
Dataset Distillation using Neural Feature Regression

Yongchao Zhou
Department of Computer Science

University of Toronto
yongchao.zhou@mail.utoronto.ca

Ehsan Nezhadarya
Toronto AI Lab

LG Electronics Canada
ehsan.nezhadarya@lge.com

Jimmy Ba
Department of Computer Science

University of Toronto
jba@cs.toronto.edu

Abstract

Dataset distillation aims to learn a small synthetic dataset that preserves most of
the information from the original dataset. Dataset distillation can be formulated
as a bi-level meta-learning problem where the outer loop optimizes the meta-
dataset and the inner loop trains a model on the distilled data. Meta-gradient
computation is one of the key challenges in this formulation, as differentiating
through the inner loop learning procedure introduces significant computation and
memory costs. In this paper, we address these challenges using neural Feature
Regression with Pooling (FRePo), achieving the state-of-the-art performance with
an order of magnitude less memory requirement and two orders of magnitude
faster training than previous methods. The proposed algorithm is analogous to
truncated backpropagation through time with a pool of models to alleviate various
types of overfitting in dataset distillation. FRePo significantly outperforms the
previous methods on CIFAR100, Tiny ImageNet, and ImageNet-1K. Furthermore,
we show that high-quality distilled data can greatly improve various downstream
applications, such as continual learning and membership inference defense. Please
check out our webpage at https://sites.google.com/view/frepo.

1 Introduction

Knowledge distillation [1] is a technique in deep learning to compress knowledge for easy deployment.
Most previous works focus on model distillation [2, 3] where the knowledge acquired by a large
teacher model is transferred to a small student model. In contrast, dataset distillation [4, 5] aims to
learn a small set of synthetic examples preserving most of the information from a large dataset such
that a model trained on it can achieve similar test performance as one trained on the original dataset.
Distilled data can accelerate model training and reduce the cost of storing and sharing a dataset.
Moreover, its highly condensed and synthetic nature can also benefit various applications, such as
continual learning [5–8], neural architecture search [5, 7], and privacy-preserving tasks [9, 10].

Dataset distillation was first studied by Maclaurin et al. [11] in the context of gradient-based hyperpa-
rameter optimization and subsequently Wang et al. [4] formally proposed dataset distillation as a new
task. Dataset distillation can be naturally formulated as a bi-level meta-learning problem. The inner
loop optimizes the model parameters on the distilled data (meta-parameters), while the outer loop
refines the distilled data with meta-gradient updates.

One key challenge in dataset distillation is computing the meta-gradient. Several methods [4, 11–13]
compute it by back-propagating through the unrolled computation graph, but they often suffer from

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/view/frepo

cup bottle can plate clock lamp

couch bed chair wardrobe telephone television

bicycle motorcycle pickup_truck bus tank rocket

mountain cloud sea plain road forest

orange pear apple maple_tree oak_tree palm_tree

bee beetle crab lion tiger wolf

(a) CIFAR100

espresso pizza basketball rugby ball maypole

ladybug fly monarch koala African elephant

go-kart sports car school bus bullet train lifeboat

obelisk flagpole water tower triumphal arch barn

magnetic compass teapot wok backpack rocking chair

(b) Tiny ImageNet

tench english springer cassette player church

french horn garbage truck golf ball parachute

english foxhound golden retriever rhodesian ridgeback old English sheepdog

australian terrier dingo Samoyed shih-tzu

(c) ImageNette and ImageWoof

Figure 1: Example distilled images from 32x32 CIFAR100, 64x64 Tiny ImageNet, and 128x128
ImageNet Subset. The images look real and transfer well to different architectures. They can be used
for various downstream applications, such as continual learning and membership inference defense.

huge compute and memory requirement [14], training instability [15, 16], and truncation bias [17].
To avoid unrolled optimization, surrogate objectives are used to derive the meta-gradient, such
as gradient matching [5, 7, 18], feature alignment [8, 19], and training trajectory matching [20].
Nevertheless, a surrogate objective may introduce its own bias [19], and thus, may not accurately
reflect the true objective. An alternative is using kernel methods, such as Neural Tangent Kernel
(NTK) [21], to approximate the inner optimization [22, 23]. However, computing analytical NTK for
modern neural network can be extremely expensive [22, 23].

Even with an accurate meta-gradient, dataset distillation still suffers from various types of overfitting.
For instance, the distilled data can easily overfit to a particular learning algorithm [4, 13, 20], a
certain stage of optimization [13, 19], or a certain network architecture [5, 7, 20, 22, 23]. Meanwhile,
the model can also overfit the distilled data during training, which is the most common cause of
overfitting when we train on a small dataset. All these kinds of overfitting impose difficulties on the
training and general-purpose use of the distilled data.

We propose an efficient meta-gradient computation method and a “model pool” to address the
overfitting problems. The bottleneck in meta-gradient computation arises due to the complexity of
inner optimization, as we need to know how the inner parameters vary with the outer parameters [24].
However, the inner optimization can be pretty simple if we only train the last layer of a neural network
to convergence while keeping the feature extractor fixed. In this case, computing the prediction on the
real data using the model trained on the distilled data can be expressed as a kernel ridge regression
(KRR) with respect to the conjugate kernel [25]. Hence, computing the meta-gradient is simply
back-propagating through the kernel and a fixed feature extractor. To alleviate overfitting, we propose
to maintain a diverse pool of models instead of periodically training and resetting a single model as in
prior work [7, 13, 18]. Intuitively, our algorithm targets the following question: what is the best data
to train the linear classifier given the current feature extractor? Due to the diverse feature extractors
we use, the distilled data generalize well to a wide range of model distributions.

Summary of Contributions:

• We propose an effective method for dataset distillation. Our method, named neural Feature
Regression with Pooling (FRePo), achieves state-of-the-art results on various benchmark
datasets with a 100x reduction in training time and a 10x reduction in GPU memory require-
ment. Our distilled data looks real (Figure 1) and transfers well to different architectures.

• We show that FRePo scales well to datasets with high-resolution images or complex label
space. We achieve 7.5% top1 accuracy on ImageNet-1K [26] using only one image per class.
The same classifier obtains only 1.1% accuracy from a random subset of real images. The
previous methods struggle in this task due to large memory and compute requirements.

• We demonstrate that high-quality distilled data can significantly improve various downstream
applications, such as continual learning and membership inference defense.

2

Forward Pass

(b) Unrolled Optimization(a) FRePo

Backward Pass

Distilled Dataset (outer-level opt.)

Model Parameters (inner-level opt.)

Figure 2: Comparison of FRePo and Unrolled Optimization. S, Xs, Ys are the distilled dataset,
images and labels. L is the meta-training loss and θpkq, gpkq are the model parameter and gradient
at step k. fpXq is the feature for input X and Kθ

XtXs
is the Gram matrix of Xt and Xs. FRePo is

analogous to 1-step TBPTT as it computes the meta-gradient at each step while performing the online
model update. However, instead of backpropagating through the inner optimization, FRePo computes
the meta-gradient through a kernel and feature extractor.

2 Method

2.1 Dataset Distillation as Bi-level Optimization

Suppose we have a large labeled dataset T “
␣

px1,y1q , . . . ,
`

x|T |,y|T |

˘(

with |T | image and label
pairs. Dataset distillation aims to learn a small synthetic dataset S “

␣

px1,y1q , . . . ,
`

x|S|,y|S|

˘(

that preserves most of the information in T . We train several neural networks parameterized by
θ on the dataset S and then compute the validation loss LpAlg pθ,Sq , T q on the real dataset T ,
where Alg pθ,Sq is the neural network parameters optimized by a learning algorithm Alg with the
model initialization θ and distilled dataset S as its inputs. The validation loss LpAlg pθ,Sq , T q is a
noisy objective with the stochasticity coming from random model initialization and inner learning
algorithm. Thus, we are interested in minimizing the expected value of this loss, which we denote it
as F pSq. We formulate the dataset distillation as the following bi-level optimization problem.

outer-level
hkkkkkkkkkkkikkkkkkkkkkkj

S˚ :“ argmin
S

F pSq, where F pSq “ Eθ„Pθ

„

L
´

inner-level
hkkkkikkkkj

Alg pθ,Sq , T
¯

ȷ

. (1)

In this bi-level setup, the outer loop optimizes the distilled data to minimize F pSq, while the inner
loop trains a neural network using the learning algorithm, Alg, to minimize the training loss on the
distilled data S. From the meta-learning perspective, the task is defined by the model initialization
θ, and we want to learn a meta-parameter S that generalizes well to different models sampled from
the model distributions Pθ. During learning, we optimize the meta-parameter S by minimizing the
meta-training loss F pSq. In contrast, at meta-test time, we train a new model from scratch on S and
evaluate the trained model on a held-out real dataset. This meta-test performance reflects the quality
of the distilled data.

2.2 Dataset Distillation using Neural Feature Regression with Pooling (FRePo)

The outer-level problem can be solved using gradient-based methods of the form S Ð S´α∇SF pSq,
where α is the learning rate for the distilled data and ∇SF pSq is the meta-gradient [27]. For a
particular model θ, the meta-gradient can be expressed as ∇SL pAlg pθ,Sq , T q. Computing this
meta-gradient requires differentiating through inner optimization. If Alg is an iterative algorithm
like gradient descent, then backpropagating through the unrolled computation graph [14] can be a
solution. However, this type of unrolled optimization introduces significant computation and memory
overhead, as the whole training trajectory needs to be stored in memory (Figure 2(b)).

Traditionally, these issues are alleviated with truncated backpropagation through time (TBPTT)
[28–30]. Instead of backpropagating through an entire unrolled sequence, TBPTT performs backprop-
agation for each subsequence separately. It is efficient because its time and memory complexity scale
linearly with respect to the truncation steps. However, truncation may yield highly biased gradients
that severely impact training. To mitigate this truncation bias [14], we consider training only the top
layer of a network to convergence. The key insight is that the data helpful for training the output
layer can also help train the whole network. Thus, we decompose the neural network into a feature

3

Algorithm 1 Dataset Distillation using Neural Feature Regression with Pooling (FRePo)

Require: T : a labeled dataset; α: the learning rate for the distilled data
Initialization: Initialize a labeled distilled dataset S “ pXs, Ysq.
Initialization: Initialize a model pool M with m models tθiu

m
i“1 randomly initialized from Pθ.

1: while not converged do
2: Ż Sample a model uniformly from the model pool: θi „ M.
3: Ż Sample a target batch uniformly from the labeled dataset: pXt, Ytq „ T .
4: Ż Compute the meta-training loss L using Eq. 2
5: Ż Update the distilled data S: Xs Ð Xs ´ α∇Xs

L, and Ys Ð Ys ´ α∇Ys
L

6: Ż Train the model θi on the current distilled data S for one step.
7: Ż Reinitialize the model θi „ Pθ if θi has been updated more than K steps.
8: end while

Output: Learned distilled dataset S “ pXs, Ysq

extractor and a linear classifier. We fix the feature extractor at each meta-gradient computation and
train the linear classifier to convergence before updating S . After that, we adjust the feature extractor
by training the whole network on the updated distilled data. We note that similar two-phase procedure
has been studied in the context of representation learning [31].

Meta-Gradient Computation: If we consider the mean square error loss, then the optimal weights
for the linear classifier have a closed-form solution. Moreover, since the feature dimension is typically
larger than the number of distilled data, we can use kernel ridge regression (KRR) with a conjugate
kernel [25] rather than solving the weights explicitly [12]. The resulting meta-training loss (Eq. 2) is
similar to that used in KIP [22, 23], but we use a more flexible kernel rather than NTK.

L pAlg pθ,Sq , T q “
1

2
||Yt ´ Kθ

XtXs
pKθ

XsXs
` λIq´1Ys||22, (2)

where pXt, Ytq and pXs, Ysq are the inputs and labels of the real data T and distilled data S respec-
tively. The Gram matrix between real inputs and distilled inputs is denoted as Kθ

XtXs
P R|T |ˆ|S|,

while the Gram matrix between distilled inputs is denoted as Kθ
XsXs

P R|S|ˆ|S|. λ controls the regu-
larization strength for KRR. Let us denote the neural network feature for a given input X and model
parameter θ as fpX, θq P RNˆd, where N is the number of input and d is the feature dimension 1.
The conjugate kernel is defined by the inner product of the neural network features. Thus, the two
Gram matrices are computed as follows:

Kθ
XtXs

“ fpXt, θqfpXs, θqJ, Kθ
XsXs

“ fpXs, θqfpXs, θqJ, (3)

Now, computing the meta-gradient ∇SL pAlg pθ,Sq , T q is just back-propagating through the con-
jugate kernel and a fixed feature extractor, which is very efficient and takes even fewer operations
than computing the gradient for the network’s weights. Moreover, we decouple the meta-gradient
computation from the model online update. Hence, we can train the online model using any optimizer,
and the distilled data will be agnostic to the specific learning algorithm choice. Our proposed method
is similar to 1-step TBPTT in that we compute the meta-gradient at each step while performing the
online model update. Unlike the conventional 1-step TBPTT, we compute the meta-gradient using a
KRR output layer to mitigate truncation bias, illustrated in Figure 2(a).

Model Pool: As discussed in Section 1, there are various types of overfitting in dataset distillation.
Several techniques have been proposed to alleviate such problem, such as random initialization [4],
periodic reset [13, 5, 7], and dynamic bi-level optimization [19]. These techniques share the same
underlying principle: the model diversity matters. Thus, we propose to maintain a “model pool”
filled with diverse set of parameters obtained from different number of training steps and different
random initializations. Unlike the previous methods that periodically training and resetting a single
model, FRePo randomly sample a model from the pool at each meta-gradient computation and update
it using the current distilled data. However, if a model has been updated more than K steps, we
reinitialize it with a new random seed. From the meta-learning perspective, we maintain a diverse

1In practice, we use all the synthetic data and sample a minibatch from the real dataset to compute the
meta-gradient (Algorithm 1).

4

set of meta-tasks to sample from and avoid sampling very similar tasks at each consecutive gradient
computation to avoid overfitting to a particular setup.

Pool Diversity: We can increase the regularization strength by increasing the diversity of the model
pool by setting a larger K, using data augmentation when training the model on the distilled data, or
using models with different architectures. To keep our method simple, we use the same architecture
for all models in the pool and do not use any data augmentation when training the model on the
distilled data. Thus, our model pool only contains models with different initialization, at different
optimization stages, and trained at different time-step of the distilled data.

3 Related Work

Unrolling in Bi-Level Optimization: One way to compute the meta-gradient is to differentiate
through the unrolled inner optimization [4, 11–13]. However, this approach inherits several difficulties
of the unrolled optimization, such as: 1) large computation and memory cost [14]; 2) truncation
bias with short unrolls [17]; 3) exploding or vanishing gradients with long unrolls [15]; 4) chaotic
and poorly conditioned loss landscapes with long unrolls [16]. In contrast, our method considers
approximating the inner optimization with kernel ridge regression instead of unrolled optimization.

Surrogate Objective: To avoid unrolled optimization, several works turn to surrogate objectives.
DC [5], DSA [7], and DCC [18] formulate the dataset distillation as a gradient matching problem
between the gradients of neural network weights computed on the real and distilled data. In contrast,
DM [8] and CAFE [19] consider the feature distribution alignment between the real and distilled data.
Moreover, MTT [20] shows that knowledge from many expert training trajectories can be distilled to
a dataset by using a training trajectory matching objective. Nevertheless, surrogate objectives may
introduce new biases and thus, may not accurately reflect the true objective. For example, gradient
matching approaches [5, 7, 18] only focus on short-range behavior and may easily overfit to a biased
set of samples that produce dominant gradients [19, 20].

Closed-form Approximation: An alternative way to circumvent unrolled optimization is to find a
closed-form approximation to the inner optimization. Based on the correspondence between infinitely-
wide neural networks and kernel methods, KIP [22, 23] approximates the inner optimization with
NTK [21]. In this case, the meta-gradient can be computed by back-propagating through the NTK.
However, computing NTK for modern neural networks is extremely expensive. Thus, using NTK
for dataset distillation requires thousands of GPU hours and sophisticated implementation of the
distributed kernel computation framework [23]. Similar to ours, Bohdal et al. [12] also decomposes
the neural network as a feature extractor and a linear classifier. However, they only learn the label
and explicitly solve for the optimal classifier weights rather than perform KRR.

4 Dataset Distillation

4.1 Implementation Details

We compare our method to four state-of-the-art dataset distillation methods [7, 8, 20, 23] on various
benchmark datasets [26, 32–37]. We train the distilled data using Algorithm 1 with the same set of
hyperparameters for all experiments except stated otherwise. Unlike prior work [7, 8, 20], we do not
apply data augmentation during training. However, we apply the same data augmentation [7, 20]
during evaluation for a fair comparison. We preprocess the data in a similar way as in previous works
[20, 23] but use a wider architecture than previous works [7, 8, 20] because the KRR component does
not behave well when the feature dimension is low, resulting in a significant performance drop for our
method. Results on the original architecture are included in Appendix ??. We evaluate each distilled
data using five random neural networks and report the mean and standard deviation. For the baseline
method, we report the best of the reported value in the original paper and our reproducing results.

For the sake of brevity, we provide implementation details about data preprocessing, distilled data
initialization, and hyperparameters in Appendix ?? and various ablation studies regarding the model
pool, batch size, distilled data initialization, label learning, and model architectures in Appendix
??. More distilled image visualizations can be found in Appendix ??. Our code is available at
https://github.com/yongchao97/FRePo.

5

https://github.com/yongchao97/FRePo

Table 1: Test accuracies of models trained on the distilled data from scratch. : denotes performance
better than the original reported performance. KRR preformance is shown in bracket. FRePo performs
extremely well for one image per class setting on CIFAR100, Tiny ImageNet and CUB-200.

Img/Cls DSA [7] DM [8] KIP [23] MTT [20] FRePo

MNIST
1 88.7 ˘ 0.6 89.9 ˘ 0.8: 90.1 ˘ 0.1 91.4 ˘ 0.9: 93.0 ˘ 0.4 p92.6 ˘ 0.4q

10 97.9 ˘ 0.1: 97.6 ˘ 0.1: 97.5 ˘ 0.0 97.3 ˘ 0.1: 98.6 ˘ 0.1 p98.6 ˘ 0.1q

50 99.2 ˘ 0.1 98.6 ˘ 0.1 98.3 ˘ 0.1 98.5 ˘ 0.1: 99.2 ˘ 0.0 p99.2 ˘ 0.1q

F-MNIST
1 70.6 ˘ 0.6 71.5 ˘ 0.5: 73.5 ˘ 0.5 75.1 ˘ 0.9: 75.6 ˘ 0.3 p77.1 ˘ 0.2q

10 84.8 ˘ 0.3: 83.6 ˘ 0.2: 86.8 ˘ 0.1 87.2 ˘ 0.3: 86.2 ˘ 0.2 p86.8 ˘ 0.1q

50 88.8 ˘ 0.2: 88.2 ˘ 0.1: 88.0 ˘ 0.1 88.3 ˘ 0.1: 89.6 ˘ 0.1 p89.9 ˘ 0.1q

CIFAR10
1 36.7 ˘ 0.8: 31.0 ˘ 0.6: 49.9 ˘ 0.2 46.3 ˘ 0.8 46.8 ˘ 0.7 p47.9 ˘ 0.6q

10 53.2 ˘ 0.8: 49.2 ˘ 0.8: 62.7 ˘ 0.3 65.3 ˘ 0.7 65.5 ˘ 0.4 p68.0 ˘ 0.2q

50 66.8 ˘ 0.4: 63.7 ˘ 0.5: 68.6 ˘ 0.2 71.6 ˘ 0.2 71.7 ˘ 0.2 p74.4 ˘ 0.1q

CIFAR100
1 16.8 ˘ 0.2: 12.2 ˘ 0.4: 15.7 ˘ 0.2 24.3 ˘ 0.3 28.7 ˘ 0.1 p32.3 ˘ 0.1q

10 32.3 ˘ 0.3 29.7 ˘ 0.3 28.3 ˘ 0.1 40.1 ˘ 0.4 42.5 ˘ 0.2 p44.9 ˘ 0.2q

50 42.8 ˘ 0.4 43.6 ˘ 0.4 ´ 47.7 ˘ 0.2 44.3 ˘ 0.2 p43.0 ˘ 0.3q

T-ImageNet 1 6.6 ˘ 0.2: 3.9 ˘ 0.2 ´ 8.8 ˘ 0.3 15.4 ˘ 0.3 p19.1 ˘ 0.3q

10 ´ 12.9 ˘ 0.4 ´ 23.2 ˘ 0.2 25.4 ˘ 0.2 p26.5 ˘ 0.1q

CUB-200 1 1.3 ˘ 0.1: 1.6 ˘ 0.1:
´ 2.2 ˘ 0.1: 12.4 ˘ 0.2 p13.7 ˘ 0.2q

10 4.5 ˘ 0.3: 4.4 ˘ 0.2:
´ ´ 16.8 ˘ 0.1 p16.1 ˘ 0.3q

0 200 400 600 800 1000

5

10

15

20

25

MTT
DSA
DM
FRePo

Wall Clock Time (s)

Te
st

 A
cc

ur
ac

y
(%

)

(a) Test Acc

1 3 10 30 100 300 1000 3000

5

10

15

20

25

MTT
DSA
DM
FRePo

Wall Clock Time (s)

Te
st

 A
cc

ur
ac

y
(%

)

(b) Test Acc (Log Scale)

16 32 64 128 256 512

0.01

0.03

0.1

0.3

1

3

MTT
DSA
DM
FRePo

Model Width

Ti
m

e
pe

r S
te

p
(s

)

(c) Time Per Step

16 32 64 128 256 512

0.1

0.3

1

3

10

30

MTT
DSA
DM
FRePo

Model Width

Pe
ak

 G
PU

 M
em

or
y

U
sa

ge
 (G

B
)

(d) GPU Memory Usage

Figure 3: (a,b) Training efficiency comparison when learning 1 Img/Cls on CIFAR100. (c,d) Time per
iteration and peak memory usage as we increase the model size. FRePo is significantly more efficient
than the previous methods, almost two orders of magnitude faster than the second-best method (i.e.,
MTT), with only 1/10 of the GPU memory requirement.

4.2 Standard Benchmarks

Distillation Performance: We first evaluate our method on six standard benchmark datasets. We
learn 1, 10, and 50 images per class for datasets with only ten classes, while we learn 1 and 10
images per class for CIFAR100 [34] with 100 classes, Tiny ImageNet [35] with 200 classes, and
CUB-200 [37] with 200 fine-grained classes. As shown in Table in 1, we achieve the state-of-the-art
performance in most settings despite the hyperparameter may be suboptimal. Our method performs
exceptionally well on datasets with a complex label space when learning few images per class. For
example, we improve the CIFAR100, Tiny ImageNet, and CUB-200 in one image per class setting
from 24.3%, 8.8%, and 2.2% to 28.7%, 15.4%, and 12.4%, respectively. Figure 4 shows that our
distilled images look real and natural though we do not directly optimize for this objective. We
observe a strong correlation between the test accuracy and image quality: the better the image quality,
the higher the test accuracy. Our results suggest that a highly condensed dataset does not need to be
very different from the real dataset as it may just reflect the most common pattern in a dataset. We
also report the KRR predictor’s test accuracy using the feature extractor trained on the distilled data.
When the dataset is as simple as MNIST [32], the KRR predictor achieves similar performance as
the neural network predictor. In contrast, for more complex datasets, the KRR predictor consistently
outperforms the neural network predictor, with the most significant gap being 3.7% for Tiny ImageNet
in the one image per class setting.

6

Table 2: Cross-architecture transfer performance on CIFAR10 with 10 Img/Cls. Despite being trained
for a specific architecture, our distilled data transfer well to various architectures unseen during
training. Conv is the default evaluation model used for each method. NN, DN, IN, and BN stand for
no normalization, default normalization, Instance Normalization, Batch Normalization respectively.

Train Arch
Evaluation Architecture

Conv Conv-NN ResNet-DN ResNet-BN VGG-BN AlexNet

DSA [7] Conv-IN 53.2 ˘ 0.8 36.4 ˘ 1.5 42.1 ˘ 0.7 34.1 ˘ 1.4 46.3 ˘ 1.3 34.0 ˘ 2.3
DM [8] Conv-IN 49.2 ˘ 0.8 35.2 ˘ 0.5 36.8 ˘ 1.2 35.5 ˘ 1.3 41.2 ˘ 1.8 34.9 ˘ 1.1

MTT [20] Conv-IN 64.4 ˘ 0.9 41.6 ˘ 1.3 49.2 ˘ 1.1 42.9 ˘ 1.5 46.6 ˘ 2.0 34.2 ˘ 2.6
KIP [23] Conv-NTK 62.7 ˘ 0.3 58.2 ˘ 0.4 49.0 ˘ 1.2 45.8 ˘ 1.4 30.1 ˘ 1.5 57.2 ˘ 0.4
FRePo Conv-BN 65.5 ˘ 0.4 65.5 ˘ 0.4 58.1 ˘ 0.6 57.7 ˘ 0.7 59.4 ˘ 0.7 61.9 ˘ 0.7

apple aquarium_fish baby bear beaver bed bee beetle bicycle bottle

bowl boy bridge bus butterfly camel can castle caterpillar cattle

chair chimpanzee clock cloud cockroach couch crab crocodile cup dinosaur

dolphin elephant flatfish forest fox girl hamster house kangaroo keyboard

lamp lawn_mower leopard lion lizard lobster man maple_tree motorcycle mountain

mouse mushroom oak_tree orange orchid otter palm_tree pear pickup_truck pine_tree

plain plate poppy porcupine possum rabbit raccoon ray road rocket

rose sea seal shark shrew skunk skyscraper snail snake spider

squirrel streetcar sunflower sweet_pepper table tank telephone television tiger tractor

train trout tulip turtle wardrobe whale willow_tree wolf woman worm

(a) FRePo

apple aquarium_fish baby bear beaver bed bee beetle bicycle bottle

bowl boy bridge bus butterfly camel can castle caterpillar cattle

chair chimpanzee clock cloud cockroach couch crab crocodile cup dinosaur

dolphin elephant flatfish forest fox girl hamster house kangaroo keyboard

lamp lawn_mower leopard lion lizard lobster man maple_tree motorcycle mountain

mouse mushroom oak_tree orange orchid otter palm_tree pear pickup_truck pine_tree

plain plate poppy porcupine possum rabbit raccoon ray road rocket

rose sea seal shark shrew skunk skyscraper snail snake spider

squirrel streetcar sunflower sweet_pepper table tank telephone television tiger tractor

train trout tulip turtle wardrobe whale willow_tree wolf woman worm

(b) MTT [20]

apple aquarium_fish baby bear beaver bed bee beetle bicycle bottle

bowl boy bridge bus butterfly camel can castle caterpillar cattle

chair chimpanzee clock cloud cockroach couch crab crocodile cup dinosaur

dolphin elephant flatfish forest fox girl hamster house kangaroo keyboard

lamp lawn_mower leopard lion lizard lobster man maple_tree motorcycle mountain

mouse mushroom oak_tree orange orchid otter palm_tree pear pickup_truck pine_tree

plain plate poppy porcupine possum rabbit raccoon ray road rocket

rose sea seal shark shrew skunk skyscraper snail snake spider

squirrel streetcar sunflower sweet_pepper table tank telephone television tiger tractor

train trout tulip turtle wardrobe whale willow_tree wolf woman worm

(c) DSA [7]

10 1 100

sunflower
poppy

bee
porcupine
cockroach

tulip

10 1 100

girl
woman

man
boy

baby
possum

10 1 100

Unnormalized Logits

bear
beaver

skyscraper
otter
seal

turtle

(d) Label Visualization

Figure 4: (a,b,c) Distilled 1 img/cls from CIFAR100 using FRePo, MTT, and DSA. High quality
images also produce high test accuracy. (d) Three categories of learned labels. (Top) High confidence,
large margin; (Middle) High confidence, small margin; (Bottom) Low confidence, small margin.

Label Learning: A similar trend can also be observed for label learning. When the dataset is simple
and has only a few classes, label learning may not be necessary. However, it becomes crucial for
complex datasets with many labels, such as CIFAR100 and Tiny-ImageNet (See more details in
Appendix ??). Similar to the teacher label in the knowledge distillation [1], we observe that the
distilled label also encodes the class similarity. We identify three typical cases in Figure 4d. The
first group consists of highly confident labels with a much higher value for one class than other
classes (large margin), such as sunflower, bicycle, and chair. In contrast, the distilled labels in the
second group are confident but may get confused with some closely-related classes (small margin).
For instance, the learned label for "girl" has almost equally high values for the girl, woman, man,
boy, and baby, suggesting that these classes are very similar and may be difficult for the model to
distinguish them apart. The last group contains distilled labels with low values for all classes, such
as bear, beaver, and squirrel. It is often hard for humans to recognize the distilled images in such a
group, suggesting that they may be the challenging classes in a dataset.

Training Cost Analysis: Figure 3a, 3b shows that our method is significantly more time-efficient
than the previous methods. When learning one image per class on CIFAR100, FRePo reaches a
similar test accuracy (23.4%) to the second-best method (24.0%) in 38 seconds, compared to 3805
seconds for MTT, which is roughly two orders of magnitude faster. Moreover, FRePo achieves 92%
of its final test accuracy (26.4% out of 28.7%) in only 385 seconds. As shown in Figure 3c, our
algorithm takes much less time to perform one gradient step on the distilled data. Thus, we can
perform more gradient steps in a fixed time. Furthermore, Figure 3d suggests that our algorithm has
much less GPU memory requirement. Therefore, we can potentially use a much larger and more
complex model to take advantage of the advancement in neural network architecture.

Cross-Architecture Generalization: One desired property of our distilled data is that it generalizes
well to architecture it has not seen during the training. Similar to previous works [5, 20], we evaluate
the distilled data from CIFAR10 on a wide range of architectures which it has not seen during training,
including AlexNet [38], VGG [39], and ResNet [40]. Table 2 shows that our method outperforms
previous methods on all unseen architectures. Instance Normalization (IN) [41], as the vital ingredient
in several methods (DSA, DM, MTT), seems to hurt the cross-architecture transfer. The performance

7

Table 3: Distillation performance on higher resolution (128x128) dataset (i.e. ImageNette, Image-
Woof) and medium resolution (64x64) dataset with a complex label space (i.e. ImageNet-1K). FRePo
scales to high-resolution images and learns the discriminate feature of complex datasets.

ImageNette (128x128) ImageWoof (128x128) ImageNet (64x64)

Img/Cls 1 10 1 10 1 2

Random Subset 23.5 ˘ 4.8 47.7 ˘ 2.4 14.2 ˘ 0.9 27.0 ˘ 1.9 1.1 ˘ 0.1 1.4 ˘ 0.1
MTT [20] 47.7 ˘ 0.9 63.0 ˘ 1.3 28.6 ˘ 0.8 35.8 ˘ 1.8 ´ ´

FRePo 48.1 ˘ 0.7 66.5 ˘ 0.8 29.7 ˘ 0.6 42.2 ˘ 0.9 7.5 ˘ 0.3 9.7 ˘ 0.2

degrades a lot when no normalization (NN) is applied (Conv-NN, AlexNet) or using a different
normalization, like Batch Normalization (BN) [42]. It suggests that the distilled data generated by
those methods encode the inductive bias of a particular training architecture. In contrast, our distilled
data generalize well to various architectures, including those without normalization (Conv-NN,
AlexNet). Note that Figure 1, 4 also indicate that our distilled data encode less architectural bias as
the distilled images look natural and authentic. A simple idea to further alleviate the overfitting of a
particular architecture is to include more architectures in the model pool. However, the training may
not be stable as the meta-gradient computed by different architectures can be very different.

4.3 ImageNet

High Resolution ImageNet Subset To understand how well our method performs on high-resolution
images, we evaluate it on ImageNette and ImageWoof datasets [36] with a resolution of 128x128. We
learn 1 and 10 images per class on both datasets and report the performance in Table 3 and visualize
some distilled images in Figure 1. As shown in Table 3, we outperform MTT on all settings and
achieve much better performance when we distill ten images per class on a more difficult dataset
ImageWoof. It suggests that our distilled data is better at capturing the discriminative features for
each class. Figure 1 shows that our distilled images look real and capture the distinguishable feature
of different classes. For the easy dataset (i.e., ImageNette), all images have clear different structures,
while for ImageWoof, the texture of each dog seems to be crucial.

Resized ImageNet-1K: We also evaluate our method on a resized version of ILSVRC2012 [26] with
a resolution of 64x64 to see how it performs on a complex label space. Surprisingly, we can achieve
7.5% and 9.7% Top1 accuracy using only 1k and 2k training examples, compared to 1.1% and 1.4%
using an equally-sized real subset.

5 Application

5.1 Continual Learning

Continual learning (CL) [43] aims to address the catastrophic forgetting problem [43–45] when a
model learns sequentially from a stream of tasks. A commonly used strategy to recall past knowledge
is based on a replay buffer, which stores representative samples from previous tasks [46–49]. Since
sample selection is an important component of constructing an effective buffer [48–51], we believe
distilled data can be a key ingredient for a continual learning algorithm due to its highly condensed
nature. Several works [6–8, 52] have successfully applied the dataset distillation to the continual
learning scenario. Our work shows that we can achieve much better results by using a better dataset
distillation technique.

We follow Zhao and Bilen [8] that sets up the baseline based on GDumb [49] which greedily stores
class-balanced training examples in memory and train model from scratch on the latest memory only.
In that case, the continual learning performance only depends on the quality of the replay buffer. We
perform 5 and 10 step class-incremental learning [53] on CIFAR100 with an increasing buffer size
of 20 images per class. Specifically, we distill 400 and 200 images at each step and put them into
the replay buffer. We follow the same class split as Zhao and Bilen [8] and compare our method to
random [49], herding [54, 55], DSA [7], and DM [8]. We use the default data preprocessing and
default model for each method in this experiment as we find it gives the best performance for each
method. We use the test accuracy on all observed classes as the performance measure [8, 48].

8

Table 4: AUC of five attackers on models trained on the real and distilled MNIST data. The model
trained on the real data is vulnerable to MIAs, while the model trained on the distilled data is robust
to MIAs. Training on distilled data allows privacy preservation while retaining model performance.

Test Acc (%)
Attack AUC

Threshold LR MLP RF KNN

Real 99.2 ˘ 0.1 0.99 ˘ 0.01 0.99 ˘ 0.00 1.00 ˘ 0.00 1.00 ˘ 0.00 0.97 ˘ 0.00
Subset 96.8 ˘ 0.2 0.52 ˘ 0.00 0.50 ˘ 0.01 0.53 ˘ 0.01 0.55 ˘ 0.00 0.54 ˘ 0.00
DSA 98.5 ˘ 0.1 0.50 ˘ 0.00 0.51 ˘ 0.00 0.54 ˘ 0.00 0.54 ˘ 0.01 0.54 ˘ 0.01
DM 98.3 ˘ 0.0 0.50 ˘ 0.00 0.51 ˘ 0.01 0.54 ˘ 0.01 0.54 ˘ 0.01 0.53 ˘ 0.01

FRePo 98.5 ˘ 0.1 0.52 ˘ 0.00 0.51 ˘ 0.00 0.53 ˘ 0.01 0.52 ˘ 0.01 0.51 ˘ 0.01

20 40 60 80 100

30

40

50

60

70
Random
Herding
DSA
DM
FRePo

Number of Classes

Te
st

 A
cc

ur
ac

y
(%

)

(a) 5-step CL

20 40 60 80 100

30

40

50

60

70

80
Random
Herding
DSA
DM
FRePo

Number of Classes

Te
st

 A
cc

ur
ac

y
(%

)

(b) 10-step CL

125 250 500 1k 2k 4k 8k 16k

95

96

97

98

99

Real
Subset
DSA
DM
FRePo

Training Steps

Te
st

 A
cc

ur
ac

y
(%

)

(c) MIA: ACC

125 250 500 1k 2k 4k 8k 16k

0.5

0.6

0.7

0.8

0.9

1
Real
Subset
DSA
DM
FRePo

Training Steps

A
tta

ck
 A

U
C

(d) MIA: AUC

Figure 5: (a,b) Multi-class accuracies across all classes observed up to a certain time point. We
perform significantly better than other methods in both 5 and 10 step class-incremental continual
learning. (c,d) Test accuracy and attack AUC as we increase the number of training steps. AUC keeps
increasing when training a model on the real data for more steps. In contrast, AUC keeps low when
training on distilled data.

Figure 5 shows that our method performs significantly better than all previous methods. The final
test accuracy for all classes for our method (FRePo) and the second-best method (DM) are 41.6%,
33.9% in 5-step learning, and 38.0%, 34.0% in 10-step learning. However, we notice that for FRePo,
distilling 2000 images in a continual learning setup achieves a similar test accuracy (41.6%) as
distilling only 1000 images from the whole dataset (41.3% from Table 1). In addition, performance
drops as we perform more steps. It suggests that FRePo considers all available classes to derive
the most condensed dataset. Splitting the data into multiple groups and performing independent
distillation may generate redundant information or fail to capture the distinguishable features.

5.2 Membership Inference Defense

Membership inference attacks (MIA) aim to infer whether a given data point has been used to train
the model or not [56–58]. Ideally, we want a model to learn from the data but not memorize it to
preserve privacy. However, deep neural networks are well-known for their ability to memorize all
the training examples, even on large and randomly labeled datasets [59]. Several methods have been
proposed to defend against such attacks by either modifying the training procedure [60] or changing
the inference workflow [61]. This section shows that the distilled data contain little information
regarding sample presence in the original dataset. Thus, instead of training on the original datasets,
training on distilled data allows privacy preservation while retaining model performance.

We consider three distilled data generated by DSA [7], DM [8] and FRePo. We perform five popular
"black box" MIA provided by Tensorflow Privacy [62] on models trained on the real data or the data
distilled from it. The attack methods include a threshold attack and four model-based attacks using
logistic regression (LR), multi-layer perceptron (MLP), random forest (RF) and K-nearest neighbor
(KNN). The inputs to those attack methods are ground-truth labels, model predictions, and losses. To
measure the privacy vulnerability of the trained model, we compute the area under the ROC curve
(AUC) of an attack classifier. Following prior work, [56, 63], we keep a balanced set of training
examples (member) and test examples (non-member) with 10K each to maximize the uncertainty of
MIA. Thus, the random guessing strategy results in a 50% MIA accuracy. We conduct experiments
on MNIST and FashionMNIST with a distillation size of 500. For space reasons, we provide more
implementation details and results in appendix.

9

As shown in Table 4, all models trained on the distilled data preserve privacy as their attack AUCs
are closed to random guessing. However, we observe a small drop in test accuracy compared to
the model trained on the full dataset, which is expected as we only distill 500 examples instead of
10,000 examples. Compared to the model trained on an equally sized subset of the original data, the
model trained on distilled data results in much better test performance. Figure 5c, 5d demonstrate the
trade-off between test accuracy and attack effectiveness as measured by ROC AUC. It shows that
early stopping can be an effective technique to preserve privacy. However, we will still be under high
MIA risk if we perform early stopping by monitoring the validation loss. In contrast, training a model
on the distilled data does not have this problem as the attack AUCs keep at a very low level regardless
of training steps.

6 Conclusion

We propose neural Feature Regression with Pooling (FRePo) to overcome two challenges in dataset
distillation: meta-gradient computation and various types of overfitting in dataset distillation. We
obtain state-of-the-art performance on various datasets with a 100x reduction in training time and
a 10x reduction in GPU memory requirement. The distilled data generated by FRePo looks real
and natural and generalizes well to a wide range of architectures. Furthermore, we demonstrate two
applications that take advantage of the high-quality distilled data, namely, continual learning and
membership inference defense.

Broader Impact “Synthetic data”, in the broader sense of artificial data created by generative models,
can help researchers understand how an otherwise opaque learning machine “sees” the world. There
have been concerns regarding the risk of fake data. This paper explores a new research direction
in generating synthetic data only for downstream classification tasks. We believe this work can
provide additional interpretability and potentially address the common concerns in machine learning
regarding training data privacy.

Acknowledgments and Disclosure of Funding

We would like to thank Harris Chan, Andrew Jung, Michael Zhang, Philip Fradkin, Denny Wu, Chong
Shao, Leo Lee, Alice Gao, Keiran Paster, and Lazar Atanackovic for their valuable feedback. Jimmy
Ba was supported by NSERC Grant [2020-06904], CIFAR AI Chairs program, Google Research
Scholar Program and Amazon Research Award. This project was supported by LG Electronics
Canada. Resources used in preparing this research were provided, in part, by the Province of Ontario,
the Government of Canada through CIFAR, and companies sponsoring the Vector Institute for
Artificial Intelligence.

References
[1] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural

network. CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

[2] Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel Thomas, Jia Cui, and Bhuvana Ram-
abhadran. Efficient knowledge distillation from an ensemble of teachers. In Francisco Lacerda,
editor, Interspeech 2017, 18th Annual Conference of the International Speech Communication
Association, Stockholm, Sweden, August 20-24, 2017, pages 3697–3701. ISCA, 2017. URL
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0614.html.

[3] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and
quantization. In 6th International Conference on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=S1XolQbRW.

[4] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation.
CoRR, abs/1811.10959, 2018. URL http://arxiv.org/abs/1811.10959.

[5] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient match-
ing. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,

10

http://arxiv.org/abs/1503.02531
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0614.html
https://openreview.net/forum?id=S1XolQbRW
http://arxiv.org/abs/1811.10959

Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=mSAKhLYLSsl.

[6] Andrea Rosasco, Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, and Davide Bacciu.
Distilled replay: Overcoming forgetting through synthetic samples. CoRR, abs/2103.15851,
2021. URL https://arxiv.org/abs/2103.15851.

[7] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of
Machine Learning Research, pages 12674–12685. PMLR, 2021. URL http://proceedings.
mlr.press/v139/zhao21a.html.

[8] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. CoRR,
abs/2110.04181, 2021. URL https://arxiv.org/abs/2110.04181.

[9] Guang Li, Ren Togo, Takahiro Ogawa, and Miki Haseyama. Soft-label anonymous gastric
x-ray image distillation. CoRR, abs/2104.02857, 2021. URL https://arxiv.org/abs/2104.
02857.

[10] Jack Goetz and Ambuj Tewari. Federated learning via synthetic data. CoRR, abs/2008.04489,
2020. URL https://arxiv.org/abs/2008.04489.

[11] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter
optimization through reversible learning. In Francis R. Bach and David M. Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 2113–
2122. JMLR.org, 2015. URL http://proceedings.mlr.press/v37/maclaurin15.html.

[12] Ondrej Bohdal, Yongxin Yang, and Timothy M. Hospedales. Flexible dataset distillation: Learn
labels instead of images. CoRR, abs/2006.08572, 2020. URL https://arxiv.org/abs/
2006.08572.

[13] Ilia Sucholutsky and Matthias Schonlau. Improving dataset distillation. CoRR, abs/1910.02551,
2019. URL http://arxiv.org/abs/1910.02551.

[14] Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in un-
rolled computation graphs with persistent evolution strategies. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Re-
search, pages 10553–10563. PMLR, 2021. URL http://proceedings.mlr.press/v139/
vicol21a.html.

[15] Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference
Proceedings, pages 1310–1318. JMLR.org, 2013. URL http://proceedings.mlr.press/
v28/pascanu13.html.

[16] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, and Jascha Sohl-
Dickstein. Understanding and correcting pathologies in the training of learned optimizers. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 4556–4565. PMLR, 2019.
URL http://proceedings.mlr.press/v97/metz19a.html.

[17] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger B. Grosse. Understanding short-horizon bias
in stochastic meta-optimization. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=H1MczcgR-.

[18] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset
condensation with contrastive signals. CoRR, abs/2202.02916, 2022. URL https://arxiv.
org/abs/2202.02916.

11

https://openreview.net/forum?id=mSAKhLYLSsl
https://openreview.net/forum?id=mSAKhLYLSsl
https://arxiv.org/abs/2103.15851
http://proceedings.mlr.press/v139/zhao21a.html
http://proceedings.mlr.press/v139/zhao21a.html
https://arxiv.org/abs/2110.04181
https://arxiv.org/abs/2104.02857
https://arxiv.org/abs/2104.02857
https://arxiv.org/abs/2008.04489
http://proceedings.mlr.press/v37/maclaurin15.html
https://arxiv.org/abs/2006.08572
https://arxiv.org/abs/2006.08572
http://arxiv.org/abs/1910.02551
http://proceedings.mlr.press/v139/vicol21a.html
http://proceedings.mlr.press/v139/vicol21a.html
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v28/pascanu13.html
http://proceedings.mlr.press/v97/metz19a.html
https://openreview.net/forum?id=H1MczcgR-
https://arxiv.org/abs/2202.02916
https://arxiv.org/abs/2202.02916

[19] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang,
Hakan Bilen, Xinchao Wang, and Yang You. CAFE: learning to condense dataset by aligning
features. CoRR, abs/2203.01531, 2022. doi: 10.48550/arXiv.2203.01531. URL https:
//doi.org/10.48550/arXiv.2203.01531.

[20] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. CoRR, abs/2203.11932, 2022. doi:
10.48550/arXiv.2203.11932. URL https://doi.org/10.48550/arXiv.2203.11932.

[21] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as
linear models under gradient descent. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 8570–8581, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
0d1a9651497a38d8b1c3871c84528bd4-Abstract.html.

[22] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=l-PrrQrK0QR.

[23] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation
with infinitely wide convolutional networks. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 5186–5198, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
299a23a2291e2126b91d54f3601ec162-Abstract.html.

[24] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In Silvia Chiappa and Roberto Calandra, editors, The 23rd International
Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online
[Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pages 1540–
1552. PMLR, 2020. URL http://proceedings.mlr.press/v108/lorraine20a.html.

[25] Radford M. Neal. Bayesian learning for neural networks. 1995.

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[27] Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-learning
with implicit gradients. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 113–124, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
072b030ba126b2f4b2374f342be9ed44-Abstract.html.

[28] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990. doi: 10.1109/5.58337.

[29] Ilya Sutskever. Training recurrent neural networks. University of Toronto Toronto, ON, Canada,
2013.

[30] Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. CoRR,
abs/1705.08209, 2017. URL http://arxiv.org/abs/1705.08209.

[31] Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
arXiv preprint arXiv:2205.01445, 2022.

12

https://doi.org/10.48550/arXiv.2203.01531
https://doi.org/10.48550/arXiv.2203.01531
https://doi.org/10.48550/arXiv.2203.11932
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0d1a9651497a38d8b1c3871c84528bd4-Abstract.html
https://openreview.net/forum?id=l-PrrQrK0QR
https://openreview.net/forum?id=l-PrrQrK0QR
https://proceedings.neurips.cc/paper/2021/hash/299a23a2291e2126b91d54f3601ec162-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/299a23a2291e2126b91d54f3601ec162-Abstract.html
http://proceedings.mlr.press/v108/lorraine20a.html
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/072b030ba126b2f4b2374f342be9ed44-Abstract.html
http://arxiv.org/abs/1705.08209

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.
URL https://doi.org/10.1109/5.726791.

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://
arxiv.org/abs/1708.07747.

[34] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[35] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

[36] Jeremy Howard. A smaller subset of 10 easily classified classes from imagenet, and a little
more french. URL https://github.com/fastai/imagenette/.

[37] Technical report.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States,
pages 1106–1114, 2012. URL https://proceedings.neurips.cc/paper/2012/hash/
c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[39] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

[40] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.
doi: 10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

[41] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. CoRR, abs/1607.08022, 2016. URL http://arxiv.org/abs/
1607.08022.

[42] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015. URL http://proceedings.mlr.press/v37/ioffe15.html.

[43] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Over-
coming catastrophic forgetting in neural networks. CoRR, abs/1612.00796, 2016. URL
http://arxiv.org/abs/1612.00796.

[44] Robert French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3:128–135, 05 1999. doi: 10.1016/S1364-6613(99)01294-2.

[45] Anthony V. Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci., 7
(2):123–146, 1995. doi: 10.1080/09540099550039318. URL https://doi.org/10.1080/
09540099550039318.

[46] Pietro Buzzega, Matteo Boschini, Angelo Porrello, and Simone Calderara. Rethinking ex-
perience replay: a bag of tricks for continual learning. In 25th International Conference
on Pattern Recognition, ICPR 2020, Virtual Event / Milan, Italy, January 10-15, 2021,
pages 2180–2187. IEEE, 2020. doi: 10.1109/ICPR48806.2021.9412614. URL https:
//doi.org/10.1109/ICPR48806.2021.9412614.

13

https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://github.com/fastai/imagenette/
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1607.08022
http://arxiv.org/abs/1607.08022
http://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1612.00796
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1109/ICPR48806.2021.9412614
https://doi.org/10.1109/ICPR48806.2021.9412614

[47] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-
incremental learning. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2021, virtual, June 19-25, 2021, pages 2544–2553. Computer Vision Foundation /
IEEE, 2021. URL https://openaccess.thecvf.com/content/CVPR2021/html/Liu_
Adaptive_Aggregation_Networks_for_Class-Incremental_Learning_CVPR_2021_
paper.html.

[48] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H. Lampert. icarl: Incremental
classifier and representation learning. CoRR, abs/1611.07725, 2016. URL http://arxiv.
org/abs/1611.07725.

[49] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. Gdumb: A simple approach that
questions our progress in continual learning. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, Computer Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part II, volume 12347 of Lecture Notes in
Computer Science, pages 524–540. Springer, 2020. doi: 10.1007/978-3-030-58536-5_31. URL
https://doi.org/10.1007/978-3-030-58536-5_31.

[50] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample
selection for online continual learning. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 11816–11825, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html.

[51] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 11849–11860, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html.

[52] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-
class incremental learning without forgetting. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 12242–
12251. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.01226.
URL https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_Mnemonics_
Training_Multi-Class_Incremental_Learning_Without_Forgetting_CVPR_2020_
paper.html.

[53] Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning. CoRR,
abs/1904.07734, 2019. URL http://arxiv.org/abs/1904.07734.

[54] Francisco M. Castro, Manuel J. Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Vittorio Ferrari, Martial Hebert, Cristian Smin-
chisescu, and Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part XII, volume 11216 of Lecture Notes
in Computer Science, pages 241–257. Springer, 2018. doi: 10.1007/978-3-030-01258-8_15.
URL https://doi.org/10.1007/978-3-030-01258-8_15.

[55] Yutian Chen, Max Welling, and Alexander J. Smola. Super-samples from kernel herding. In Peter
Grünwald and Peter Spirtes, editors, UAI 2010, Proceedings of the Twenty-Sixth Conference
on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, July 8-11, 2010, pages
109–116. AUAI Press, 2010. URL https://dslpitt.org/uai/displayArticleDetails.
jsp?mmnu=1&smnu=2&article_id=2148&proceeding_id=26.

[56] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, pages 3–18. IEEE Computer Society, 2017. doi:
10.1109/SP.2017.41. URL https://doi.org/10.1109/SP.2017.41.

14

https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Adaptive_Aggregation_Networks_for_Class-Incremental_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Adaptive_Aggregation_Networks_for_Class-Incremental_Learning_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Liu_Adaptive_Aggregation_Networks_for_Class-Incremental_Learning_CVPR_2021_paper.html
http://arxiv.org/abs/1611.07725
http://arxiv.org/abs/1611.07725
https://doi.org/10.1007/978-3-030-58536-5_31
https://proceedings.neurips.cc/paper/2019/hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/e562cd9c0768d5464b64cf61da7fc6bb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/15825aee15eb335cc13f9b559f166ee8-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_Mnemonics_Training_Multi-Class_Incremental_Learning_Without_Forgetting_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_Mnemonics_Training_Multi-Class_Incremental_Learning_Without_Forgetting_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Liu_Mnemonics_Training_Multi-Class_Incremental_Learning_Without_Forgetting_CVPR_2020_paper.html
http://arxiv.org/abs/1904.07734
https://doi.org/10.1007/978-3-030-01258-8_15
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2148&proceeding_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2148&proceeding_id=26
https://doi.org/10.1109/SP.2017.41

[57] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, Xiaofeng Wang, Haixu Tang, Carl A.
Gunter, and Kai Chen. Understanding membership inferences on well-generalized learning
models. CoRR, abs/1802.04889, 2018. URL http://arxiv.org/abs/1802.04889.

[58] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and Michael
Backes. Ml-leaks: Model and data independent membership inference attacks and defenses on
machine learning models. In 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society, 2019.

[59] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=Sy8gdB9xx.

[60] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with membership privacy
using adversarial regularization. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
634–646. ACM, 2018. doi: 10.1145/3243734.3243855. URL https://doi.org/10.1145/
3243734.3243855.

[61] Jinyuan Jia, Ahmed Salem, Michael Backes, Yang Zhang, and Neil Zhenqiang Gong. Memguard:
Defending against black-box membership inference attacks via adversarial examples. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, pages 259–274. ACM, 2019. doi: 10.1145/3319535.3363201.
URL https://doi.org/10.1145/3319535.3363201.

[62] tensorflow/privacy: library for training machine learning models with privacy for training data,
2022. URL https://github.com/tensorflow/privacy.

[63] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine
learning: Analyzing the connection to overfitting. In 31st IEEE Computer Security Foundations
Symposium, CSF 2018, Oxford, United Kingdom, July 9-12, 2018, pages 268–282. IEEE
Computer Society, 2018. doi: 10.1109/CSF.2018.00027. URL https://doi.org/10.1109/
CSF.2018.00027.

15

http://arxiv.org/abs/1802.04889
https://openreview.net/forum?id=Sy8gdB9xx
https://doi.org/10.1145/3243734.3243855
https://doi.org/10.1145/3243734.3243855
https://doi.org/10.1145/3319535.3363201
https://github.com/tensorflow/privacy
https://doi.org/10.1109/CSF.2018.00027
https://doi.org/10.1109/CSF.2018.00027

	Introduction
	Method
	Dataset Distillation as Bi-level Optimization
	Dataset Distillation using Neural Feature Regression with Pooling (FRePo)

	Related Work
	Dataset Distillation
	Implementation Details
	Standard Benchmarks
	ImageNet

	Application
	Continual Learning
	Membership Inference Defense

	Conclusion

