)v1v

⊤
1

)
D(t)

Proof.

R(t+ 1) =
(
I − v1v

⊤
1

)
D(t+ 1)

=
(
I − v1v

⊤
1

)
(I − ηM∗(t))D(t)

=
(
I − v1v

⊤
1

)
(I − ηM∗(t))v1v

⊤
1 D(t)

+
(
I − v1v

⊤
1

)
(I − ηM∗(t))

(
I − v1v

⊤
1

)
D(t)

= (I − ηM∗(t))R(t)− v1v
⊤
1 (I − ηM∗(t))

(
I − v1v

⊤
1

)
D(t)

+
(
I − v1v

⊤
1

)
(I − ηM∗(t))v1v

⊤
1 D(t)

= (I − ηM∗(t))R(t)− v1v
⊤
1 (−ηΓ(t))

(
I − v1v

⊤
1

)
D(t)

+
(
I − v1v

⊤
1

)
(−ηΓ(t))v1v

⊤
1 D(t)

= (I − ηM∗(t))R(t) + η
(
v1v

⊤
1 Γ(t)− Γ(t)v1v

⊤
1

)
D(t)

F Missing Preliminaries

Hessian, Fisher information matrix and NTK: The Hessian of the objective L(f(θ)) is:

∇2
θL(f(θ)) =

1

n

n∑
i=1

∇2
θℓ(f(θ,xi))

We need the relationship between the Hessian matrix, the Fisher information matrix (FIM) and the
neural tangent kernel (NTK). As shown in Papyan [26], Martens [23], Bottou et al. [4], the Hessian
can be decomposed into two components:

∇2
θL(f(θ)) =

1

n

n∑
i=1

(
∂f(xi,θ)

∂θ

⊤
∂2ℓ(z, yi)

∂z2

∣∣∣∣
f(xi)

∂f(xi,θ)

∂θ
+

∂ℓ(z, yi)

∂z

∣∣∣∣
f(xi)

∇2
θf(xi,θ)

)

Here ∂f(xi,θ)
∂θ ∈ R1×p is the gradient of f . Papyan [26] also demonstrate empirically that the first

term, known as “Gauss-Newton matrix”, G-term or Fisher information matrix (FIM), dominates the
second term in terms of the largest eigenvalue. Thus when considering the sharpness, we can analyze
the largest eigenvalue of FIM which is a close proxy of the largest eigenvalue of Hessian. In the
binary MSE loss case, ∂2ℓ(z,yi)

∂z2

∣∣∣
f(xi)

= 2, which implies that

∥∥∇2
θL(f(θ))

∥∥
2
≈ ∥G∥2 :=

2

n

∥∥∥∥∥
n∑

i=1

∂f(xi,θ)

∂θ

⊤
∂f(xi,θ)

∂θ

∥∥∥∥∥
2

=
2

n

∥∥∥∥∥∂F (θ)

∂θ

⊤
∂F (θ)

∂θ

∥∥∥∥∥
2

where ∂F (θ)
∂θ :=

(
∂f(x1,θ)

∂θ

⊤
, ..., ∂f(xn,θ)

∂θ

⊤)⊤
∈ Rn×p. Meanwhile, Karakida et al. [16] pointed out

the duality between the FIM and a Gram matrix M , defined as

M =
2

n

∂F (θ)

∂θ

∂F (θ)

∂θ

⊤
(22)

It also known as the neural tangent kernel NTK (Karakida et al. [16, 15]), which has been studied
extensively in recent years (see e.g., [13],[8],[2],[5]). Note that in this paper, we do not assume the
training is in NTK regime, in which the Hessian does not change much during training. It is not hard
to see that M and FIM share the same non-zero eigenvalues: if Gu = λu for some eigenvector
u ∈ Rp,

M
∂F (θ)

∂θ
u =

∂F (θ)

∂θ
Gu = λ

∂F (θ)

∂θ
u,

in other words, λ is also an eigenvalue of M .
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Sharpness: There are various definitions of sharpness in the literature ([20, 30, 9]). In particular, a
popular definition of the sharpness is the largest eigenvalue of the Hessian ([30]). Based on the above
discussion, in this paper, we adopt the largest eigenvalue of M , Λ(θ) = λmax(M) as the definition
of the sharpness, which is a close approximation of the largest eigenvalue of the Hessian empirically.

Gradient Descent: In this paper, we study the trajectory of gradient descent and gradient flow
7. We use θ(t) to denote the parameter at iteration t (or time t) and the sharpness at time t as
Λ(t) = Λ(θ(t)). We similarly define M(t),F (t),D(t),L(t).
Along GD trajectory, the weight vector θ(t) is updated in the following way:

θ(t+ 1) = θ(t)− η
∂L(θ(t))
∂θ(t)

When the learning rate η is infinitesimal, the GD trajectory above is equivalent to gradient flow
trajectory. Here we show the gradient flow dynamics of the residual vector D(t):

dD(t)

dt
=

∂D(t)

∂θ

dθ(t)

dt
= −∂F (t)

∂θ

∂L(t)
∂θ

= − 2

n

∂F (t)

∂θ

∂F (t)

∂θ

⊤
D(t) = −M(t)D(t) (23)

In light of (23), we have the following approximate update rule of D(t) under gradient descent:

D(t+ 1)−D(t) ≈ −ηM(t)D(t)

7Gradient flow is a good approximation of gradient descent in the beginning of the training. See Cohen
et al. [6] for more experiments and Ahn et al. [1] for theoretical justification. We assume this fact during the
progressive sharpening phase. See Assumption 3.3.
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