
Supplementary Material for “ELEVATER: A Benchmark and
Toolkit for Evaluating Language-Augmented Visual Models”

This appendix is organized as follows.

• In Section A (referred by CheckList), we discuss the societal impact.

• In Section B.2 (referred by Section 2), we discuss the related work in pre-trained language
models in NLP.

• In Section C (referred by Section 3.1), we summarize the datasets statistics and license used
in our benchmark suite. We also describe how to obtain external knowledge from GPT-3,
and construct language prompts.

• In Section E.1 (referred by Section 4), we introduce more details of our toolkits, including
the automatic hyper-parameter tuning pipeline and implementation details.

• In Section F (referred by Section 4), we discuss the gap between language-image model
pre-training and adaptation.

• In Section G (referred by Section 5.1), we provide performance of comparison different
vision pre-trained models.

• In Section H (referred by Section 5.4), we provide empirical evidence that external knowl-
edge improves CLIP adaptation.

A Societal Impact
We do not anticipate a specific negative impact, but, as with any Machine Learning method, we
recommend to exercise caution. The existing knowledge bases such as Word-Net and Wiktionary
are the results of crowd-sourcing various human knowledge or commonsense into a centered place.
ELEVATER provides evidence to leverage such knowledge bases for AI research. It encourages the
community to contribute more to improve the coverage and quality of knowledge items, which will
further benefit AI research. We also leverage GPT3 to generate knowledge, which is stored as a part
of benchmark for public academic use. The related societal impact on the usage of AI-generated
content may apply to our work.

B Our Position

B.1 Computer Vision in the Wild

In this paper, we advocate our perspective on “Computer Vision in the Wild (CVinW)”, whose
ultimate goal is to develop a transferable foundation model/system that can effortlessly adapt to a
large range of visual tasks in the wild. We further illustrate two key factors as follows.

Factor I: The Task Transfer Cost is Low. One major advantage of pre-trained/foundation models
is the promise that they can transfer to downstream tasks effortlessly (or in an inexpensive manner).
It means that model adaptation efficiency is an important factor to measure the performance of the
pre-trained models. To concretely illustrate the notion of inexpensive adaptation, we provide a 2D
chart on the model adaptation cost in Figure 4. The cost is considered in two orthogonal dimensions:
sample-efficiency and parameter-efficiency. One may interpolate and make combinations in the 2D
space, to get different model adaptation methods with different cost. This is design philosophy behind
our comprehensive evaluation metrics. Two playgrounds with different efficiency considerations
presented in the main paper are simplified settings to study model performance. As a north star, one
foundation could with fixed weights should zero-shot transfer well on many downstream tasks, the
most inexpensive regime in the bottom-left corner of Figure 4.
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Factor II: The Task Transfer Scenarios are Broad. We illustrate and compare the settings of
CVinW using a 2D chart in Figure 2. It consists of two dimensions: the input visual content and
output concept prediction. For the example provided in the standard setting, the natural image with
concept “person, sheep, dog” is presented. We divide the the 2D chart into four quadrants

1. The Standard Close-Set Setting. The bottom-left quadrant is the standard setting, where most
existing visual recognition lie in, training and evaluation are consistent in both their visual input
distributions and output category sets. For example, only natural images with concept “person,
sheep, dog” are presented in training and evaluation.

2. Open-Set/Vocabulary/World Setting. In the top-left quadrant, the recognition of new concepts
is enabled, while the visual input distributions of training and evaluation are in the same domain.
This research problem is usually tackled by traditional class-level zero-shot transfer, or some
experimental settings in the open-set recognition. For example, natural images with concepts
“person, sheep, dog” are presented in training, but natural images with concepts “border collie,
running, while shirt” are presented in evaluation. Though the testing concepts are closely to
training concepts, but they have not been observed by the models in training.

3. The Domain Shift Setting. In the bottom-right quadrant, the input image distributions are shifted
between training and evaluation sets, while the output category sets are the same. This research
problem is often tackled in the area of domain adaptation and out-of-distribution. For example,
natural images with concepts “person, sheep, dog” are presented in training, but thermal images
are presented in evaluation, though the concepts have been observed in training.

4. Computer Vision in the Wild Setting. In the top-right quadrant, the strong generalization ability
to both new concepts and new visual distributions is required. Therefore, the model can perform
well on new tasks of any customized set of concepts in any visual domains. This is a setting we
advocate for computer vision in the wild, where any new downstream tasks can appear in this
quadrant, and it requires models with a strong task-level visual transfer ability.

For the readers who are interested in the literature on Computer Vision in the Wild, we create
an up-to-date CVinW reading list at https://github.com/Computer-Vision-in-the-Wild/
CVinW_Readings.

B.2 Related Works in NLP: Benchmarks, Adaptation, and Knowledge
With a focused scope, our benchmark evaluates language-image models on two core CV problems:
IC and OD. Though language-image models can also be deployed and evaluated in other scenarios,
including joint visual-text evaluation [97, 7](e.g., visual question answering [2, 54], video-and-
language understanding [46]) and the scenario of improving language encoders with vision [77]. Our
benchmark is complementary to them in its focus on evaluating vision encoders.

Our work takes major inspiration from the development of pre-trained language models in natural
language processing (NLP) in several aspects: (i) Benchmarks. Platforms with a suite of small
datasets such as GLUE [84]/SuperGLUE [83] have been extensively used to evaluate the general
language understanding ability of pre-trained models [16]. Recently, there is a trend in NLP to develop
task-agnostic models such as the GPT family [6] that demonstrate task-level transfer learning ability,
enabling zero-shot and few-shot transfer to downstream datasets. The success in NLP encourages us
to build a generic benchmark to measure the similar transferability for visual models. (ii) Efficient
adaptation. The democratization of large pre-trained models for efficient adaptation in downstream
applications is an important topic in practice. Many algorithms have been developed for various
efficiency considerations, including adapters [32] and prompt tuning [48, 51]. In particular, natural
language prompting is the method of reformatting NLP tasks in the format of a natural language
response to natural language input, has attracted attentions in zero-shot and few-shot learning in
NLP [68]. It has inspired a few recent works for language-augmented visual models [96, 75, 90, 25].
Our benchmark can serve as a comprehensive playground to quantify the progress in the emerging
field of visual model adaptation. We also propose to use external knowledge for prompt engineering,
and a novel language/knowledge-initialized model adaptation method as a strong baseline. (iii)
Knowledge. Knowledge-intensive tasks [54, 64] — those where a human can only be expected
to perform the task with access to a knowledge source such as Wikipedia — are challenging for
even cutting edge NLP and vision-and-language models, as it is infeasible to train large models to
memorize everything. KILT [64] is a benchmark that contains a suite of tasks/datasets for evaluating

17

https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings
https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings


Dataset #Concepts Train size Test size Evaluation metric Source link

Hateful Memes [39] 2 8,500 500 ROC AUC Facebook
PatchCamelyon [81] 2 262,144 32,768 Accuracy Tensorflow
Rendered-SST2 [66] 2 6,920 1,821 Accuracy OpenAI
KITTI Distance [23] 4 6,347 711 Accuracy KITTI website

FER 2013 [1] 7 28,709 3,589 Accuracy Kaggle fer2013
CIFAR-10 [41] 10 50,000 10,000 Accuracy Tensorflow
EuroSAT [31] 10 5,000 5,000 Accuracy Tensorflow
MNIST [15] 10 60,000 10,000 Accuracy Tensorflow

VOC 2007 Classification [19] 20 2,501 4,952 11-point mAP VOC 2007
Oxford-IIIT Pets [60] 37 3,680 3,669 Mean-per-class Tensorflow

GTSRB [74] 43 26,640 12,630 Accuracy GTSRB website
Resisc-45 [11] 45 3,150 25,200 Accuracy Tensorflow

Describable Textures [12] 47 1,880 1,880 Accuracy Tensorflow
CIFAR-100 [41] 100 50,000 10,000 Accuracy Tensorflow

FGVC Aircraft (variants) [53] 100 3,334 3,333 Mean-per-class FGVC website
Food-101 [5] 101 75,750 25,250 Accuracy Tensorflow

Caltech-101 [22] 102 3,060 6,084 Mean-per-class Tensorflow
Oxford Flowers 102 [59] 102 1,020 6,149 Mean-per-class Tensorflow

Stanford Cars [40] 196 8,144 8,041 Accuracy Tensorflow
Country-211 [66] 211 31,650 21,100 Accuracy OpenAI

Total 1151 638429 192677 – –

Table 5: Statistics of 20 datasets used in image classification.

(a) Image Classification (b) Object Detection

Figure 9: Semantic space comparison with 2D PCA. For IC or OD, the CLIP text feature of category
names in each benchmark are projected together with PCA, and visualized separately.

and analyzing knowledge-intensive NLP models. Similarly, we also add various external knowledge
sources in each downstream dataset for our vision benchmark.

C Benchmark Suite

C.1 Detailed Dataset Statistics

In Table 5 and Table 6, we list the basic statistics of 20 image classification datasets and 35 object
detection datasets in the benchmark.

The benchmark may inherit data biases from the public datasets we have considered, both in the
images and the annotations. Such biases might be reflected in the predictions of the systems trained
on these data. Users should not completely rely on such systems for making real-world decisions.

C.2 Visualization Comparison with Established Vision Datasets

We also compare our benchmark with well established datasets in computer vision: ImageNet-1K
for IC and COCO/LVIS for OD. Note that LVIS is much diverse than COCO in terms of concept
coverage. The visualization of concept semantic space is Figure 9. The semantics is computed by
extracting the CLIP text features from the category names. To quantitatively measure the diversity
of different benchmarks, we compute the standard derivation (STD) over text features. The STD of
ImageNet1-K and ICinW is 0.610 and 0.680, respectively. The STD of LVIS and ODinW is 0.533
and 0.619, respectively.
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Dataset #Concepts #Image #Annotated Regions Source linkTrain Test Train Test

CottontailRabbits 1 1980 10 2070 11 Roboflow
EgoHands(generic) [4] 1 3840 480 12015 1514 Roboflow

MountainDewCommercial 1 17 1 453 32 Roboflow
Packages 1 19 3 31 5 Roboflow
Raccoon 1 150 17 164 20 Roboflow

WildfireSmoke 1 516 74 516 74 Roboflow
Pistols 1 2377 297 2728 358 Roboflow
Pothole 1 465 67 1256 154 Roboflow

MaskWearing 2 105 15 696 96 Roboflow
NorthAmericaMushrooms 2 41 5 67 9 Roboflow
OxfordPets(species) [60] 2 2523 358 2527 358 Roboflow

PKLot640 2 8691 1242 497856 70684 Roboflow
ThermalCheetah 2 90 14 152 31 Roboflow

ThermalDogsAndPeople 2 142 20 181 27 Roboflow
BCCD 3 255 36 3450 471 Roboflow

HardHatWorkers 3 5069 1766 19455 6808 Roboflow
ShellfishOpenImages 3 407 58 859 116 Roboflow
EgoHands(specific) 4 3840 480 12015 1514 Roboflow

AerialMaritimeDrone(large) 5 52 7 873 78 Roboflow
AerialMaritimeDrone(tiled) 5 371 32 1237 98 Roboflow

VehiclesOpenImages 5 878 126 1676 258 Roboflow
BrackishUnderwater [62] 6 11739 1468 28518 3466 Roboflow

Dice 6 576 71 1439 225 Roboflow
Aquarium 7 448 63 3324 584 Roboflow

DroneControl 8 32688 4675 32734 4694 Roboflow
WebsiteScreenshots 8 1688 242 76820 10656 Roboflow

SelfDrivingCar 11 24000 3000 156730 19598 Roboflow
ChessPieces 13 202 29 2108 376 Roboflow
UnoCards 15 6295 899 18885 2697 Roboflow

PascalVOC [19] 20 13690 3422 31356 7835 Roboflow
AmericanSignLanguageLetters 26 1512 72 1512 72 Roboflow

Plantdoc [72] 30 2128 239 7629 454 Roboflow
BoggleBoards 36 285 35 5727 647 Roboflow

OxfordPets(breed) 37 2437 345 2441 345 Roboflow
OpenPoetryVision 43 2798 402 8392 1198 Roboflow

Total 314 132314 20070 937892 135563 –

Table 6: Statistics of 35 datasets used in object detection. Box mAP is used as the evaluation metric.
Datasets are downloaded from Roboflow. For the datasets without a citation, we refer to Roboflow
links for the original sources.

C.3 License

As per the original authors, the licenses of each dataset include CC BY-NC-SA 3.03, CC BY-NC-SA
4.04, CC BY 4.05, ODbL v1.06, MIT7, CC0 1.08. Some datasets have published dedicated usage
aggrements: Hateful Memes9. All datsets allow the usage for research purposes. The images used in
the datasets are from Internet, on non-offensive topics. The annotations in the datasets do not contain
personally identifiable information.

For external knowledge collected on ELEVATER, we suggest the users to follow the corresponding
licenses: WordNet10, Wiktionary11, GPT-312. For the GPT-3 generated knowledge, we have the
approval from OpenAI to release it as a part of ELEVATER to encourage future research.

3https://creativecommons.org/licenses/by-nc-sa/3.0/
4https://creativecommons.org/licenses/by-nc-sa/4.0/
5https://creativecommons.org/licenses/by/4.0/
6https://opendatacommons.org/licenses/odbl/1-0/
7https://choosealicense.com/licenses/mit/
8https://creativecommons.org/publicdomain/zero/1.0/
9https://www.drivendata.org/competitions/64/hateful-memes/page/214/

10https://wordnet.princeton.edu/license-and-commercial-use
11https://en.wiktionary.org/wiki/Wiktionary:Main_Page
12https://openai.com/api/policies/sharing-publication/
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Dataset name Oxford Flowers 102
Category names [’pink primrose’, · · · ]
Templates [ ’a photo of a {}, a type of flower.’, ]
Knowledge ["classname": "pink primrose", "def_wiki": "A flowering plant of the genus Primula.", "path_wn":

"", "def_wn": "", "gpt3": [" A plant of the genus Primula, having a pink flower.", " Primula vulgaris,
a plant of the primrose family, with pink flowers.", " A flowering plant of the genus Primula.", " A
primrose, Primula × polyantha, with pink flowers.", " A plant of the genus Primula, of the family
Primulaceae, having showy flowers of various colors."], · · · ]

Prompt • ’a photo of a pink primrose, a type of flower.’

Prompt + • ’a photo of a pink primrose, a type of flower ; A flowering plant of the genus Primula.’
Knowledge • ’a photo of a pink primrose, a type of flower ; A plant of the genus Primula, having a pink flower.’

• ’a photo of a pink primrose, a type of flower ; Primula vulgaris, a plant of the primrose family, with
pink flowers.’
• ’a photo of a pink primrose, a type of flower ; A flowering plant of the genus Primula.’
• ’a photo of a pink primrose, a type of flower ; A primrose, Primula × polyantha, with pink flowers.’
• ’a photo of a pink primrose, a type of flower ; A plant of the genus Primula, of the family
Primulaceae, having showy flowers of various colors.’

Table 7: Examples of prompt construction with and without external knowledge for the concept ‘pink
primrose’ on dataset ‘Oxford Flowers 102’.

C.4 Generating GPT-3 Knowledge with In-Context-Learning

❑ Concept name: snowberg

❑ Def_wik: None

❑ GPT3 Query:

Please explain the concept according to the context.

===

Q: ship

A: A water-borne vessel generally larger than a boat.

===

Q: storage tank

A: A closed container for liquids or gases.

===

Q: snowberg

A: 

❑ GPT3 Answer: A large mass of ice floating in the sea.

Figure 10: Example of generating external knowledge with GPT3 using in-context learning even
when Wiktionary knowledge is missing.

Wiktionary and WordNet do not provide a 100% coverage for all downstream concepts. As shown in
[71], an incomplete knowledge coverage can lead to deteriorated model performance. In this paper,
we show that GPT3 can be used for generating additional external knowledge and providing a full
coverage for downstream concepts.

We use in-context-learning to prompt GPT-3. As an input to GPT3, we start by asking “Please
explain the concept according to the context”. In addition, we provide multiple concept-explaining
Q (concept)-A (explanation) pairs. Each pair of the concept and explanation are sampled from the
concepts that have the Wiktionary knowledge available. Finally, we send a different concept to
GPT3, and ask for the explanation. In this way, GPT3 is able to generate explanatory descriptions
for the concepts even when its Wiktionary knowledge is missing. For example, as shown in Fig. 10,
there is no Wiktionary knowledge available for “snowberg”, while “ship” and “storage tank” have
their corresponding Wiktionary explanations. By providing the concept-explanation pairs of “ship”
and “storage tank”, GPT3 recognizes this as a concept explaining task, and when a new concept
“snowberg” is given, it explains the concept without the need for its external knowledge. By randomly
sampling different Q-A groups from the concepts with Wiktionary knowledge, we are able to generate
a diverse set of GPT3 responses.
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C.5 Prompting and Knowledge

For each visual recognition dataset, there comes naturally with a set of category names. A spe-
cific set of natural language templates are created for each dataset, following [66]. In our toolkit
(vision_benchmark/datasets/prompts.py), we maintain the mappings from a dataset to its
specific category names and template sets, respectively. External knowledge for each dataset is
maintained at the folder vision_benchmark/resources/knowledge. To construct the language
prompt, we suggest the following steps:

1. For a given dataset, choose one category from a set of its category names
2. Choose one template from a set of pre-defined dataset-specific language templates.
3. Fill in the category name into the template, which yields the constructed language prompt

for this category.
4. (Optional) If external knowledge is preferred to add into the prompt construction, please

select a knowledge source with non-empty value, and concatenate the knowledge sequence
after the text sequence in Step 3, separated by “;”.

In Table 7, we provide examples to construct prompts with and without external knowledge, by
following the above procedure.

D Evaluation

D.1 Leaderboards

As demonstrated in Section 3.3, we advocate an evaluation setting with efficiency considerations,
which decomposes the adaptation cost into two orthogonal dimensions: sample-efficiency and
parameter-efficiency. To encourage future users compare their models with efficiency considerations,
We build the public leaderboards on EvalAI:

• Image Classification in the Wild (ICinW)
https://eval.ai/web/challenges/challenge-page/1832/overview

• Object Detection in the Wild (ODinW)
https://eval.ai/web/challenges/challenge-page/1839/overview

D.2 A new metric with performance-efficiency trade-off

For parameter-efficiency track, to compare different methods with a single number that considers
both prediction accuracy and parameter-efficiency, we define the performance-efficiency (PE) metric:

PE = score ∗ exp(log10(# trainable-parameters/M0 + 1)) (1)

where score measures the prediction accuracy, while # trainable-parameters is the number
of updated parameters in the model adaptation stage, and M0 is the normalization constant. We
set M0 = 108 because most existing vision backbone model size are designed in this magnitude,
for example, ViT-Base (80M parameters) and ViT-Large (300M parameters). With larger models
designed in the future, one may increase M0 for sensible measurement.

E Toolkit

Our code is under MIT license.

E.1 Automatic Hyper-parameter Tuning

Image Classification. For a given dataset, we split its training set into training and validation with
a ratio 80% vs 20%. At least one training sample per class is ensured for training and validation.
Grid search is applied over learning rate η and weight decay α. In the hyper-parameter search
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stage, the model is trained with a given configuration (η, α) for 10 epochs, the best hyper-parameter
configuration is chosen as the one with the best validation performance along the entire process. After
that, a final run is performed for 50 epochs to report the performance on the testing set.

Object Detection. A validation set is chosen in the hyper-parameter search stage. We consider
validation set size (1, 1, 1, 3, full) for N = 1, 3, 5, 10, respectively. For each type of checkpoints
(DyHead, GLIP) and each adaption method, we have a set of pre-selected hyper-parameters, i.e.,
batch size |B|, initial learning rate η0 and weight decay α, as shown in Table 8 in Appendix. They are
determined by either empirical rules or simple hyper-parameter tuning. For each setting and each
train/val split, we evaluate on the val split after every training epoch to decrease the learning rate
in a step-wise manner. More specifically, we use the PyTorch ReduceLROnPlateau with patience 3
and factor 0.1 to decrease the learning rate when there is no improvement on val. We terminate the
fine-tuning process if we do not see improvements for continuously 9 epochs, return the checkpoint
with the best score on val, and report its score on the test split. For each few-shot setting, we random
sample the train/val split 3 times, and report the average score and standard deviation on the test
split. For each type of checkpoints (DyHead, GLIP) and each adaption method, we have a set of
pre-selected hyper-parameters, i.e., batch size |B|, initial learning rate η0 and weight decay α, as
shown in Table 8. They are determined by either empirical rules or simple hyper-parameter tuning.

Settings 35 OD datasets

Checkpoint Adaptation |B| η0 α

GLIP
(Swin-Tiny)

Prompt
4

0.05 0.25
Linear Probing 0.0001 0.05
Fine-tuning 0.0001 0.05

DyHead
(Swin-Tiny)

Linear Probing 4 0.0001 0.05
Fine-tuning 0.0001 0.05

Table 8: Pre-selected hyperparameters for OD datasets.

E.2 Implementation details

Image Classification. To make a fair comparison between different methods in image classification,
we conduct experiments with FP32 precision. Our preliminary experiments show that on average
FP16 and FP32 yields similar zero-shot performance, while FP32 models outperform FP16 ones on
16 out of 20 datasets.

Object Detection. For OD, one image could contain multiple classes. We run an algorithm to go
over the images in the full training set one by one, and add the image to the N -shot training set if the
image contains some classes that do not have N images yet. We stop if all classes have at least N
images or we have exhausted the full training set. Thus, the total number of images in the dataset
could be between N ∼ N ∗K, where K is the number of categories. We will release all the N -shot
samples we used for experiments [47]. For OD full fine-tuning, the common practice is to freeze the
bottom two layers of the backbone13.

F Close the Gap between Pre-training and Adaption for CLIP

In Section 4, we have proposed language-initialized adaptation strategy, which consistently improves
the linear probing and fine-tuning performance of language-image pre-trained models like CLIP.
By initializing the linear head of CLIP model with the embeddings from the language encoder, it
allows the model update and prediction of CLIP in few- / full-shot adaptation settings behaving in a
similar way as in the zero-shot setting. This, in other words, narrows the gap between the pre-training
CLIP objective and the downstream image classification objective (cross-entropy). In this section, we
explore other factors that differs in the pre-training CLIP and downstream CLIP adaptations.

13shorturl.at/AOZ13
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7 3 1.0 7 61.5 2.0 88.9 90.2 72.2 17.3 48.5 79.5 53.5 21.1 84.2 36.5 55.8 42.0 54.4 67.4 87.7 65.3 56.9 67.1 59.6 82.3
3 3 1.0 7 60.8 2.4 86.0 90.4 70.3 16.6 45.6 71.7 53.9 19.6 83.6 35.9 55.8 41.8 66.5 64.9 85.6 65.6 58.9 65.8 54.6 82.5
7 7 1.0 7 62.7 3.1 88.8 91.2 72.7 17.3 49.9 73.5 53.2 21.9 84.4 37.0 55.8 52.8 52.0 80.7 87.8 64.9 59.3 68.9 59.9 82.0

3 7 1.0 3 65.0 2.8 90.0 91.1 71.4 16.9 57.8 80.0 52.7 26.5 83.4 69.2 55.8 41.6 61.4 79.5 87.3 64.2 59.1 76.3 54.2 82.7
3 7 100 3 58.5 3.9 86.8 90.5 45.4 7.8 47.2 71.8 42.3 20.0 79.4 59.1 54.2 40.1 61.5 58.9 86.0 62.8 59.6 69.0 48.4 79.1

Table 9: Effect of the normalization and temperature with 5-shot finetuning CLIP (ViT/B-32). The
linear head is initialized with the proposed language-initialization adaptation strategy. Trainable τ .

F.1 Visual Feature Normalization

There are two difference in the normalization strategy between the CLIP pre-training and fine-tuning.
In CLIP, visual features U are normalized per-instance using `2-norm [66]; while in downstream
adaptation, usually a batch normalization (BN) [34] without the learnable affine transformation is
used for feature normalization [17, 30]. We compare between these two normalization strategies as
well as the setting without feature normalization.

As shown in Table 9 (Row 1-4), using the channel BN yields the best performance. In addition,
adding instance-wise `2 normalization does not help improve the performance. This suggests that it
is not always beneficial to adopt the objectives / tricks from CLIP, as there are still differences in the
training objectives between CLIP and downstream classification, which we discuss in Sec. F.2.

F.2 Training objective

Although the training objective is aligned between the pre-training and downstream adaptation
already with the proposed language-initialization adaptation strategy, there are several factors that
may cause a difference in the gradient flow between pre-training and downstream adaptation, which
can potentially hurdle the model training.

The size of Softmax: |B| vs K. In CLIP, a scaled pairwise cosine similarity is first computed
between all image-text pairs, and the bidirectional cross entropy loss is then applied to the computed
similarity score. Although the loss function of pre-training CLIP and downstream adaptation can be
reduced to the same objective, one key difference is the size of the similarity matrix. For each image,
the similarity is computed with all text embeddings. In CLIP, it is the number of all text samples
in a large batch (e.g., |B|=32,768); while in downstream, it is the number of text embeddings of all
classes K (which is typically less than 200). Such disparity can cause a significant change in the
pattern of the gradient flow.

Temperature. In CLIP, a trainable log-parameterized temperature τ controls the range of the logits
in the Softmax, which is typically not used in downstream adaptation. Although the temperature
parameter does not alter the ranking of its predictions, it modifies the scale of the gradients when
backward propagation is performed in downstream adaptation.

Experiment/Analysis. Based upon the above analysis, we design experiments to explore the effect
of these factors on the gradient flow and the downstream adaptations.

We compare the initialization of the temperature τ and whether to keep it frozen during the adaptation
in Table 9 (Row 1,5-7). First, setting it to trainable has minimal effect to the training process; as
there are now only K classes, it might not be as important in CLIP to have a learnable τ . Second,
initializing it with the pretrained checkpoint (after training with CLIP, exp(τ) = 100) yields a
significant performance drop. We attribute this performance drop to the change in the size of Softmax
from |BCLIP| to K, where |BCLIP| � K. Having a large temperature coefficient like exp(τ) = 100
dramatically increases the sharpness in the pattern of Softmax and its gradient flow, which is
inappropriate for training.
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F.3 Conclusion

The language-augmented initialization is the most critical componenet in aligning the training
behavior of CLIP models (30%+ mean score improvement for 5-shot finetuning), without which
the pre-trained capacity in the language encoder would be completely lost. Other factors like visual
feature normalization, batch size, temperature, etc. have a much smaller effect to the training
procedure. We choose to use the parameter-free batch normalization, keep the traditional batch size,
and not bring in additional parameters like temperatures, for trading off between the performance and
the simplicity of the model.

G Empirical Comparisons of Existing Pre-trained Vision Models

G.1 A Taxonomy of Pre-trained Vision Models

We provide the taxonomy for pre-trained vision models from the perspective whether language and/or
is employed in pre-training, as shown in Table 10. The taxonomy is a two-level hierarchy.

1. In the 1st level hierarchy, given a visual recognition problem (IC or OD), the models are
first categorized into language-augmented or language-free, depending on whether language
is used or not in pre-training.

2. In the 2nd level hierarchy, the language-augmented models are further categorized into
knowledge-augmented or knowledge-free, depending on whether the textual external knowl-
edge is used or not in pre-training.

Note that our taxonomy is only related to pre-training, which is independent from how the model is
adapted to a downstream task.

For knowledge-augmented pre-trained models such as K-LITE [71], the model is pre-trained with
both natural language supervision and external knowledge supervision. The external knowledge is
employed in the following manner: (1) For image-text pairs, query is identified using entity extraction
on the text, (2) The relevant “knowledge text” of the query is retrieved from knowledge bases; (3)
The retrieved “knowledge text” is appended to the original text. In the downstream adaptation stage,
it follows the same prompting process with other pre-trained models, as described in Section C.5.
Baseline Pre-trained Visual Models

Knowledge-augmented
Knowledge-freeLanguage-augmented

Language-free

Language-augmented

Language-free

Knowledge-augmented
Knowledge-free

Image 
Classification

Object 
Detection

Model Taxonomy Hierarchy

Table 10: A Taxonomy of Vision Pre-trained Models

G.2 Baseline with Vision Pre-trained Models

Image Classification We consider seven checkpoints to produce baseline results for IC. In the
main paper, we report the following four checkpoints.

• Supervised ViT [18] represents a checkpoint for the traditional language-free visual models, where
model training is performed on ImageNet-22K with cross-entropy loss.
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Pre-training Settings 20 Image Classification Datasets

Checkpoint Method Dataset 5-shot 20-shot 50-shot Full-shot

Linear Probing
CLIP‡ Image-Text Contrast WebImageText (400M) 68.27 ± 0.97 74.76 ± 1.11 77.75 ± 0.81 81.17
ViT† Supervised ImageNet-22K (14M) 57.61 ± 3.62 69.93 ± 0.71 73.74 ± 0.79 77.60
DeiT Supervised ImageNet-1K (1.2M) 54.06 ± 3.02 68.57 ± 3.43 75.53 ± 0.72 79.56
MAE Self-Supervised ImageNet-1K (1.2M) 33.37 ± 1.98 48.03 ± 2.70 58.26 ± 0.84 68.70
CAE Self-Supervised ImageNet-1K (1.2M) 44.15 ± 0.31 57.93 ± 0.19 64.37 ± 0.23 70.56
MoCo-v3 Self-Supervised ImageNet-1K (1.2M) 50.17 ± 3.43 61.99 ± 2.51 69.71 ± 1.03 74.92
Random - - 19.64 ± 1.68 23.89 ± 1.47 26.86 ± 0.69 31.64

Fine-tuning
CLIP‡ Image-Text Contrast WebImageText (400M) 69.12 ± 1.66 74.76 ± 2.34 78.21 ± 2.04 83.63
ViT† Supervised ImageNet-22K (14M) 57.18 ± 2.02 72.45 ± 2.85 78.53 ± 0.69 82.02
DeiT Supervised ImageNet-1K (1.2M) 54.06 ± 3.02 68.53 ± 3.47 75.57 ± 0.68 79.55
MAE Self-Supervised ImageNet-1K (1.2M) 36.10 ± 3.25 54.13 ± 3.86 65.86 ± 2.42 74.43
CAE Self-Supervised ImageNet-1K (1.2M) 37.87 ± 1.03 58.04 ± 2.07 71.39 ± 0.79 77.79
MoCo-v3 Self-Supervised ImageNet-1K (1.2M) 39.30 ± 3.84 58.75 ± 5.55 70.33 ± 1.64 77.71
Random - - 20.85 ± 1.59 26.29 ± 1.21 30.88 ± 1.68 43.73

Table 11: Averaged scores on 20 IC datasets with the ViT-B16 network architecture. ‡ CLIP is
adapted using the proposed language-augmented initialization. † ViT checkpoint is pre-trained on
ImageNet-22K, then fine-tuned on ImageNet-1K. The zero-shot performance of CLIP is 59.96%.

• CLIP ViT [66] represents a checkpoint for the family of the language-augmented visual models,
trained with 400M image-text pairs.

• UniCL Swin [88] represents knowledge-free language-augmented visual models with Swin [52]
as the visual backbone, trained in the academic setting with ImageNet-21K, which excludes
ImageNet-1K categories from ImageNet-22K.

• KLITE, UniCL Swin [71] represents knowledge-enriched language-augmented visual models. Its
pre-training setting is the same as UniCL Swin, but external knowledge such as Wiktionary is
leveraged in model pre-training.

We also consider three popular language-free visual models in Appendix:

• DeiT [79] represents a checkpoint for the supervised visual backbone, where model training is
performed on ImageNet-1K with cross-entropy loss and advanced data augmentation and training
schedule.

• MoCo [10] represents a checkpoint for the family of augmented-view-based methods for image
self-supervised learning, trained with images only in ImageNet-1K.

• MAE [30] represents a checkpoint for the family of recent masked region (visual token) modeling
based methods for image self-supervised learning, trained with images only in ImageNet-1K.

• CAE [9] represents a checkpoint that benefits the separation of the representation learning (encoding)
role and the pretext task completion role, trained with images only in ImageNet-1K.

Object Detection We consider four checkpoints to produce baseline results for OD. They are
for the academic track, as they are pre-trained on public datasets. All of them employ Swin-Tiny
backbone [52].

• DyHead [13] represents a checkpoint for the traditional language-free object detector, where model
is pre-trained on Object365 [69] without leveraging the category name information.

• GLIP [47] represents a checkpoint for the family of the language-augmented object detector, trained
with Object365 and Flicker phrase grounding data [65].

• GLIP-A [47] represents knowledge-free language-augmented object detector, where model is trained
on Object365 and the semantics of category names is leveraged.
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Linear Probing

CLIP

5 68.3 91.3 91.4 71.1 21.7 61.6 76.7 53.6 36.0 89.7 55.9 58.0 44.8 76.7 94.2 90.5 54.3 62.0 78.3 73.6 84.2
20 74.8 94.3 93.0 75.4 25.2 73.7 86.6 54.7 48.1 90.6 75.7 58.5 50.3 90.5 96.8 92.3 68.0 63.8 87.5 83.9 86.3
50 77.8 94.4 93.8 78.0 27.7 76.3 90.0 57.5 53.5 91.3 81.6 60.0 61.4 95.9 96.8 93.8 69.9 68.7 90.1 87.2 87.1
full 81.2 94.4 95.8 82.2 31.2 77.4 94.5 68.5 52.8 92.8 88.6 65.1 67.7 98.9 96.5 94.0 83.5 74.5 90.8 87.2 87.0

MAE

5 33.4 59.0 34.0 21.2 2.8 35.0 64.4 21.3 7.0 7.7 17.5 51.4 46.1 63.4 50.9 17.2 54.9 50.1 38.9 6.3 18.3
20 48.0 85.5 44.9 43.5 4.4 58.3 74.1 23.5 29.9 30.4 41.1 51.7 49.8 52.9 71.9 60.0 52.7 53.2 67.4 25.5 39.9
50 58.3 88.7 67.3 53.3 6.9 66.0 86.4 27.1 39.2 42.8 57.0 50.8 54.0 81.5 71.9 76.5 69.4 51.6 78.6 36.7 59.2
full 68.7 87.7 88.2 68.3 10.1 66.3 94.8 56.0 39.1 65.1 76.3 56.2 78.8 99.3 72.0 81.6 86.0 58.4 81.2 37.2 71.4

CAE

5 43.8 74.7 61.6 38.3 3.5 43.7 76.7 24.5 14.3 18.6 33.8 47.9 42.3 57.8 70.3 37.3 63.2 52.1 54.4 8.7 51.3
20 57.9 87.3 76.4 55.1 5.5 62.0 89.0 32.5 32.6 35.7 54.3 51.6 57.3 88.9 81.2 63.3 69.9 52.2 72.1 27.5 64.4
50 71.4 93.9 90.6 78.3 6.8 69.4 93.2 43.2 56.1 59.4 93.5 53.0 61.6 96.2 85.9 90.0 81.1 52.3 88.0 69.5 65.8
full 70.6 90.0 93.9 78.9 11.4 66.3 96.7 57.9 40.8 67.4 78.9 55.6 75.7 99.0 81.2 79.8 85.9 58.8 82.7 40.4 70.0

MoCo-v3

5 50.2 80.8 78.5 60.5 4.8 57.1 77.1 20.5 11.8 36.6 31.4 50.7 46.7 64.1 79.5 76.2 54.7 50.0 61.1 13.4 47.9
20 62.0 91.3 67.7 75.5 7.6 66.3 84.8 30.9 38.2 59.3 53.9 53.5 48.5 81.8 89.5 86.4 52.1 51.6 77.3 49.5 74.2
50 69.7 92.1 93.6 79.0 10.3 73.4 92.3 40.2 48.0 66.8 66.7 50.3 60.5 88.3 89.5 90.2 75.1 51.3 84.1 63.1 79.2
full 74.9 92.1 96.9 85.3 13.7 73.1 95.9 60.1 48.0 78.0 78.7 53.7 68.8 98.4 89.5 91.4 86.7 57.1 86.3 63.0 81.7

DeiT

5 54.1 86.2 70.1 61.5 4.4 52.9 62.5 14.5 24.1 41.9 46.7 51.1 47.6 83.8 82.7 87.8 51.5 50.1 63.4 27.6 70.9
20 68.6 93.9 91.2 73.7 6.2 68.7 90.7 35.2 34.1 61.5 86.7 50.8 52.4 90.7 92.7 91.9 66.7 51.7 82.7 68.8 81.1
50 75.5 94.7 94.2 82.0 8.8 73.9 94.4 40.8 60.6 73.2 96.5 53.4 69.7 98.1 92.7 93.4 77.4 52.2 89.4 82.9 82.3
full 79.6 94.9 98.2 89.6 14.1 72.8 98.2 69.3 59.3 84.5 98.8 44.3 82.0 99.6 92.4 93.9 89.9 52.6 90.8 83.0 83.1

ViT

5 57.6 93.2 88.2 75.4 6.8 63.9 70.0 25.2 22.7 59.0 29.9 48.5 46.5 68.3 99.2 89.6 61.3 49.9 57.9 27.6 69.2
20 69.9 95.6 94.8 84.0 11.5 75.7 86.5 45.4 40.5 81.7 51.1 53.5 57.1 87.7 99.2 92.6 72.0 52.4 79.7 53.9 83.7
50 73.7 96.0 96.4 86.8 15.2 78.8 91.5 50.0 48.5 85.1 62.1 51.0 60.1 91.7 99.2 93.9 77.7 51.5 85.4 67.3 86.6
full 77.6 95.9 98.2 89.8 16.6 78.9 96.0 64.5 47.8 89.6 76.5 55.1 69.3 98.2 99.2 94.8 85.5 54.6 86.6 67.5 87.3

Random

5 19.6 9.0 17.6 5.8 1.2 8.2 41.0 15.4 3.0 2.7 7.9 49.6 40.9 26.7 17.8 4.1 52.7 51.5 18.6 1.5 17.5
20 23.9 13.0 25.1 9.8 1.9 12.4 46.3 20.4 3.6 4.7 9.4 54.4 42.1 40.8 22.4 7.0 64.8 52.2 25.5 2.3 19.9
50 26.9 15.9 27.3 12.1 2.2 14.2 60.4 20.2 4.1 6.0 11.1 54.1 40.8 56.0 22.4 8.7 73.7 53.1 30.6 2.6 21.6
full 31.6 16.5 43.0 18.7 3.1 13.8 69.0 30.4 4.4 10.8 15.3 56.6 45.1 85.0 21.7 9.5 77.6 55.0 31.0 2.7 23.3

Fine-tuning

CLIP

5 69.1 91.2 92.1 73.2 22.2 53.8 79.0 55.9 33.5 87.5 84.3 55.3 41.9 84.9 87.1 91.7 59.4 59.8 80.1 66.0 83.5
20 74.8 93.7 93.9 79.7 21.8 70.6 94.1 59.0 52.2 89.0 91.9 54.3 52.7 70.0 93.8 93.0 71.9 62.6 87.0 80.0 84.2
50 78.2 94.5 94.7 82.8 21.9 75.0 95.7 61.0 61.5 89.3 91.3 54.5 65.1 85.4 93.8 93.7 75.4 64.9 91.0 86.5 86.3
full 83.6 94.9 98.6 89.4 23.6 74.7 98.4 72.0 60.8 91.8 99.0 65.9 84.1 99.6 94.1 94.2 89.7 76.5 91.9 86.9 86.5

MAE

5 36.1 70.8 34.4 13.1 2.1 41.4 64.1 20.8 8.2 13.3 14.8 49.6 38.0 46.8 68.8 37.8 53.3 50.9 50.4 6.0 37.4
20 54.1 91.0 50.1 40.4 3.6 59.7 79.5 22.6 32.5 22.4 62.2 54.8 46.0 90.9 81.6 78.0 67.7 51.7 65.5 21.6 60.8
50 65.9 92.9 71.5 54.7 4.9 66.2 87.8 34.1 42.8 51.9 95.6 51.3 50.1 96.1 81.6 84.8 77.3 52.4 85.2 68.0 68.0
full 74.4 92.8 97.7 85.5 9.3 66.2 97.5 68.5 46.2 84.6 99.1 55.2 82.8 99.6 75.3 89.8 76.0 56.7 87.0 47.0 71.7

CAE

5 39.2 74.4 54.2 30.3 1.8 47.5 68.2 18.9 5.8 18.1 10.9 48.4 35.3 22.6 73.3 51.9 50.0 52.7 58.2 3.7 57.7
20 58.0 89.3 30.6 62.1 4.9 62.3 73.6 24.9 36.3 30.9 84.9 49.7 56.0 66.1 86.0 84.0 75.8 52.4 75.3 50.4 65.2
50 71.4 93.9 90.6 78.3 6.8 69.4 93.2 43.2 56.1 59.4 93.5 53.0 61.6 96.2 85.9 90.0 81.1 52.3 88.0 69.5 65.8
full 77.8 93.2 98.6 89.1 12.8 68.0 98.1 68.8 44.3 87.3 99.2 57.1 84.3 99.8 87.6 92.1 91.8 56.7 89.9 61.6 75.4

MoCo-v3

5 39.3 73.7 70.3 17.4 2.3 45.6 60.0 13.5 7.2 27.6 16.5 50.8 43.5 18.1 65.7 77.1 50.9 50.7 58.2 11.2 25.7
20 58.8 91.9 58.4 59.2 5.0 63.4 69.7 19.8 47.4 55.5 86.7 53.5 48.5 53.4 85.8 87.4 51.5 51.4 78.5 49.2 59.2
50 70.3 92.8 89.1 77.5 6.9 71.3 92.6 31.0 53.4 63.2 96.5 50.9 57.3 94.3 85.8 90.2 74.2 50.4 87.3 66.2 75.7
full 77.7 93.3 98.1 88.7 11.7 71.3 97.3 68.3 51.9 84.1 98.8 54.5 80.5 99.6 87.1 90.9 91.4 52.5 88.6 67.9 77.6

DeiT

5 54.1 86.2 70.1 61.5 4.4 52.9 62.5 14.5 24.1 41.9 46.7 51.1 47.6 83.8 82.7 87.8 51.5 50.1 63.4 27.6 70.9
20 68.5 93.9 91.2 73.7 6.2 68.7 90.7 34.4 34.1 61.5 86.7 50.8 52.4 90.7 92.7 91.9 66.7 51.7 82.7 68.8 81.1
50 75.6 94.7 94.2 82.0 9.6 73.9 94.4 40.8 60.6 73.2 96.5 53.4 69.7 98.0 92.7 93.4 77.4 52.2 89.4 82.9 82.3
full 79.5 94.9 98.2 89.6 14.1 72.8 98.2 69.3 59.2 84.5 98.8 44.3 82.0 99.6 92.4 93.9 89.9 52.6 90.8 83.0 83.1

ViT

5 57.2 90.8 82.7 67.6 4.0 56.0 75.2 24.5 21.4 58.0 51.5 47.6 38.4 82.6 99.0 83.8 53.8 51.0 61.5 21.0 73.2
20 72.5 96.1 93.6 86.7 8.4 74.2 91.7 43.6 51.6 68.2 92.8 51.9 57.8 95.8 99.4 92.1 71.6 51.8 84.8 65.5 71.4
50 78.5 96.3 97.3 89.9 11.8 79.1 95.0 52.1 63.6 83.0 97.5 54.7 68.9 97.5 99.5 93.3 80.5 52.3 90.1 83.0 85.2
full 82.0 96.6 99.0 93.4 16.8 79.4 98.3 72.6 61.9 90.7 99.1 53.4 84.5 99.7 99.5 94.0 91.1 50.1 91.5 83.2 85.6

Random

5 20.9 12.4 16.2 6.6 1.3 9.4 38.3 19.9 3.2 3.2 8.6 52.4 41.7 18.6 25.4 4.7 62.3 51.1 21.7 1.8 18.3
20 26.3 24.5 25.3 13.1 2.2 16.4 55.3 20.2 5.1 5.9 16.6 52.8 35.2 38.0 38.3 8.2 65.7 50.6 29.1 3.4 20.1
50 30.9 27.5 31.1 19.6 3.0 19.9 67.3 21.9 6.5 8.5 28.5 56.0 42.2 42.7 38.3 11.6 73.5 52.3 41.2 3.7 22.2
full 43.7 28.3 65.9 41.4 4.0 21.8 85.3 41.0 7.2 34.0 83.0 55.7 50.5 95.6 35.1 15.3 81.8 55.6 44.5 2.6 26.1

Table 12: Breakdown results of ViT-B16 checkpoints in Table 11.

• KLITE, GLIP-A [71] represents knowledge-enriched language-augmented object detector. Its
training setting is the same as GLIP-A, except that Wiktionary knowledge is leveraged in model
pre-training.
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In summary, among four checkpoints for each problem, the first two are used to compare the state-
of-the-art in language-free and language-augmented models, and latter two are used to compare the
knowledge-free and knowledge-augmented models (both belongs to language-augmented models, as
knowledge is presented as a structured form of language).

G.3 Experimental Results of Different Model Checkpoints

In Table 11, we report IC performance with ViT-B16 pre-trained with representative methods, using
different objectives and datasets. We present its breakdown experimental results in Table 12. Note
that all of the models are adapted to downstream datasets, using the same automatic hyper-parameter
tuning process in our toolkit, and no model- / dataset-specific tuning is employed. This ensures
fairness in model adaptation process, but may not represent the best transfer performance of each pre-
trained model, if more careful tuning efforts are paid. Nevertheless, we believe the results represent
the model transferability with affordable efforts, and use them as baseline results for ELEVATER
benchmark.

We found that the overall ranking of the models in the descending order: CLIP, ViT, DeiT, MoCo-v3,
MAE. Surprisingly, we found that MAE performs worse than MoCo, and both of them are worse
than supervised method DeiT, though all three of them are pre-trained on the same ImageNet-1K
dataset. We note that an similar observation is made in [36], when evaluated these checkpoints on
a large range of downstream datasets. This is perhaps because the region-based pre-training tasks
in MAE is can better capture region-level dependency (thus benefits dense prediction tasks such
as object detection), while view-based pre-training tasks in MoCo can better capture image-level
dependency (thus benefits image classification). ViT outperforms DeiT probably due to the larger
pre-training dataset. CLIP performs the best. To the best of our knowledge, language-augmented
visual models such as CLIP enjoy the best scaling performance; In contrast, the scaling performance
of language-free visual models are either less studied or less successful so far.

In Table 14, we presented the comparisons of random and language-augmented initialization for
language-image model adaptation with more checkpoints under 5-shot settings. This includes
ViT-Base and ViT-Large models of DeCLIP [49], OpenCLIP [33] and CLIP [66].

In Table 15, we presented zero-shot results of more model checkpoints for both Industry and
Academic Tracks. For Academic Tracks, we consider CLIP [66], DeCLIP [49], FILIP [89], SLIP [57],
with network ViT-Base32 pre-trained on YFCC (15M). For Industry Tracks, we consdier DeCLIP,
OpenCLIP and CLIP, with models ranging from ViT-Base to ViT-Large, and training data ranging
from 88M to 400M image-text pairs.

G.4 Breakdown Experimental Results on CLIP

We show the individual linear probing and finetuning scores for comparing the random and language-
augmented initialization in Table 13. Language initialization consistently outperforms random
initialization across different domains: sample efficiency, parameter efficiency, and different datasets.
See Sec. 4 for more discussions on the design and the effectiveness of the language-augmented
initializations.

H Benefits of External Knowledge in Model Adaptation

We also explore the benefits of the external knowledge to models that are pre-trained without the
external knowledge (e.g., CLIP). On CLIP, we compare the effect of adding different combinations of
external knowledge (Wiktionary, the nubmer of GPT3 knowledge items). The results are summarized
in 16, and detailed in Table 17.

In zero-shot settings, we find that when the external knowledge is available, CLIP demonstrates
consistent improvement on four datasets and considerable gains on the other three datasets. This
suggests that the knowledge can benefit language-image models (though varying between datasets)
as a new language prompting technique for some datasets, even if the pre-trained model is trained
without the external knowledge.

In few- / full-shot settings, we argue that the pre-trained model can selectively incorporate different
knowledge sources to achieve the best adaptation performance. One simple strategy is to train
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Fine-tuning

5 7 29.8 40.8 19.6 15.5 0.9 25.2 55.8 21.1 13.4 14.7 30.6 46.1 41.5 52.2 31.8 44.5 52.5 51.2 16.5 3.7 17.5
3 63.3 88.8 91.3 73.0 16.6 51.8 79.3 52.2 23.1 84.0 60.4 55.8 44.3 60.5 67.3 86.9 61.8 59.2 70.8 56.3 82.4

20 7 46.8 82.6 63.2 26.5 1.9 57.9 81.6 27.4 33.2 36.6 60.9 53.1 41.7 35.6 34.6 54.2 74.9 51.7 43.8 32.9 41.0
3 72.2 93.3 91.9 76.0 17.2 60.0 90.4 57.9 42.7 84.2 92.0 53.9 46.4 93.1 86.4 90.8 72.4 59.4 82.9 69.9 82.9

50 7 61.7 91.4 88.7 42.7 2.7 68.2 85.8 42.7 50.3 72.7 77.3 52.6 52.0 71.9 34.6 84.3 78.0 52.7 88.0 51.4 46.0
3 75.7 94.0 93.3 79.1 17.5 71.7 94.9 58.7 51.6 85.1 95.2 55.0 59.1 89.7 86.4 91.1 78.6 62.0 88.4 76.8 85.7

full 7 77.7 88.9 97.4 85.8 14.6 70.8 97.7 69.8 46.3 85.4 97.9 60.5 78.9 98.9 81.8 89.5 88.7 55.3 89.4 76.1 81.1
3 80.3 94.0 97.8 87.0 19.1 70.0 98.1 68.8 50.7 87.7 98.5 61.9 81.0 99.5 88.5 91.6 91.0 70.6 89.4 75.8 85.7

Linear Probing

5 7 58.1 88.1 87.0 56.1 10.1 58.1 73.8 33.9 28.2 70.0 52.8 51.0 40.9 77.5 89.5 66.5 57.0 49.4 75.3 53.1 43.3
3 65.3 89.8 90.0 67.4 17.5 59.6 73.2 47.4 28.4 84.2 52.5 56.0 44.9 71.1 90.5 88.0 63.2 57.5 76.6 65.0 84.0

20 7 70.0 92.2 91.0 69.2 16.6 71.0 81.2 48.6 39.8 81.3 73.1 51.3 51.3 92.4 93.8 83.7 65.4 58.0 84.4 73.0 82.1
3 71.7 92.9 90.8 71.5 19.6 71.3 83.0 52.2 40.2 85.3 74.1 57.1 50.8 92.5 94.2 88.5 63.2 58.9 84.4 77.9 85.5

50 7 74.1 92.8 92.1 73.7 21.1 74.5 88.1 53.6 44.3 84.0 80.5 51.3 58.7 95.1 93.8 88.2 75.2 62.3 87.0 81.0 84.2
3 74.9 93.1 91.6 74.9 22.9 74.8 88.2 53.6 44.6 86.1 80.7 57.7 60.9 95.1 94.2 89.7 72.3 62.1 87.3 82.0 86.0

full 7 78.4 92.7 94.5 79.6 25.2 74.0 93.4 67.8 44.3 88.1 86.9 64.0 65.8 98.8 93.9 89.9 83.2 71.4 88.1 80.8 85.0
3 78.4 86.0 95.1 79.8 25.9 75.3 93.8 67.8 44.7 88.6 86.9 63.1 65.8 98.8 94.5 91.0 83.2 71.6 88.1 82.1 86.0

Table 13: Comparison of random and language-augmented initialization on CLIP (ViT-B32).
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Fine-tuning
B32 DeCLIP 7 58.8 88.2 78.0 59.4 6.0 58.3 73.8 20.1 26.4 61.4 66.0 51.5 30.2 77.0 98.1 74.9 53.1 52.7 68.2 57.6 75.5
B32 DeCLIP 3 64.5 92.9 91.6 77.5 11.7 55.2 77.1 38.4 20.0 76.2 69.7 54.5 43.6 73.1 95.5 85.6 61.4 52.0 71.7 60.2 82.3
B32 OpenCLIP 7 34.6 28.7 73.2 13.6 1.1 36.2 76.3 29.1 9.1 9.2 7.8 50.4 31.2 66.2 40.5 32.1 63.8 51.5 39.1 1.2 31.7
B32 OpenCLIP 3 64.8 91.6 91.6 74.1 10.0 54.3 72.2 46.6 23.0 79.0 82.3 54.4 33.8 85.9 83.8 86.1 62.8 53.1 76.0 53.7 82.2
B16 OpenCLIP 7 27.6 19.6 32.8 6.4 1.2 28.7 76.1 15.6 3.5 6.0 7.1 48.2 46.1 60.8 33.2 6.0 57.1 51.6 30.9 1.7 20.1
B16 OpenCLIP 3 66.2 86.8 91.5 74.6 17.0 60.6 79.8 45.2 15.4 84.2 60.6 54.1 34.1 85.8 86.0 88.2 67.4 55.0 72.5 82.9 83.1

Linear Probing
B32 DeCLIP 7 57.2 88.4 86.8 60.6 7.9 58.6 70.4 29.8 23.9 63.9 29.2 50.5 31.5 68.3 98.3 74.8 60.8 49.5 67.3 59.6 64.9
B32 DeCLIP 3 62.5 93.0 92.0 73.3 12.8 62.1 72.2 36.3 23.9 76.2 29.2 54.7 45.7 68.3 98.6 84.9 61.0 52.6 66.4 65.2 80.2
B32 OpenCLIP 7 61.9 89.7 88.1 64.2 8.1 53.3 78.8 33.2 28.8 68.6 64.4 50.6 36.6 80.7 92.2 72.7 61.1 52.5 73.3 74.3 67.2
B32 OpenCLIP 3 68.6 91.2 91.2 72.0 14.4 68.9 76.9 45.9 31.2 81.4 65.1 52.9 46.7 86.0 94.0 87.9 65.9 54.7 79.1 83.0 84.5
B16 OpenCLIP 7 62.9 90.2 85.5 63.9 9.2 65.6 78.3 24.3 33.0 74.8 62.3 51.9 30.8 88.1 94.0 74.5 52.0 50.2 78.7 77.2 73.1
B16 OpenCLIP 3 69.7 93.2 91.6 72.7 18.1 69.4 79.7 46.3 34.3 84.0 64.1 53.4 38.7 92.8 95.0 88.2 66.3 57.4 78.5 86.0 85.0
L14 OpenCLIP 7 66.5 91.7 92.1 70.0 12.1 66.3 80.1 36.4 37.2 81.0 72.0 51.9 27.1 87.6 96.0 81.0 53.2 52.2 81.4 84.1 76.6
L14 OpenCLIP 3 72.5 92.9 94.1 78.8 22.6 72.0 86.0 52.9 40.1 89.2 74.2 54.7 41.1 86.4 97.2 91.5 60.2 58.8 83.3 89.3 84.9

L14 † CLIP 7 68.3 93.3 92.1 70.2 19.6 65.0 85.1 42.5 46.0 88.0 72.7 51.3 45.0 80.9 96.6 83.8 60.3 56.5 80.9 79.5 57.8
L14 † CLIP 3 75.2 94.5 95.3 79.3 34.2 70.0 87.0 58.4 50.1 93.8 74.2 59.8 35.0 83.0 98.0 94.2 65.8 71.3 87.8 85.7 86.5

Table 14: Comparisons of random and language-augmented initialization for language-image model
adaptation with more checkpoints under 5-shot settings. † Input image size 336×336 .

the model with different knowledge sources, compare the split validation accuracy of checkpoints
with different knowledge sources, and use the best one for testing. We called it as knowledge-
augmented adaptation, in contrast to the baseline method knowledge-free adaptation, where no
collected external knowledge is employed at all. We find such simple strategy is already effective for
linear probing and fine-tuning CLIP. As shown in Table. 16, knowledge-based adaptation of CLIP
consistently improves over knowledge-free adaptation both in terms of accuracy and the number
of wins. Notably, by selectively incorporating the external knowledge, it shows a significant 1.8
improvement for 5-shot CLIP fine-tuning. Note that such gain comes for free, even when the base
CLIP model is not pre-trained with the external knowledge. We believe more sophisticated knowledge
adaptation strategy can yield even better performance and we leave that to future work.

These experiments show that the collected external knowledge on ELEVATER is a useful resource for
improving the adaptation of language-augmented visual models.

28



B
ac

kb
on

e

Pr
et

ra
in

M
et

ho
d

Pr
et

ra
in

D
at

as
et

A
ve

ra
ge

Sc
or

e

C
al

te
ch

10
1

C
IF

A
R

10

C
IF

A
R

10
0

C
ou

nt
ry

21
1

D
T

D

E
ur

oS
at

FE
R

20
13

FG
V

C
A

ir
cr

af
t

Fo
od

10
1

G
T

SR
B

H
at

ef
ul

M
em

es

K
itt

iD
is

ta
nc

e

M
N

IS
T

Fl
ow

er
s1

02

O
xf

or
dP

et
s

Pa
tc

hC
am

el
yo

n

SS
T

2

R
E

SI
SC

45

St
an

fo
rd

C
ar

s

V
O

C
20

07

Academic Track
B32 CLIP YFCC (15M) 32.0 55.9 70.2 33.7 5.1 15.6 29.9 23.3 2.5 32.1 5.6 53.5 39.9 14.3 48.7 19.1 50.0 49.0 17.3 2.3 71.6
B32 DeCLIP YFCC (15M) 37.9 69.1 85.3 55.5 8.8 26.3 27.5 29.8 2.9 48.6 10.4 51.7 28.4 11.1 59.8 34.9 50.6 49.9 25.0 4.0 77.5
B32 FILIP YFCC (15M) 34.5 65.1 83.6 50.8 7.5 23.2 23.4 23.3 3.0 40.8 7.4 50.8 24.2 7.9 49.5 22.5 51.8 49.9 25.9 3.1 77.1
B32 SLIP YFCC (15M) 31.2 58.8 69.5 39.0 5.1 14.0 19.5 22.8 1.3 32.8 6.7 52.9 29.0 10.3 45.9 24.4 50.0 49.9 17.5 2.2 71.6

Industry Track
B32 CLIP WebImageText (400M) 56.8 87.4 89.8 65.2 17.2 44.1 46.0 42.0 19.5 84.0 32.7 56.0 29.0 48.4 66.5 87.2 60.7 58.8 60.0 59.6 82.6
B32 DeCLIP DeCLIP (88M) 51.0 89.2 90.9 66.8 12.0 44.9 39.9 23.3 9.0 75.0 11.4 53.9 39.7 13.6 83.0 83.7 55.3 50.1 47.6 49.7 80.6
B32 OpenCLIP LAION (400M) 57.5 90.1 90.8 70.6 14.8 54.5 51.7 42.4 16.6 80.8 42.0 52.8 31.6 37.6 65.9 86.5 50.1 52.3 57.5 79.3 82.1
B16 CLIP WebImageText (400M) 60.0 88.9 90.8 68.2 22.8 44.8 54.7 48.5 24.3 88.7 43.5 58.1 27.0 52.0 69.4 89.0 54.0 60.9 65.6 64.8 83.7
B16 OpenCLIP LAION (400M) 59.1 90.3 90.2 70.0 17.4 48.7 48.6 44.9 15.3 83.2 38.6 53.4 23.9 71.1 63.7 87.6 51.0 57.2 63.6 81.6 82.2
L14 CLIP WebImageText (400M) 65.9 92.6 95.6 78.2 31.8 55.4 64.1 50.0 31.9 93.1 50.5 59.3 13.5 76.2 79.1 93.5 51.2 68.9 71.0 77.9 83.9
L14 OpenCLIP LAION (400M) 62.5 92.9 93.5 76.2 21.2 56.4 53.7 50.3 20.8 89.1 45.6 55.3 28.8 63.9 70.9 89.7 50.5 57.0 64.1 87.4 82.3

L14 † CLIP WebImageText (400M) 66.8 92.4 94.9 77.0 34.5 56.0 63.0 48.3 33.3 93.9 52.3 60.0 11.5 79.0 78.5 93.8 62.3 70.6 71.3 79.3 84.0

Table 15: Zero-shot results of more checkpoints in Academic and Industry Tracks. † Input image size
336×336.

Adaptation Methods 5-shot Full-shot
LP FT LP FT

Knowledge-free adaptation 65.35 ± 1.24 63.29 ± 3.18 78.40 79.97
Knowledge-augmented adaptation 65.83 ± 1.50 65.10 ± 2.08 78.75 80.32
Gain +0.48 +1.81 +0.35 +0.35
# win / tie / lose 7 / 8 / 5 8 / 8 / 4 12 / 4 / 4 10 / 5 / 5

Table 16: Benefits of adapting CLIP with external knowledge.
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Zero-Shot
– 56.8 87.4 89.8 65.1 17.2 44.4 45.5 42.3 19.6 84.0 32.5 56.0 29.0 48.2 66.5 87.2 60.6 58.6 60.0 59.7 82.6

X – 52.1 83.6 85.4 56.1 13.2 44.4 40.3 39.6 18.4 79.8 28.9 55.5 27.3 10.6 66.2 81.0 52.4 62.2 57.8 59.7 80.1
X 1 53.3 86.8 88.4 57.6 14.9 47.0 36.6 42.0 18.4 81.8 34.0 55.5 28.3 19.1 67.6 85.3 56.6 61.9 58.1 45.4 81.3
X 5 54.2 87.3 88.8 63.9 16.0 50.1 41.1 43.4 18.5 82.3 36.4 55.5 32.2 11.9 69.5 87.0 52.9 62.0 58.6 45.1 82.0

1 53.2 86.1 87.6 61.5 14.7 43.6 51.2 33.3 18.5 80.0 31.4 55.5 33.2 23.1 66.6 84.5 51.5 61.2 53.7 45.4 81.1
5 54.5 87.0 88.7 63.9 16.1 49.5 50.9 44.0 18.6 81.9 35.5 55.5 31.2 14.7 69.4 87.3 49.9 62.2 57.5 45.1 82.0

5-Shot Linear Probing
– 65.3 89.8 90.0 67.4 17.5 59.6 73.2 47.4 28.4 84.2 52.5 56.0 44.9 71.1 90.5 88.0 63.2 57.5 76.6 65.0 84.0

X 5 65.2 89.5 89.3 67.4 17.5 61.9 72.0 48.4 28.5 84.2 52.2 55.5 39.3 76.2 91.1 88.1 63.5 58.4 72.7 65.0 83.5
X – 65.6 89.2 90.7 67.4 17.5 61.0 74.1 45.8 28.4 84.2 52.5 55.5 37.5 76.4 91.0 88.0 67.8 59.7 76.6 65.0 83.6

5 65.8 89.3 89.2 66.5 17.5 61.4 73.5 48.4 28.5 84.2 53.2 55.5 45.5 76.2 91.1 88.6 63.3 59.9 76.6 65.0 83.2

5-Shot Fine-tuning
– 63.3 88.8 91.3 73.0 16.6 51.8 79.3 52.2 23.1 84.0 60.4 55.8 44.3 60.5 67.3 86.9 61.8 59.2 70.8 56.3 82.4

X 5 62.0 88.0 90.3 73.0 16.6 56.4 81.3 52.2 22.3 83.9 60.4 55.4 47.0 60.5 79.9 87.5 65.0 62.7 19.8 56.3 81.8
X – 65.1 88.8 88.9 73.0 16.6 44.9 79.3 52.2 24.4 84.1 66.7 55.4 44.5 82.4 79.4 86.9 60.6 63.3 71.8 56.3 82.4

5 64.2 88.5 89.8 73.0 16.6 53.1 82.0 52.2 21.6 83.9 60.4 55.5 34.9 81.4 77.7 87.9 54.2 62.6 70.8 56.3 81.8

Full-Shot Linear Probing
– 78.4 86.0 95.1 79.8 25.9 75.3 93.8 67.8 44.7 88.6 86.9 63.1 65.8 98.8 94.5 91.0 83.2 71.6 88.1 82.1 86.0

X 5 78.7 92.8 94.9 79.8 25.7 75.1 93.3 67.7 44.9 88.6 87.0 64.1 66.8 98.9 94.9 90.8 83.7 70.3 87.0 81.9 85.8
X – 78.8 93.2 95.2 79.9 25.7 73.5 93.3 67.8 44.8 88.2 86.9 64.1 65.8 98.8 94.9 91.1 83.7 71.6 88.3 82.2 86.0

5 78.6 93.1 94.9 79.8 25.7 74.7 93.4 65.4 44.6 88.6 87.0 64.1 66.7 98.9 94.9 90.8 83.7 70.3 88.3 81.9 85.7

Full-Shot Fine-tuning
– 80.0 93.1 97.5 87.3 19.2 70.9 98.0 70.2 47.7 88.0 98.5 61.1 81.9 99.5 87.3 90.7 90.6 66.7 89.4 76.1 85.5

X 5 80.0 93.5 97.5 84.4 19.4 72.5 97.9 69.5 47.7 87.8 98.5 61.1 81.3 99.5 89.5 92.5 90.1 66.7 90.0 76.1 85.4
X – 80.1 93.0 97.4 87.3 19.2 73.0 98.0 70.0 47.7 87.6 98.5 61.1 80.9 99.5 89.6 92.2 89.2 66.7 89.5 76.2 85.5

5 80.3 93.6 97.6 87.4 19.2 70.9 98.1 71.7 47.7 87.8 98.4 61.1 81.6 99.3 89.3 92.5 87.3 70.9 90.0 76.1 85.9

Table 17: Benefit of external knowledge for CLIP. For adaptation with linear probing and fine-tuning,
we make use of the external knowledge when it has a higher validation accuracy.
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