Supplementary Material: Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality

Vudtiwat Ngampruetikorn,* David J. Schwab
Initiative for the Theoretical Sciences, The Graduate Center, CUNY
*vngampruetikorn@gc. cuny.edu

A Information content of maximally efficient algorithms

Consider an IB problem where we are interested in an information efficient representation of Y that is predictive of W (Fig 1a). When Y and W are Gaussian correlated, the central object in constructing an IB solution is the normalized regression matrix $\Sigma_{Y \mid W} \Sigma_{Y}^{-1}$; in particular, its eigenvalues $v_{i}\left[\Sigma_{Y \mid W} \Sigma_{Y}^{-1}\right]$ completely characterize the information content of the IB optimal representation \tilde{T} via (see Ref [1] for a derivation)

$$
\begin{align*}
I(\tilde{T} ; W) & =\frac{1}{2} \sum_{i=1}^{N} \max \left(0, \ln \frac{1-\gamma^{-1}}{v_{i}\left[\Sigma_{Y \mid W} \Sigma_{Y}^{-1}\right]}\right) \tag{1}\\
I(\tilde{T} ; Y \mid W) & =\frac{1}{2} \sum_{i=1}^{N} \max \left(0, \ln \left(\gamma\left(1-v_{i}\left[\Sigma_{Y \mid W} \Sigma_{Y}^{-1}\right]\right)\right)\right), \tag{2}
\end{align*}
$$

where N is the dimension of Y and γ parametrizes the IB trade-off [Eq (1)].
Our work focuses on the following generative model for W and Y (see Sec 1.1)

$$
\begin{equation*}
W \sim N\left(0, \frac{\omega^{2}}{P} I_{P}\right) \quad \text { and } \quad Y \mid W \sim N\left(X^{\top} W, \sigma^{2} I_{N}\right) \tag{3}
\end{equation*}
$$

Marginalizing out W yields

$$
\begin{equation*}
Y \sim N\left(0, \sigma^{2} I_{N}+\frac{1}{P} X^{\top} X\right) \tag{4}
\end{equation*}
$$

As a result, the normalized regression matrix reads

$$
\begin{equation*}
\Sigma_{Y \mid W} \Sigma_{Y}^{-1}=\sigma^{2} I_{N} \frac{1}{\sigma^{2} I_{N}+\frac{1}{P} X^{\top} X}=\left(I_{N}+\frac{1}{\lambda^{*}} \frac{X^{\top} X}{N}\right)^{-1} \quad \text { where } \quad \lambda^{*} \equiv \frac{P}{N} \frac{\sigma^{2}}{\omega^{2}} \tag{5}
\end{equation*}
$$

Substituting Eq (5) into Eqs (1-2) gives

$$
\begin{align*}
I(\tilde{T} ; W) & =\frac{1}{2} \sum_{i=1}^{N} \max \left(0, \ln \left(\left(1-\gamma^{-1}\right)\left(1+\phi_{i}\left[X^{\top} X / N\right] / \lambda^{*}\right)\right)\right) \tag{6}\\
I(\tilde{T} ; Y \mid W) & =\frac{1}{2} \sum_{i=1}^{N} \max \left(0, \ln \frac{\gamma \phi_{i}\left[X^{\top} X / N\right]}{\lambda^{*}+\phi_{i}\left[X^{\top} X / N\right]}\right), \tag{7}
\end{align*}
$$

where $\phi_{i}\left[X^{\top} X / N\right]$ denote the eigenvalues of $X^{\top} X / N$. Since the eigenvalues of $X^{\top} X / N$ and the sample covariance $\Psi=X X^{\top} / N$ are identical except for the zero modes which do not contribute to information, we can recast the above equations as

$$
\begin{align*}
I(\tilde{T} ; W) & =\frac{1}{2} \sum_{i=1}^{P} \max \left(0, \ln \left(1-\gamma^{-1}\right)\left(1+\psi_{i} / \lambda^{*}\right)\right) \tag{8}\\
I(\tilde{T} ; Y \mid W) & =\frac{1}{2} \sum_{i=1}^{P} \max \left(0, \ln \frac{\gamma \psi_{i}}{\lambda^{*}+\psi_{i}}\right), \tag{9}
\end{align*}
$$

where ψ_{i} are the eigenvalues of Ψ and the summation limits change to P, the number of eigenvalues of Ψ. Introducing the cumulative spectral distribution F^{Ψ} and replacing the summations with integrals results in

$$
\begin{align*}
I(\tilde{T} ; W) & =\frac{P}{2} \int d F^{\Psi}(\psi) \max \left(0, \ln \left(\left(1-\gamma^{-1}\right)\left(1+\psi / \lambda^{*}\right)\right)\right) \tag{10}\\
I(\tilde{T} ; Y \mid W) & =\frac{P}{2} \int d F^{\Psi}(\psi) \max \left(0, \ln \frac{\gamma \psi}{\lambda^{*}+\psi}\right) . \tag{11}
\end{align*}
$$

We see that the contributions to the integrals come from the logarithms but only when they are positive. This condition can be recast into integration limits (note that $\gamma>0$ and $\lambda^{*}>0$)

$$
\begin{align*}
\ln \left(\left(1-\gamma^{-1}\right)\left(1+\psi / \lambda^{*}\right)\right)>0 & \Longrightarrow \psi>\lambda^{*} /(\gamma-1) \tag{12}\\
\ln \frac{\gamma \psi}{\lambda^{*}+\psi}>0 & \Longrightarrow \psi>\lambda^{*} /(\gamma-1) \tag{13}
\end{align*}
$$

Finally we define the lower cutoff $\psi_{c} \equiv \lambda^{*} /(\gamma-1)$ and use the above limits to rewrite the expressions for relevant and residual informations,

$$
\begin{align*}
I(\tilde{T} ; W) & =\frac{P}{2} \int_{\psi>\psi_{c}} d F^{\Psi}(\psi) \ln \frac{\psi+\lambda^{*}}{\psi_{c}+\lambda^{*}}=\frac{P}{2} \int_{\psi>\psi_{c}} d F^{\Psi}(\psi) \ln \left(1+\frac{\psi-\psi_{c}}{\psi_{c}+\lambda^{*}}\right) \tag{14}\\
I(\tilde{T} ; Y \mid W) & =\frac{P}{2} \int_{\psi>\psi_{c}} d F^{\Psi}(\psi) \ln \frac{\psi}{\psi_{c}} \frac{\psi_{c}+\lambda^{*}}{\psi+\lambda^{*}}=\frac{P}{2} \int_{\psi>\psi_{c}} d F^{\Psi}(\psi) \ln \frac{\psi}{\psi_{c}}-I(\tilde{T} ; W) . \tag{15}
\end{align*}
$$

These equations are identical to Eqs (8-9) in the main text.

B Information content of Gibbs-posterior regression

To compute the information content of Gibbs regression [Eq (14)], we first recall that the mutual information between two Gaussian correlated variables, A and B, is given by

$$
\begin{equation*}
I(A ; B)=\frac{1}{2} \ln \operatorname{det} \Sigma_{A} \Sigma_{A \mid B}^{-1}, \tag{16}
\end{equation*}
$$

where Σ_{A} is the covariance of A, and $\Sigma_{A \mid B}$ of $A \mid B$.
We now write down the relevant information, using the covariances $\Sigma_{T \mid W}$ and Σ_{T} from Eqs (17-18),

$$
\begin{align*}
I(T ; W) & =\frac{1}{2} \ln \operatorname{det}\left(\Sigma_{T} \Sigma_{T \mid W}^{-1}\right) \tag{17}\\
& =\frac{1}{2} \ln \operatorname{det} \frac{\frac{1}{2 \beta} \frac{1}{\Psi+\lambda I_{P}}+\frac{\sigma^{2}}{N} \frac{\Psi}{\left(\Psi+\lambda I_{P}\right)^{2}}+\frac{\omega^{2}}{P} \frac{\Psi^{2}}{\left(\Psi+\lambda I_{P}\right)^{2}}}{\frac{1}{2 \beta} \frac{1}{\Psi+\lambda I_{P}}+\frac{\sigma^{2}}{N} \frac{\Psi}{\left(\Psi+\lambda I_{P}\right)^{2}}} \tag{18}\\
& =\frac{1}{2} \ln \operatorname{det}\left(I_{P}+\frac{\Psi^{2} / \lambda^{*}}{\Psi+\frac{N}{2 \beta \sigma^{2}}\left(\Psi+\lambda I_{P}\right)}\right) \tag{19}\\
& =\frac{1}{2} \operatorname{tr} \ln \left(I_{P}+\frac{\Psi^{2} / \lambda^{*}}{\Psi+\frac{N}{2 \beta \sigma^{2}}\left(\Psi+\lambda I_{P}\right)}\right) \tag{20}\\
& =\frac{1}{2} \sum_{i=1}^{P} \ln \left(1+\frac{\psi_{i}^{2} / \lambda^{*}}{\psi_{i}+\frac{N}{2 \beta \sigma^{2}}\left(\psi_{i}+\lambda\right)}\right) \tag{21}\\
& =\frac{P}{2} \int_{\psi>0} d F^{\Psi}(\psi) \ln \left(1+\frac{\psi^{2} / \lambda^{*}}{\psi+\frac{N}{2 \beta \sigma^{2}}(\psi+\lambda)}\right), \tag{22}
\end{align*}
$$

where $\lambda^{*}=P \sigma^{2} / N \omega^{2}$. In the above, we use the identity $\ln \operatorname{det} H=\operatorname{tr} \ln H$ which holds for any positive-definite Hermitian matrix H, let ψ_{i} denote the eigenvalues of the sample covariance Ψ and introduce F^{Ψ}, the cumulative distribution of eigenvalues. We also assume that λ and β are finite
and positive. Note that the integral is limited to positive real numbers because the eigenvalues of a covariance matrix is non-negative and the integrand vanishes for $\psi=0$.
Following the same logical steps as above and noting that the Markov constraint $W \leftrightarrow Y \leftrightarrow T$ implies $\Sigma_{T \mid Y, W}=\Sigma_{T \mid Y}$, we write down the residual information,

$$
\begin{align*}
I(T ; Y \mid W) & =\frac{1}{2} \ln \operatorname{det}\left(\Sigma_{T \mid W} \Sigma_{T \mid Y, W}^{-1}\right) \tag{23}\\
& =\frac{1}{2} \ln \operatorname{det}\left(\Sigma_{T \mid W} \Sigma_{T \mid Y}^{-1}\right) \tag{24}\\
& =\frac{1}{2} \ln \operatorname{det}\left(\frac{\frac{1}{2 \beta} \frac{1}{\Psi+\lambda I_{P}}+\frac{\sigma^{2}}{N} \frac{\Psi}{\left(\Psi+\lambda I_{P}\right)^{2}}}{\frac{1}{2 \beta} \frac{1}{\Psi+\lambda I_{P}}}\right) \tag{25}\\
& =\frac{P}{2} \int_{\psi>0} d F^{\Psi}(\psi) \ln \left(1+\frac{2 \beta \sigma^{2}}{N} \frac{\psi}{\psi+\lambda}\right) \tag{26}
\end{align*}
$$

where we use the covariance matrices $\Sigma_{T \mid W}$ and $\Sigma_{T \mid Y}$ from Eqs (17) \& (14).

C Marchenko-Pastur law

Consider $X=\Sigma^{1 / 2} Z$ where $Z \in \mathbb{R}^{P \times N}$ is a matrix with iid entries drawn from a distribution with zero mean and unit variance, and $\Sigma \in \mathbb{R}^{P \times P}$ is a covariance matrix. In addition we take the asymptotic limit $N \rightarrow \infty, N \rightarrow \infty$ and $P / N \rightarrow \alpha \in(0, \infty)$. If the population spectral distribution F^{Σ} converges to a limiting distribution, the spectral distribution of the sample covariance $\Psi=X X^{\top} / N$ becomes deterministic [2]. The density, $f^{\Psi}(\psi)=d F^{\Psi}(\psi) / d \psi$, is related to its Stieltjes transform $m(z)$ via

$$
\begin{equation*}
f^{\Psi}(\psi)=\frac{1}{\pi} \operatorname{Im} m\left(\psi+i 0^{+}\right), \quad \psi \in \mathbb{R} . \tag{27}
\end{equation*}
$$

We can obtain f^{Ψ} by solving the Silverstein equation for the companion Stieltjes transform $v(z)$ [3],

$$
\begin{equation*}
-\frac{1}{v(z)}=z-\alpha \int_{\mathbb{R}^{+}} d F^{\Sigma}(s) \frac{s}{1+s v(z)}, \quad z \in \mathbb{C}^{+}, \tag{28}
\end{equation*}
$$

and using the relation

$$
\begin{equation*}
m(z)=\alpha^{-1}\left(v(z)+z^{-1}\right)-z^{-1} . \tag{29}
\end{equation*}
$$

Here \mathbb{C}^{+}denotes the upper half of the complex plane.

D Supplementary figure

Figure 1: Gibbs ridge regression is least information efficient around $N / P=1$. a Residual information $I(T ; Y \mid W)$ of the IB optimal algorithm over a range of sample densities N / P (horizontal axis) and given extracted relevant bits $I(T ; W)$ (vertical axis). The extracted relevant bits are bounded by the available relevant bits in the data (black curve), i.e., the data processing inequality implies $I(T ; W) \leq I(Y ; W)$. b Same as (a) but for Gibbs regression with $\lambda=10^{-6}$. Holding other things equal, Gibbs regression estimators encode more residual bits than optimal representations. c Information efficiency, the ratio between residual bits in optimal representations (a) and Gibbs estimator (b), is minimum around $N / P=1$. Here we set $\omega^{2} / \sigma^{2}=1$ and let $P, N \rightarrow \infty$ at the same rate such that the ratio N / P remains fixed and finite. The eigenvalues of the sample covariance follow the standard Marchenko-Pastur law (see Sec 4).

References

[1] G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, Information bottleneck for Gaussian variables, Journal of Machine Learning Research 6, 165 (2005).
[2] V. A. Marčenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSR-Sbornik 1, 457 (1967).
[3] J. Silverstein and S. Choi, Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices, Journal of Multivariate Analysis 54, 295 (1995).

