
A Proofs

As mentioned in sections 3 and 4, our dataset D contains the random perturbation vectors ξ and side
information ψ. Ũ(ψ) represents the conditional uncertainty set that satisfies the following properties.
Lemma 4.1. Let the random uncertainty set Ũ(ψ) satisfy:

PπD(ξ ∈ Ũ(ψ)|ã(ψ) = k) ≥ 1− ε, ∀k (15)
then it satisfies:

PπD(ξ ∈ Ũ(ψ)) ≥ 1− ε. (16)
Proof. The claim follows from:

PπD(ξ ∈ Ũ(ψ)) =

K∑
k=1

PπD(ξ ∈ Ũ(ψ)|ã(ψ) = k)PπD(ã(ψ) = k)

≥
∑
k

(1− ε)PπD(ã(ψ) = k) = 1− ε .

Lemma 4.2. When Ũ satisfies (13), the random policy x̃(·) to the randomized CRO problem together
with

v∗ := esssupπDmin
x∈X

max
ξ∈Ũ(ψ)

c(x, ξ)

provide a conservative approximate solution to the CVO problem under the empirical measure PπD.
Namely,

VaRD,π1−ε(c(x̃(ψ), ξ)) ≤ v∗.
In particular, in the case of the DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U(Wk,Rk.Sk)

c(x, ξ) .

Proof. First, by definition of x̃(·) and v∗, we have that when ξ ∈ Ũ(ψ):
c(x̃(ψ), ξ) ≤ max

ξ∈Ũ(ψ)
c(x̃(ψ), ξ) = min

x∈X
max
ξ∈Ũ(ψ)

c(x, ξ) ≤ v∗ .

Hence, we must have that:
PπD(c(x̃(ψ), ξ) ≤ v∗) ≥ PπD(c(x̃(ψ), ξ) ≤ v∗|ξ ∈ Ũ(ψ))PπD(ξ ∈ Ũ(ψ))

≥ 1 · (1− ε) .
We thus obtain our result based on the following argument:

VaRD,π1−ε(c(x̃(ψ), ξ)) := inf{t|PπD(c(x̃(ψ), ξ) ≤ t) ≥ 1− ε} ≤ v∗ .
In the case of the DCC and IDCC approaches we have that

v∗ = max
k∈[K]

min
x∈X

max
ξ∈U(Wk,Rk)

c(x, ξ) ,

since Ũ(ψ) is supported on {U(W k, Rk,Dπk)}Kk=1.

B Deep learning implementation of IDCC approach

B.1 Loss function

Mathematically, the conditional total variation loss function (11) can be explicitly written as:

L3
α(V, θ, {W k}Kk=1) := (1− αS)

1

K

K∑
k=1

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

‖fWk(ξi)− f̄θ,VWk|ã(ψi)=k‖
2

+ αS

(
(1− αK)

1

N

N∑
i=1

‖gVD (gVE (ψi))− ψi‖2 + αK
1

N

N∑
i=1

K∑
k=1

π̄θk(gVE (ψi))‖gVE (ψi)− θk‖2
)

(17)
where

f̄θ,V
Wk|ã(ψi)=k :=

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

fWk(ξi) .

14

B.2 Architecture

The joint loss minimization task is performed using the following network architecture which
has 2 parallel networks training simultaneously. The first network(gV := (gVE , gVD)) takes the
side information(ψ) as the input and generates a randomized assignment ã(ψ) ∼ π̄θ(gVE (ψ)).
The second network({fWk}Kk=1) takes the random perturbation vector(ξ) and ã(ψ) as the input
to generate W ã(ψ),S ã(ψ)6 which are subsequently used to design the uncertainty set Ũ(ψ) :=
U(W ã(ψ), Rã(ψ),S ã(ψ)).

gV is an auto-encoder(AE) network which generates the assignment vector ã(ψ). They are trained
to learn lower dimension data representations at the bottleneck of the network. They have the
capability to learn representations in a fully unsupervised way which makes them suitable for the task
at hand. The encoder(gVE (.)) consists of the input(dim=m), hidden and the output layers(dim=d).
The decoder(gVD (.)) uses this low dimension representation to reconstruct the original input data.
The decoder is a mirrored version of the encoder. The input layer is fully connected to the output
layers with an intermediate ReLU activation layer in both the encoder and the decoder. We initialize
the network weights using kaiming normal initialization. The output from the encoder is passed
through a softmax layer to generate a soft version of deep K-means [Fard et al., 2020] which gives
the assignment simplex ã(ψ) ∼ π̄θ(gVE (ψ)) where

π̄θk(gVE (ψ)) :=
exp{−β‖gVE (ψ)− θk‖2}∑K

k′=1 exp{−β‖gVE (ψ)− θk′‖2}
(18)

The parallel network({fWk}Kk=1) designs the K customized data-driven uncertainty sets using a
slightly modified deep SVDD method from [Goerigk and Kurtz, 2020]. The input to these networks
is the perturbations ξ and the assignment policy(π̄θ(gVE (ψ))). Each fWk has an input layer(dim=15),
hidden layer and an output layer(dim=5). All layers are fully connected with a ReLU activation
function. All the networks are initialized with a uniform distribution in [0, 1]. Our approach constructs
a weighted center, f̄θ,V

Wk|ã(ψi)=k which uses π̄θ(gVE (ψ)) to compute the loss (17).

B.3 Suggested extensive parameter tuning procedure

In this section, we discuss the parameter tuning strategy that can be used to train the network proposed
in section B.2 using the portfolio optimization example discussed in section 5.2. Here, given the
time series nature of the data, we follow the rolling window approach for network training. Our
architecture uses a set of hyperparameters, hp = (lr, αK , αS , β,K) where lr represents the learning
rate, αK regulates the trade-off between seeking good representations for ψ that are faithful to the
original data and representations that are useful for clustering purposes. αS plays a similar trade-off
between the recognizability and compactness of uncertainty sets. Finally, β is a softmax temperature
parameter and K represents the number of clusters. We split the data into training and validation
periods and search for the optimal combination through the grid search method. For each combination,
we train the network and generate the optimal policy using training data which is applied to the unseen
validation data. The optimal combination is the one that gives the lowest V aR1−ε on the validation
dataset as this is a worst case return minimization problem. This is shown in algorithm 2. Once the
hyperparameters are selected, we re-train the network using the complete data. It is important to note
that the results reported in section 5 did not use parameter tuning to reduce computations.

B.4 Simulated data generation process

In this section, we discuss the data generation process for the simulated data used in section 5.1.
For easy visualization, we consider a simulation environment where [ψT ξT]T ∈ R4 is a random
vector whose distribution is an equal-weighted mixture of two 4-d multivariate normal distributions.7

6Here, Sk refers to (f̄θ,V
Wk|ã(ψi)=k

, Σ̄θ,VWk|ã(ψ)=k) with

Σ̄θ,VWk|ã(ψ)=k :=

N∑
i=1

π̄θk(gVE (ψi))∑N
i=1 π̄

θ
k(gVE (ψi))

· (fWk (ξi)− f̄θ,VWk|ã(ψi)=k
)(fWk (ξi)− f̄θ,VWk|ã(ψi)=k

)T ,

.
7The data is generated using [Page Jr, 1984].

15

Algorithm 2 Hyperparameter tuning

Input:hp = (lr, αK , αS , β,K)
for year = y, . . . , y +M do

Obtain {Uk}Kk=1 from Algorithm 1
Get optimal portfolio using: minx∈X VaR1−ε(ξ

ᵀx)5.2
end for
Choose hp which minimizes out of sample V aR1−ε for M periods

Namely, [ψT ξT]T ∼ 0.5N(µ1,Σ1) + 0.5N(µ2,Σ2) where:

µ1 :=

1
2
0
4

 , Σ1 :=

 1.0 0.0 0.3 −0.1
0.0 1.0 0.1 −0.2
0.3 0.1 1.0 2.0
−0.1 −0.2 2.0 1.0

µ2 :=

5
5
4
0

 , Σ2 :=

 1.0 0.0 0.3 −0.1
0.0 1.0 0.1 −0.2
0.3 0.1 1.0 0.0
−0.1 −0.2 0.0 1.0

 .
The distribution marginalized over the random vectors ψ ∈ R2 and ξ ∈ R2 can respectively be

visualized in figure 3(a) and (b).

(a) (b)

Figure 3: Density plot of the marginalized distributions over ψ (in (a)) and ξ (in (b)) from a mixture
of two Gaussian distributions on the joint space [ψT ξT]T .

B.5 Sensitivity analysis for parameters

Here, we show the sensitivity analysis for the parameters αS and K. For each of these analyses, we
keep all the other parameters constant and train the model by varying the considered parameters.
For αS , we consider the range of values between 0 and 1. For the sensitivity analysis of K, we
considered 1 to 9 clusters. We conducted 10 such runs in the year 2019 and observe the average
validation VaR. The results can be seen in the plots below. The analysis in 4b shows that 2 clusters
result in similar or improved performance compared to using more clusters. Regarding the influence
of αS on out-of-sample performance, we did not observe any insightful behavior. We believe this
hyperparameter can play a role in problem settings where the convergence of TV losses in contextual
and perturbed spaces is different and needs moderation. However, in this case, we don’t notice any
such issues and the choice of αS as 0.5 seemed to work generally well across all experiments as seen
in 4a. The sensitivity analysis also highlights the same, which points to 0.5 as being a legitimate
choice for αS .

16

(a) (b)

Figure 4: Sensitivity analysis (using validation data) across portfolio simulations for the year 2019.

C Algorithms

In this section, we provide the pseudo-code for the Iterative constraint generation and the Deep
Cluster then Classify 4.1 techniques.

C.1 Iterative constraint generation

We present the iterative constraint generation algorithm for both the robust objective problem:

min
x∈X

max
ξ∈U

c(x, ξ),

and a robust constraint problem of the form:

min
x∈X :c(x,ξ)≤0,∀ξ∈U

f(x).

We note that when X is convex and c(x, ξ) is convex in x and linear in ξ, then
arg minx∈X maxξ∈U ′ c(x, ξ) can be obtained using convex optimization algorithms, while ξ∗ ∈
argmaxξ∈U c(x

∗, ξ) can be obtained using mixed-integer linear programming solvers such as
MOSEK (see MOSEK ApS [2022]). In more general setting, one might need to employ more
general non-linear programming software.

Algorithm 3 Iterative constraint generation for robust objective problem

Input: Max number of iteration M
Set U ′ := {ξ0} ⊆ U
for iter = 1, . . . ,M do

Set x∗ ∈ arg minx∈X maxξ∈U ′ c(x, ξ)
Set ξ∗ ∈ argmaxξ∈U c(x

∗, ξ)
if c(x∗, ξ∗) > maxξ∈U ′ c(x

∗, ξ) then
Add ξ∗ to U ′

else
Break

end if
end for
Return x∗

17

Algorithm 4 Iterative constraint generation for robust constraint problem

Input: Max number of iteration M
Set U ′ := {ξ0} ⊆ U
for iter = 1, . . . ,M do

Set x∗ ∈ arg minx∈X :c(x,ξ)≤0,∀ξ∈U ′ f(x, ξ)
Set ξ∗ ∈ argmaxξ∈U c(x

∗, ξ)
if c(x∗, ξ∗) > 0 then

Add ξ∗ to U ′
else

Break
end if

end for
Return x∗

C.2 Deep Cluster then Classify with deep K-means

Algorithm 5 Deep Cluster then Classify with deep K-means

Input: Data-set Dψξ, number of clusters K, maximum number of iterations T , coverage error ε
Randomly initialize θ0, V0 and all W k

0 ’s
Let a0(ψ) := āθ0(gVE0

(ψ))
Set t := 0
repeat

Set t := t+ 1.
Update θkt :=

∑
i∈Ik gVEt−1

(ψi)/|Ik| where Ik := {i : at−1(ψi) = k}
Let at(ψ) := āθt(gVEt−1

(ψ))
Update Vt using SGD on (8) with at(ψi)

until t ≥ T
Let a(ψ) := at(ψ)
for k = 1, . . . ,K do

Train the parameters W k using (5) with Dkξ
Calibrate Rk on Dkξ using coverage target 1− ε
Let Uk := U(W k, Rk,Sk)

end for
Return a(·) and {Uk}Kk=1

18

	Proofs
	Deep learning implementation of IDCC approach
	Loss function
	Architecture
	Suggested extensive parameter tuning procedure
	Simulated data generation process
	Sensitivity analysis for parameters

	Algorithms
	Iterative constraint generation
	Deep Cluster then Classify with deep K-means

