
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Dataset and code link in
appendix.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] As discussed in Section 1 and 2, this work is the
first application of RL on CG, and the benefits of using RLCG to enhance CG is
demonstrated in Section 5 and shown in Figure 3 4 7 6.Detailed improvement statistics
can be verified in Table 7 6.

(b) Did you describe the limitations of your work? [Yes] Limitation is discussed at the
end of Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] Code link
is provided in Abstract. Data we use, training and testing procedure are discussed in
detail in corresponding sections in 5 and Appendix A C E. Hyperparameter settings for
experiments in Appendix B.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Datasets used, training testing split, training schedule generation
are described set described in Section 5.1 for CSP and Section 5.2 for VRPTW. We
conduct complete hyperparameter tuning for CSP in Appendix B and use the best
hyperparameters setting for both CSP and VRPTW experiments.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)?
[Yes] The solving process is deterministic so test on each instance once in the testing
sets, however, we did normalize and average over all instance results and generate box
plots in Figure 4 11 and plot standard deviation bars in Figure 7.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] Computing environment in
Appendix C;

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
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(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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Learning curve with curriculum learning

(a) curriculum training
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Learning curve without curriculum learning

(b) No curriculum training

Figure 8: (a) shows the training process with such curriculum and Figure (b) shows the training
process without a curriculum. In both plots, the x axis is the training episode, and each episode is
solving one instance (instances are ordered for (a) and randomized for (b)) while the y axis shows the
total number of RL guided CG iterations until that particular instance is solved.

Figure 8 above compares the training trajectories between training with 400 CSP instances following
the sequence provided in Table 5 and training with the same 400 CSP instances randomly ordered. In
(a), as every 40 instances we increase the CSP difficulty. Although there is an upward trend in the
training curve, however, within each instance difficulty setting (fixed n and m), there is a downward
trend showing a sign of learning. In contrast, there is no clear sign of learning in (b). Therefore, for
all the experiments shown in this paper, the RLCG model is trained using a curriculum.

We also visualize the training process of RLCG for CSP using a validation set with 30 instances. The
validation set detail is in Appendix E. For every 20 training episodes, we stop the training process and
validate the current models (with schedule training and without schedule training) with the validation
set. The result is shown in Figure 9.
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Figure 9: Green curve shows the mean of convergence iterations for the current RLCG model with
schedule training solving all the validation instances, and plus minus one standard deviation is shown
in shaded area. Blue curve shows validation result of model trained without schedule. The red
horizontal line shows average convergence iterations for validation instances using greedy strategy

B Hyperparameter tuning

Table 1 shows RL related parameters.

In Table 2, we provide GNN parameters that we used.

We conduct hyperparameters tuning and sensitivity analysis using a validation set over: the parameter
↵ used in equation 1 to weight the change in the normalized objective value used in our reward
function, the exploration parameter of the RL agent ✏, the discount factor �, and the learning rate
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Table 1: RL Parameters

Parameter Value
state
normalization

features normalization is MinMaxScalar
from sklearn

step penalty For each iteration RLCG takes before the cur-
rent CSP instance is solved, penalize each
step by 1 in the reward design

reward there are two settings ↵ = 5 and � = 1,
↵ = 5 and � = 0, step penalty is always 1

action solution pool 10 from Gurobi solver for SP,
which means at each iteration our action
space contains 10 columns.

Table 2: GNN Parameters

Parameter Value
Optimizer Adam
Network Structure refer to code for details
Batch Size 32

lr. All other hyperparameters and their values are listed in Table 1 and Table 2. The values we
consider for each hyperparameter are the following: ↵ 2 {0, 100, 300}, ✏ 2 {0.01, 0.05, 0.2}, � 2
{0.9, 0.95, 0.99} and lr 2 {0.01, 1e-3, 3e-4}. We choose the value for ↵ 2 {0, 100, 300} because
when ↵ = 0, we place no weight on decreasing the objective value, otherwise, ↵ = 100, 300 will
bring the normalized change in the objective values into similar scale as the step penalty. Therefore,
the search space for hyperparameters is defined as the Cartesian product between all these sets
of different hyperparameters possible values, which gives us 81 configurations, and we randomly
select 31 configurations out of them. Then we train 31 RLCG models corresponding to selected 31
configurations, and we evaluate these models using our validation set. The validation metric or
reward is defined as the ratio of the total number of iterations RLCG takes to solve each CSP instance
divided by the total number of iterations greedy takes. For each model, we compute such ratio for all
the instances in validation set, and we generate the following box plot shown in Figure 10 showing
the validation metric for all the models. Among the 31 configurations we tested, the majority of
the models were able to outperform greedy strategy on the instances in the validation set. The best
configuration is model 3: ↵ = 300, ✏ = 0.05, � = 0.9 and lr = 0.001. For all the results reported
in this paper, we use this configuration. This includes VRPTW, although no direct hyperparameter
tuning has been done for this problem class. To assess the sensitivity of the RL training with respect
to randomness such as the GNN initialization and the exploration in RL, we compare the average
validation reward relative to greedy for the selected model across five random seeds. The average
varies between 1.23 and 1.25, indicating little to no sensitivity.

In Table 3, we provide detailed configurations of each model index for our analysis of hyperparameters
as well as their detailed validation results.
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Figure 10: Hyperparameter sensitivity: the vertical axis list all the models we evaluated by its index.
The detailed hyperparameter configurations each index refers to are listed in Appendix B Table 10.
The horizontal axis shows the ratio of RLCG model solving iterations to greedy column selection
solving iterations. The blue vertical line shows the ratio threshold indicating same performance as
greedy. The best to worst models are ordered from bottom to top.

C Computing environment

To implement GNN, we use Tensorflow 2.7.0. To solve both RMP and SP optimization problems in
CG, we use Gurobi 9.5.0. For the training using 400 instances schedule for CSP and 240 instances
schedule for VRPTW, the training takes around 8-10 hours CPU time using the following CPU
settings: Intel 2.30 Ghz, 2 CPU Cores, Intel (R) Xeon(R), Haswell CPU family.

D Graph neural network for bipartite graph

Graph Neural Network (GNN) has been successfully applied to many different machine learning
tasks with graph structured data. GNN includes a message passing method where the features of each
node for each node pass to other neighbouring nodes through learned transformations to generate
aggregated information, and such information can be used for node classification, edge selection
so on so forth. Due to the effectiveness of GNN to utilize graphical structure of the data, catch
node-level dependencies, and has permutation invariant properties, GNN is an appropriate method
for performing node(column) selection task in the present column generation problem.

For this study we are encoding the information for each iteration of CG using a bipartite graph
G = (E, V ) as the state, where each column and constraint is represented by node v 2 V and there
is an edge e 2 E between columns and constraints only if the column contributes to the constraint.
Detailed encoding for state is discussed in Section 4.1.1. As we are using a bipartite graph, the GNN
we use should be able to achieve convolution on a bipartite graph with two types of nodes (variable
nodes and constraint nodes), and we utilize the similar bipartite GNN as in the study conducted by
(Morabit et al. [2021]) with modification of the task it performs (from binary classification to Q value
regression). Here we give a brief overview of how convolution or the features update is achieved in
this bipartite GNN.

The features update is done in two phase: phase 1 updates the constraint features and phase 2 updates
the column features. In phase 1, the constraint features in next iteration is obtained by applying
a non-linear transformation of previous constraint node features and aggregate information of its
neighbouring nodes, which are column nodes that are connected to this constraint node. This can be
treated as information passing from variable nodes to constraint nodes. Similarly,the second phase
can be seen as message passing from constraint nodes to variable nodes.

Once the column node features have been updated for several iterations for all the column nodes,
these features are fed into a fully connected layer, which results in Q values for each column node.
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Model index Hyperparameters config iterations mean iterations median iterations std

Model 0 (100, 0.2, 0.9, 0.0003) 1.22 1.20 0.14
Model 1 (100, 0.05, 0.99, 0.01) 1.00 1.00 0.00
Model 2 (100, 0.2, 0.9, 0.01) 1.00 1.00 0.00
Model 3 (300, 0.05, 0.9, 0.001) 1.25 1.24 0.13
Model 4 (300, 0.05, 0.99, 0.001) 1.12 1.09 0.19
Model 5 (300, 0.05, 0.95, 0.001) 1.18 1.18 0.14
Model 6 (0, 0.05, 0.9, 0.0003) 0.91 0.88 0.13
Model 7 (0, 0.2, 0.95, 0.0003) 0.98 0.96 0.14
Model 8 (100, 0.05, 0.9, 0.0003) 1.14 1.11 0.16
Model 9 (100, 0.2, 0.9, 0.001) 1.19 1.16 0.18
Model 10 (0, 0.05, 0.95, 0.0003) 0.97 0.97 0.14
Model 11 (300, 0.01, 0.95, 0.001) 1.22 1.23 0.16
Model 12 (300, 0.05, 0.9, 0.001) 1.11 1.11 0.12
Model 13 (100, 0.05, 0.95, 0.0003) 1.15 1.12 0.16
Model 14 (100, 0.2, 0.9, 0.001) 1.07 1.04 0.17
Model 15 (100, 0.05, 0.9, 0.001) 0.95 0.91 0.15
Model 16 (0, 0.2, 0.99, 0.001) 0.99 0.95 0.13
Model 17 (300, 0.2, 0.95, 0.001) 1.18 1.15 0.17
Model 18 (300, 0.2, 0.9, 0.0003) 1.24 1.23 0.13
Model 19 (0, 0.05, 0.9, 0.0003) 0.92 0.94 0.12
Model 20 (0, 0.2, 0.9, 0.001) 0.95 0.92 0.19
Model 21 (300, 0.05, 0.99, 0.0003) 1.18 1.16 0.16
Model 22 (300, 0.2, 0.99, 0.001) 1.11 1.10 0.16
Model 23 (100, 0.2, 0.9, 0.01) 1.06 1.06 0.10
Model 24 (300, 0.05, 0.9, 0.001) 1.16 1.16 0.17
Model 25 (100, 0.2, 0.95, 0.001) 1.07 1.07 0.12
Model 26 (100, 0.01, 0.9, 0.001) 1.19 1.18 0.13
Model 27 (0, 0.2, 0.9, 0.001) 1.00 0.99 0.13
Model 28 (0, 0.2, 0.9, 0.001) 0.90 0.90 0.11
Model 29 (0, 0.05, 0.95, 0.001) 0.97 1.00 0.11
Model 30 (100, 0.05, 0.95, 0.0003) 1.01 0.98 0.15

Table 3: Evaluated models’ configurations and validation performances

E Training, Validation, Testing set

Table 4 below shows the information of the instances contained in the training set, validation set and
testing set for CSP. Column lists total number of instances in each dataset, while other columns list
the number of instances with specific roll length n in that dataset. The division of VRPTW dataset
can be found in Section 5.2.

Table 4: Dataset division for CSP

Dataset Total n =
50

n =
100

n =
200

n =
750

Training 400 160 160 80 0
Validation 30 10 10 10 0
Testing 156 49 0 86 21

F Curriculum Learning design

In Table 5, we provide data characteristic we considered, for the sake of curriculum learning of
the RL agent. In this paper the RL agent is trained on instances that are ordered according to their
difficulty level. To accomplish this instances are divided into three categories of easy, normal and
hard according to the stock length for CSP.
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Easy instances have stock length of 50, normal instances have stock length of 100 and hard instances
have stock length of 200. There are 40 instances for each instance type. Details of training curriculum
of different instance types are shown in table 5. Figure 8 displays the number of steps to convergence
vs. instance number for training instances. It is clear that for each instance type the steps taken for
convergence decreases as the model is trained on more of the same instance type. This shows that the
RL agent successfully learns to select columns to enter basis. However, when instances are ordered
randomly (Figure 8b) there are no specific trend on the steps taken to converge. This highlights the
necessity of curriculum learning. Curriculum for VRPTW can be found in Section 5.2.

Table 5: Curriculum Learning schedule for CSP
Training curriculum

Type of Instance Number of
Instances

Stock
Length

Number
of Orders

Easy 40 50 50
Easy 40 50 75
Easy 40 50 100
Easy 40 50 120
Normal 40 100 75
Normal 40 100 100
Normal 40 100 120
Normal 40 100 150
Hard 40 200 125
Hard 40 200 150

G Node Features

Node features used for CSP:

1. Column node features:
Feature (a) and (c) relate to solving the RMP problem as they are all information about
decision variables in RMP, and each column node corresponds to one decision variable.
Feature (b) and (d) are determined by the problem formulation of each cutting stock instance,
while feature (e) - (i) corresponds to the dynamical information of each column entering and
leaving the basis.

(a) Reduced cost: Reduced cost is a quantity associated with each variable indicating how
much the objective function coefficient on the corresponding variable must be improved
before the solution value of the decision variable will be positive in the optimal solution
(the cutting pattern will be used in optimal set of cutting patterns). The reduced cost
value is only non-zero when the optimal value of a variable is zero.

(b) Connectivity of column node: Total number of constraint nodes each column node
connects to. As each constraint is a particular demand, this node feature indicates the
ability of a column node (a pattern) to satisfy demands. It also indicates the connectivity
of each column node in the bipartite graph representing the state.

(c) Solution value: The solution value of each decision variable corresponding to each
column node after solving the RMP in the current iteration. For each column node, this
feature is continuous number greater than or equal to 0. The candidate column nodes
have this feature set to be 0.

(d) Waste: A feature recording the remaining length of a roll if we were to cut the current
pattern from the roll. Again, each column node corresponds to one decision variable in
RMP, which also represents one particular cut pattern.

(e) Number of iterations that each column node stays in the basis: If the column node
stays in the basis for a long time, it is most likely that the pattern corresponds to this
column node is really good.
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(f) Number of iterations that each column node stays out of the basis: if the column
node stays out of the basis for a long time, it is most likely never enters the basis and
being used in optimal solution in future iterations.

(g) If the column left basis on the last iteration or not: This is a binary feature recording
the dynamics of each column node.

(h) If the column enter basis on the last iteration or not: Similar binary feature as (f).

(i) Action node or not: A binary feature indicating whether a column node is a candidate
(a newly added action) or not. If the column node is a candidate node (column) that is
generated at the current iteration by SP, then this binary feature is 1 otherwise 0.

2. Constraint node features:
Each constraint node corresponds to one constraint in RMP, so the number of constraint
nodes are fixed for each cutting stock problem instance.

(a) Dual value: Dual value or shadow price is the coefficient of each dual variable in
sub-problem objective function, and as each constraint node corresponds to one dual
variable, we record dual value as one feature for constraint node.

(b) Connectivity of constraint node: Total number of column nodes each constraint
node connects to, which also indicates the connectivity of each constraint node in the
bipartite graph representing the state.

VRPTW node features used are quite similar to CSP:

1. Column node features: Reduced cost, connectivity of column node, solution value, route
cost, Number of iterations that each column node stays in the basis, Number of iterations
that each column node stays in the basis, If the column left basis on the last iteration or no,
If the column enter basis on the last iteration or no.

2. Constraint node features: Dual value, connectivity of constraint node

H Detailed statistics of testing results

In Table 6, we provide statistics obtained from our experimental results for CSP. We report both
the average and standard deviation of number of iterations, solution time measured in seconds, and
the objective function values. Note that the resulting objective function values between column
selection policies might differ due to the early-stopping criteria we adopted. Note that for the sake
table spacing, we use Objval to denote objective function value, and µ,� for mean and standard
deviation, respectively. We observe the clear dominance of RLCG over the potential of RLCG in solving
challenging CG problems in practice.

n = 50 n = 200 n = 750

Iteration Time(s) Objval Iteration Time(s) Objval Iteration Time(s) Objval
µ � µ � µ � µ � µ � µ � µ � µ � µ �

Greedy 51.2 11.4 6.0 2.5 23.4 2.8 78.0 23.0 22.3 14.4 91.1 10.1 292.8 47.7 640.8 240.2 327.6 18.2
RL 41.6 10.0 4.9 2.2 23.5 2.8 64.7 20.5 18.1 12.3 91.5 9.8 227.2 42.7 460.3 219.9 328.6 18.2

Expert 42.5 9.5 7.1 3.1 23.4 2.8 69.1 18.8 29.3 18.9 91.2 10.1 251.3 35.2 827.9 302.0 327.2 18.7

Table 6: Solution time, iteration and objective function value reports with µ mean, and � standard
deviation for CSP

In Table 7, we provide the same statistics obtained from our experimental results for VRPTW.
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small test instances large test instances
Iteration Time(s) Objval Iteration Time(s) Objval
µ � µ � µ � µ � µ � µ �

Greedy 18.8 11.7 291.1 285.0 102.6 30 128.1 100.3 3268.2 4627.5 458.6 144.6
RL 9.5 6.3 179.9 247.1 102.6 30.0 75.6 39.3 1832.8 2015.3 458.6 144.6

Table 7: Solution time, iteration and objective function value reports with µ mean, and � standard
deviation for VRPTW

I Per instance results CSP

Names Iterations Time Objective value
Instance name Greedy_iter RL_iter Greedy_time RL_time Greedy_obj RL_obj

r107.txt, n = 20 328 84 15164.16 3843.84 517.00 517.00
r110.txt, n = 19 189 101 4093.69 2170.76 522.00 522.00
c101.txt, n = 25 140 90 4123.05 2632.07 637.00 637.00
r106.txt, n = 20 56 30 807.00 429.26 637.00 637.00
r111.txt, n = 20 203 126 6965.91 4350.76 534.00 534.00
r104.txt, n = 20 261 119 18788.82 8359.52 504.00 504.00
r108.txt, n = 18 49 39 6062.88 4529.36 156.00 156.00
r103.txt, n = 19 440 142 15789.96 5132.63 437.00 437.00
rc104.txt, n = 15 196 79 2992.44 1211.46 491.00 491.00
rc103.txt, n = 19 163 84 2135.99 1106.87 667.00 667.00
rc107.txt, n = 15 77 77 766.64 783.29 341.00 341.00
rc105.txt, n = 15 107 88 578.83 497.95 415.00 415.00
rc101.txt, n = 16 40 27 106.21 69.52 571.00 571.00
rc102.txt, n = 14 115 73 999.08 645.00 391.00 391.00
rc108.txt, n = 15 345 173 5449.42 2649.93 383.00 383.00
r102.txt, n = 14 110 59 960.38 513.88 382.00 382.00
c101.txt, n = 15 36 32 88.32 78.41 491.00 491.00
r105.txt, n = 15 173 93 3877.94 2100.79 583.00 583.00
c107.txt, n = 15 93 83 5609.29 4938.09 249.00 249.00
c105.txt, n = 20 87 81 3874.88 3609.85 485.00 485.00
rc201.txt, n = 16 57 51 1752.45 1567.67 641.00 641.00
rc106.txt, n = 15 128 98 991.33 745.47 276.00 276.00
r101.txt, n = 15 63 55 100.00 87.98 409.00 409.00
r205.txt, n = 19 11 16 1498.44 2213.35 749.00 749.00
r108.txt, n = 15 37 30 2992.61 2321.59 148.75 148.75
r109.txt, n = 19 153 71 1294.90 603.83 578.00 578.00

J VRPTW box plots

Similar to CSP, we see the upward generalization of RLCG in VRPTW: we only train our model with
small sized instances, and tested on large instances with more customers, and we observe that RLCG
was able to perform well using VRPTW testing instances with large size. These results, again indicate
that our proposed RLCG can be preferable in solving challenging column generation problems because
of its ability to generalize well. Besides, compare large testing results with small testing results for
VRPTW (also compare n=750 results with n=50,200 for CSP), we observe that the more challenging
the problem, the larger gap exist between RLCG and benchmark method. This indicates that for CG
problem we considered, the harder the problem, the more important considering the future effect of
CG becomes, thus taking future into consideration would drastically accelerate the solving process of
CG.
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Figure 11: Pair-wise comparisons between RLCG and greedy benchmark in terms of the number of
CG iterations and the solving time over small and large testing sets for VRPTW

Name Iterations Time Objective value
Instance name Greedy_iter RL_iter Expert_iter Greedy_time RL_time Expert_time Greedy_obj RL_obj Expert_obj

BPP_50_125_0.1_0.7_2 45 30 28 4.45 2.80 3.36 18.18 18.32 18.31
BPP_50_200_0.2_0.8_5 46 31 31 5.15 3.46 5.12 29.00 29.00 29.00
BPP_50_50_0.1_0.8_0 40 31 31 2.64 2.22 2.81 23.50 23.50 23.50
BPP_50_125_0.1_0.8_8 53 38 48 6.04 4.31 7.84 20.74 21.31 20.64
BPP_50_200_0.2_0.7_2 57 42 38 6.70 5.10 6.47 23.06 23.00 23.00
BPP_50_125_0.1_0.7_8 57 52 47 6.13 5.65 6.82 20.04 20.31 20.18
BPP_50_200_0.2_0.7_0 43 42 35 4.48 4.85 5.50 23.46 23.58 23.45
BPP_50_125_0.1_0.8_6 61 43 57 8.35 5.71 11.61 25.25 25.50 25.25
BPP_50_200_0.2_0.8_7 57 44 50 6.08 4.83 7.93 24.00 23.96 23.94
BPP_50_125_0.1_0.8_1 67 54 49 7.64 6.36 7.83 22.67 22.79 22.68
BPP_50_50_0.1_0.8_1 25 23 23 1.50 1.56 1.92 28.00 28.00 28.00
BPP_50_200_0.2_0.7_3 63 45 54 7.91 5.44 9.92 23.50 23.50 23.50
BPP_50_125_0.2_0.7_4 44 37 31 3.08 2.80 3.02 25.00 25.00 25.00
BPP_50_200_0.2_0.7_5 68 52 46 9.80 7.33 9.08 24.60 24.70 24.70
BPP_50_125_0.1_0.8_3 35 29 34 3.42 2.90 4.97 28.50 28.50 28.50
BPP_50_200_0.1_0.8_2 59 55 52 9.66 9.25 12.15 20.29 20.51 20.33
BPP_50_125_0.1_0.7_1 46 48 37 5.11 5.79 5.79 18.92 18.95 18.98
BPP_50_200_0.2_0.7_8 56 31 34 7.96 3.94 6.69 21.65 21.83 21.62
BPP_50_200_0.2_0.7_9 50 38 42 5.37 4.00 6.39 23.21 23.56 23.15
BPP_50_200_0.1_0.8_1 62 56 59 8.62 8.05 12.62 23.21 23.25 23.07
BPP_50_200_0.1_0.8_4 58 52 46 8.05 7.25 9.00 25.00 25.00 25.00
BPP_50_125_0.1_0.7_4 51 42 41 6.13 5.01 6.78 21.30 21.33 21.42
BPP_50_125_0.2_0.7_0 44 41 46 3.90 3.91 6.26 21.38 21.62 21.38
BPP_50_200_0.1_0.8_6 62 50 53 8.99 6.96 10.77 22.60 22.86 22.58
BPP_50_200_0.1_0.8_0 84 69 65 14.12 11.63 14.99 23.17 23.57 23.15
BPP_50_125_0.1_0.7_5 45 28 36 4.90 2.87 5.43 19.71 20.04 19.88
BPP_50_200_0.2_0.8_2 53 48 47 6.58 6.21 8.93 26.00 26.00 26.00
BPP_50_50_0.1_0.8_2 31 29 30 1.62 1.66 2.06 25.00 25.00 25.00
BPP_50_125_0.2_0.7_2 46 38 39 3.98 3.29 4.66 21.74 22.07 21.89
BPP_50_50_0.1_0.8_4 39 35 34 2.56 2.53 3.21 23.25 23.29 23.25
BPP_50_200_0.2_0.7_4 55 33 39 5.51 3.17 5.24 21.83 21.92 21.83
BPP_50_125_0.1_0.8_7 50 43 46 5.70 5.20 8.07 26.00 26.00 26.00
BPP_50_200_0.1_0.8_7 59 75 66 8.85 12.93 15.27 21.36 21.21 21.19
BPP_50_125_0.2_0.7_3 46 39 38 3.52 3.19 3.95 23.00 23.00 23.00
BPP_50_125_0.1_0.8_2 39 40 42 4.14 4.73 7.02 20.80 20.82 20.62
BPP_50_125_0.1_0.7_7 47 42 41 5.65 5.04 6.99 19.63 19.81 19.70
BPP_50_125_0.1_0.8_5 40 36 35 3.67 3.46 4.66 29.50 29.50 29.50
BPP_50_125_0.2_0.7_1 61 44 48 7.03 4.97 7.88 23.15 23.15 23.15
BPP_50_200_0.2_0.8_0 70 42 51 10.33 5.75 10.72 27.50 27.50 27.50
BPP_50_125_0.1_0.8_9 50 43 48 5.94 5.35 8.84 23.50 23.50 23.50
BPP_50_125_0.1_0.7_6 52 40 40 6.01 4.64 6.51 20.77 20.98 20.90
BPP_50_200_0.1_0.8_9 64 42 52 8.31 5.28 9.66 21.88 21.99 21.83
BPP_50_50_0.1_0.8_3 30 30 26 1.65 1.76 1.75 20.06 20.12 20.07
BPP_50_125_0.1_0.7_9 51 42 43 6.26 5.10 7.23 20.46 20.66 20.59
BPP_50_125_0.1_0.8_0 49 41 46 5.32 4.70 7.57 26.00 26.00 26.00
BPP_50_200_0.1_0.8_3 66 45 42 8.79 5.84 7.68 21.98 22.14 22.21
BPP_50_200_0.1_0.8_5 34 33 35 3.48 3.57 5.60 30.00 30.00 30.00
BPP_50_200_0.2_0.7_7 57 48 50 6.51 5.61 8.30 23.50 23.50 23.50
BPP_50_200_0.2_0.8_1 41 28 33 4.82 3.32 6.06 27.50 27.50 27.50

K per instance results CSP
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Name Iterations Time Objective value
Instance name Greedy_iter RL_iter Expert_iter Greedy_time RL_time Expert_time Greedy_obj RL_obj Expert_obj

BPP_200_100_0.2_0.7_1 57 45 56 11.86 9.18 18.19 90.50 90.81 90.50
BPP_200_100_0.1_0.7_4 80 61 68 24.36 18.23 31.03 79.53 79.93 79.70
BPP_200_75_0.2_0.8_5 63 52 52 10.91 9.10 13.37 103.00 103.00 103.00
BPP_200_75_0.2_0.7_9 55 47 52 7.55 6.43 10.35 89.24 89.67 89.25
BPP_200_75_0.1_0.7_4 66 48 67 12.67 8.93 19.91 80.44 81.72 80.37
BPP_200_100_0.2_0.7_0 65 53 59 13.45 11.01 19.05 93.45 93.40 93.40
BPP_200_100_0.1_0.7_5 69 49 71 19.29 13.06 31.68 78.27 79.52 78.02
BPP_200_50_0.2_0.8_1 30 30 29 2.42 2.70 3.44 115.50 115.50 115.50
BPP_200_120_0.1_0.7_7 87 72 87 33.18 26.98 52.32 78.47 79.01 78.47
BPP_200_50_0.2_0.8_5 44 32 42 3.92 2.93 5.46 103.00 103.00 103.00
BPP_200_100_0.1_0.7_7 71 56 65 20.23 15.24 28.03 77.10 77.60 77.03
BPP_200_75_0.1_0.7_7 78 57 64 16.39 11.12 18.52 82.80 83.70 82.92
BPP_200_75_0.1_0.7_1 75 63 69 15.37 12.84 21.38 82.69 83.60 82.64
BPP_200_75_0.1_0.8_7 97 82 82 26.72 21.65 31.89 91.71 92.08 91.72
BPP_200_75_0.2_0.8_0 59 48 59 9.94 8.15 15.58 102.33 102.33 102.33
BPP_200_120_0.1_0.7_3 111 89 92 51.56 39.32 63.39 82.81 83.30 83.24
BPP_200_100_0.2_0.8_8 85 67 73 24.35 18.42 31.85 111.00 111.00 111.00
BPP_200_100_0.2_0.7_8 88 51 75 20.32 10.12 25.20 91.21 92.33 91.19
BPP_200_100_0.2_0.8_2 107 89 88 33.04 26.74 39.09 99.56 99.59 99.56
BPP_200_75_0.2_0.7_2 56 46 49 7.75 6.12 9.31 92.30 92.96 92.44
BPP_200_75_0.1_0.8_9 84 87 87 20.47 23.16 33.23 92.00 92.28 92.00
BPP_200_100_0.1_0.8_4 106 87 85 43.36 34.82 51.75 94.50 94.50 94.50
BPP_200_100_0.1_0.8_6 105 84 87 39.42 30.47 47.84 88.96 89.42 89.18
BPP_200_75_0.1_0.8_4 84 82 75 21.36 21.97 28.12 92.03 92.06 92.01
BPP_200_100_0.2_0.8_9 121 92 89 40.25 28.35 40.78 101.94 102.00 101.87
BPP_200_75_0.2_0.8_8 75 55 59 13.82 9.63 15.57 101.50 101.50 101.50
BPP_200_100_0.1_0.8_8 124 112 106 56.95 52.58 73.34 93.24 93.29 93.58
BPP_200_75_0.1_0.7_2 60 48 54 11.35 8.97 15.03 78.03 78.43 78.03
BPP_200_75_0.2_0.8_2 71 55 61 12.99 9.86 16.48 96.65 96.58 96.58
BPP_200_75_0.2_0.7_7 54 50 50 7.37 6.85 9.84 91.00 91.00 91.00
BPP_200_100_0.1_0.7_9 77 70 77 24.27 22.05 37.97 80.15 80.62 80.34
BPP_200_75_0.1_0.7_9 58 54 65 10.46 9.92 18.38 82.59 83.25 82.41
BPP_200_100_0.2_0.8_6 110 93 99 36.26 29.91 48.23 98.00 98.00 98.00
BPP_200_75_0.2_0.8_3 61 50 58 10.39 8.45 15.06 102.50 102.50 102.50
BPP_200_100_0.1_0.7_2 95 69 72 31.75 20.94 33.39 80.63 81.30 81.02
BPP_200_75_0.2_0.7_8 56 39 50 7.73 4.96 9.78 89.12 89.70 89.12
BPP_200_100_0.1_0.7_8 85 74 85 27.10 23.43 41.74 80.91 81.01 80.70
BPP_200_100_0.1_0.8_5 102 86 95 42.48 34.58 61.02 90.08 91.64 89.99
BPP_200_100_0.1_0.7_3 80 67 65 22.67 18.24 26.34 79.88 80.18 79.66
BPP_200_75_0.2_0.8_6 54 41 43 8.81 6.63 10.44 115.00 115.00 115.00
BPP_200_75_0.2_0.8_7 57 52 54 9.08 8.60 13.34 108.00 108.00 108.00
BPP_200_120_0.1_0.7_0 104 84 81 44.38 34.28 50.55 80.17 80.86 80.89
BPP_200_75_0.1_0.7_4 66 48 67 12.58 8.78 19.99 80.44 81.72 80.37
BPP_200_100_0.2_0.7_7 87 72 78 21.06 16.82 27.69 93.57 93.69 93.50
BPP_200_120_0.1_0.7_8 69 53 73 22.31 16.40 38.58 79.73 80.62 79.57
BPP_200_100_0.1_0.8_3 106 93 88 40.46 35.01 49.13 89.03 89.98 89.15
BPP_200_75_0.1_0.8_8 87 81 81 23.46 22.07 32.42 87.02 87.65 87.03
BPP_200_100_0.1_0.7_0 80 72 74 23.89 21.35 33.65 81.23 81.34 80.98
BPP_200_50_0.2_0.8_2 35 29 36 3.00 3.35 4.57 103.50 103.50 103.50
BPP_200_120_0.1_0.8_1 99 102 102 48.69 52.01 81.43 84.03 84.11 83.68
BPP_200_120_0.1_0.7_6 88 75 80 31.71 26.87 44.49 82.98 83.25 83.06
BPP_200_120_0.1_0.7_5 95 78 78 37.97 30.99 46.90 80.48 80.68 80.82
BPP_200_100_0.2_0.8_3 97 77 84 29.38 22.22 38.00 100.33 100.33 100.33
BPP_200_50_0.2_0.8_3 40 33 34 3.54 3.04 4.16 101.83 101.83 101.83
BPP_200_100_0.2_0.8_1 87 59 73 25.16 15.68 31.66 106.00 106.00 106.00
BPP_200_120_0.1_0.7_9 94 80 76 36.10 30.36 51.57 79.99 80.27 79.99
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Name Iterations Time Objective value
Instance name Greedy_iter RL_iter Expert_iter Greedy_time RL_time Expert_time Greedy_obj RL_obj Expert_obj

BPP_200_75_0.2_0.7_6 52 45 44 6.17 5.82 7.85 94.45 94.45 94.45
BPP_200_75_0.1_0.8_5 99 84 74 27.22 22.59 28.18 89.04 89.48 89.34
BPP_200_50_0.2_0.8_0 41 32 37 3.57 2.90 4.70 98.33 98.33 98.33
BPP_200_50_0.2_0.8_9 36 28 33 3.06 2.44 4.16 108.50 108.50 108.50
BPP_200_120_0.1_0.7_2 107 82 91 46.05 32.88 58.13 80.49 81.01 80.66
BPP_200_50_0.2_0.8_6 37 30 36 3.23 2.64 4.54 101.50 101.50 101.50
BPP_200_50_0.2_0.8_4 38 31 34 3.30 2.88 4.24 105.50 105.50 105.50
BPP_200_50_0.2_0.8_7 36 35 32 3.00 3.23 3.90 102.00 102.00 102.00
BPP_200_75_0.1_0.8_2 96 80 82 25.07 20.13 30.15 87.01 87.31 87.02
BPP_200_100_0.1_0.7_6 97 72 81 31.30 21.39 37.84 81.77 82.77 82.23
BPP_200_100_0.1_0.8_0 126 111 109 56.03 48.24 70.80 92.00 92.67 92.17
BPP_200_75_0.1_0.7_0 73 59 68 14.63 11.65 20.31 83.04 83.35 82.97
BPP_200_100_0.2_0.8_4 78 66 70 21.59 18.17 30.14 112.00 112.00 112.00
BPP_200_75_0.2_0.8_4 87 65 75 17.02 12.03 20.98 102.73 102.73 102.73
BPP_200_75_0.2_0.7_0 70 59 61 10.48 8.86 12.56 89.60 90.05 89.65
BPP_200_75_0.1_0.8_6 81 72 74 20.60 17.78 27.62 84.92 85.28 84.83
BPP_200_75_0.1_0.8_0 89 80 83 24.40 21.46 32.58 88.28 88.92 88.43
BPP_200_75_0.1_0.7_8 56 52 64 10.33 9.84 19.50 77.35 77.48 77.21
BPP_200_75_0.2_0.8_1 87 74 72 17.77 14.93 20.73 101.83 101.83 101.92
BPP_200_75_0.1_0.7_6 74 61 57 14.43 12.27 16.06 82.75 82.68 82.81
BPP_200_75_0.1_0.8_3 59 59 57 13.11 13.84 19.95 105.50 105.50 105.50
BPP_200_120_0.1_0.7_1 104 86 84 43.51 34.34 51.44 82.28 82.78 82.28
BPP_200_75_0.2_0.8_9 67 64 63 21.74 12.43 17.49 94.89 94.92 94.89
BPP_200_120_0.1_0.8_3 118 100 104 61.68 50.27 81.97 89.24 89.80 89.14
BPP_200_120_0.1_0.7_4 96 60 73 41.30 22.68 45.75 78.44 79.64 78.58
BPP_200_100_0.2_0.7_9 97 86 79 23.71 21.21 27.41 94.59 94.92 94.59
BPP_200_100_0.1_0.8_1 117 112 112 48.07 46.64 69.57 92.69 92.90 92.97
BPP_200_100_0.1_0.7_1 69 65 61 20.25 19.44 27.35 78.83 78.92 79.06
BPP_200_75_0.1_0.7_4 66 48 67 12.80 8.78 19.97 80.44 81.72 80.37
BPP_200_75_0.2_0.7_1 59 43 46 8.50 5.70 9.00 86.87 87.82 86.80
BPP_750_300_0.1_0.7_7 230 215 231 465.58 431.99 761.27 299.97 299.85 298.28
BPP_750_300_0.1_0.7_8 288 215 252 642.50 438.36 868.59 301.65 302.74 301.51
BPP_750_300_0.1_0.8_2 385 329 331 1222.12 984.78 1575.72 344.83 346.43 344.20
BPP_750_300_0.1_0.8_3 330 327 316 987.16 992.71 1487.61 333.55 334.33 333.36
BPP_750_300_0.1_0.8_7 397 317 321 1238.79 900.67 1466.03 334.83 336.11 335.26
BPP_750_300_0.2_0.7_6 377 194 226 924.06 348.74 695.31 339.59 341.83 343.53
BPP_750_300_0.2_0.7_7 302 202 241 652.23 374.72 761.56 346.00 346.91 345.16
BPP_750_300_0.2_0.7_8 266 190 213 555.75 343.14 643.76 339.14 340.80 340.28
BPP_750_300_0.1_0.7_5 262 225 243 676.38 553.77 991.46 302.62 305.25 302.32
BPP_750_300_0.1_0.7_2 282 218 225 607.61 424.71 723.86 308.22 310.59 307.71
BPP_750_300_0.2_0.7_1 251 215 213 393.61 324.76 513.24 343.90 343.73 344.31
BPP_750_300_0.1_0.7_4 252 213 248 526.86 424.10 839.43 299.13 301.11 298.10
BPP_750_300_0.1_0.7_9 251 266 255 518.30 576.85 867.30 303.05 301.99 301.48
BPP_750_300_0.2_0.7_0 264 199 240 436.00 291.99 602.91 338.58 337.66 336.33
BPP_750_300_0.2_0.7_2 330 206 284 595.43 289.76 719.85 344.99 347.38 345.10
BPP_750_300_0.2_0.7_3 291 223 258 496.82 347.74 667.53 333.32 332.97 333.40
BPP_750_300_0.2_0.7_4 304 201 224 539.88 299.66 567.41 343.59 343.89 343.54
BPP_750_300_0.1_0.7_6 254 221 224 545.02 452.20 755.89 302.22 303.04 300.90
BPP_750_300_0.2_0.7_0 264 199 240 437.81 294.21 618.61 338.58 337.66 336.33
BPP_750_300_0.2_0.7_2 330 206 284 595.81 298.91 749.31 344.99 347.38 345.10
BPP_750_300_0.2_0.7_5 239 190 209 398.43 271.92 508.35 335.84 337.90 335.33
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