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1 Appendix

1.1 Nonlinear Message Accumulations

Our formulation accumulates the messages coming from neighbors by computing their sum (Eq. ??).
Although the experimental findings indicate that our seemingly simple construction successfully
learns the underlying dynamics, we introduce two straightforward extension of our framework. First,
one can learn an additional non-linear function fc that takes all the incoming messages as input and
generates the time differential as output:

d

dt
han(t) = fc

(
mn1(t), . . . ,mnN (t)

)
mnn(t) = fs (han(t), can)

mnm(t) = fb

(
han(t),ha′

n(t), can , cam

)
,

For notational convenience, we drop the neighboring graph from our write-up. In practice, fc would
only receive the messages coming from the neighbors. Since the messages interact in a non-linear
way, this construction no longer disentangles the independent kinematics from the interactions.

Next, we introduce another construction in which the neighboring messages are weighted via a
nonlinear function fw:

d

dt
ha(t) = w̃aafs (ha(t), ca) +

∑
a′∈Na

w̃aa′fb

(
ha(t),ha′

(t), ca, ca
′
)

waa′ =
exp(waa′)

exp(waa) +
∑

n∈Na
exp(wan)

∈ (0, 1)

waa′ = fw

(
ha(t),ha′

(t), ca, ca
′
)

When tested on bouncing ball datasets, this model achieved lower training and slightly higher test
error (indicating overfitting). We leave further analysis of this new construction as an interesting
future work.
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1.2 Induced Kernel on Interaction Term

Next, we study our interaction component under a kernel perspective. In our formulation, we achieved
permutation invariance across neighboring objects by aggregating all in-coming messages via the
sum function (that is order invariant), similarly to what is done in standard graph neural network
architectures [1].

It is interesting to see that the permutation invariance of our model formulation can also be derived
from a kernel perspective. Seminal work on invariant kernels has been done by [2] and [3] who
showed that a kernel is invariant under a finite set of input transformations, e.g. permutations, if the
kernel is invariant when transforming its arguments. In our work, the Gaussian process prior on fb
induces a Gaussian process prior on the interaction term with covariance,

ki(h
p,hr) =

∑
p′∈Np

∑
r′∈Nr

kb((hp,hp′
), (hr,hr′)),

which enforces the invariance by summing over all input combinations. Using a double sum is a
common strategy for creating invariant kernels (see [4, 5] for a more in-depth discussion).

1.3 Experiment Details

Interaction function parameterization In all our experiments, we assume a fully connected object
graph and also parameterize the interaction function fb with the difference between object positions
instead of absolute positions (fb also takes the velocities and the global latent variables as input).
Since the interactions are typically expressed in terms of distance, injecting an inductive bias of this
sort helps to increase the performance as validated by our experiments.

Datasets To generate our datasets, we use the official implementations provided in [6, 7]. To ensure
the accuracy of all numerical simulations in the respective code, we reduce the simulation step size.
The dataset specifics are given in Table 1. Note that the noise values are proportional to the lower and
upper limits of the position and velocity observations.

Table 1: Dataset details. We use the symbols P for the number of sequences, T for the sequence
length, ∆t for the time difference between consecutive observations, smax and vmax for the maximum
position and velocity observation, smin and vmin for the minimum position and velocity observations,
σs and σv for the standard deviation of the noise added to position and velocity observations, and
Tenc for the length of the sequence needed for encoding and thereafter forward predictions.

DATASET Ptr Pval Ptest T ∆t smax vmax smin vmin Tenc σs σv

Noise-free bouncing balls 100 100 100 100 0.5 3.82 0.49 −3.82 −0.49 5 0.00 0.00

Low-noise bouncing balls 100 100 100 100 0.5 3.82 0.48 −3.82 −0.49 5 0.15 0.02

High-noise bouncing balls 100 100 100 100 0.5 3.82 0.48 −3.82 −0.48 5 0.30 0.04

Charges 10000 100 100 100 0.05 5.00 3.26 −5.00 −3.44 49 0.00 0.00

Dynamics approximations and hyper-parameter selection Our proposed I-GPODE method, in
which the unknown independent kinematics and interaction functions are approximated with GPs,
is compared with I-NODE and I-BNODE baselines in the bouncing balls experiment. To obtain
the baselines, we simply replaced our GP approximation with multi-layer perceptrons (MLPs). We
consider the standard, weight-space mean-field variational posterior for the BNN as done in [8].
In turn, the optimized dynamics parameters become the weights for I-NODE and the variational
parameters for I-BNODE.

We perform an exhaustive comparison of hyper-parameters in different settings. In particu-
lar, for the independent kinematics function fs, we consider MLPs with two hidden layers and
N = 64/128/256/512 hidden neurons, and sparse GPs with M = 100/250/500 inducing
points. For the interaction function fb, we test with N = 128/256/512 hidden neurons and
M = 100/250/500/1000 inducing points. We furthermore search the best activation function
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among elu/relu/softplus/tanh/swish/lip-swish activations and consider a diagonal or full
lower-diagonal approximation to the covariance matrix (of the variational posterior). We test all
hyper-parameter configurations on three validation datasets with varying noise levels. We found
out that the softplus activation and diagonal covariance approximation consistently minimize
the reported metrics on validation datasets. Other hyperparameters used in our experiments are
reported in Table 2. Note that the number of parameters of the simpler, non-interacting models are
approximately matched with the corresponding interacting model.

Table 2: The number of hidden neurons and inducing points used in our experiments.

MODEL fs fb

I-GPODE M = 250 M = 250

I-NODE N = 256 N = 512

I-BNODE N = 256 N = 512

GPODE M = 250 -

NODE N = 256 -

BNODE N = 256 -

Initial value encoder Inspired by previous work [9, 10], we infer the initial position and velocity
variables using a RNN-based encoder architecture. Our encoder with GRU cells processes the first
five observations in backward direction: Y5 → Y1. The encoder output z1 ∈ R10 is mapped into
position and velocity initial value distributions via two separate MLPs that take the non-overlapping
5-dimensional chunks of z1 as input. Each MLP has the same architecture (one hidden layer, 50
neurons, ReLU activations). The model performance is somewhat robust against these encoder hyper-
parameters as validated by further comparisons. We finally note that the same encoder architecture is
used for GP, NN and BNN-based models.

Latent variable encoder To infer the latent variables in the charges experiment, we again utilize an
RNN-based encoder. Similar to the encoder used in [7], our architecture takes the first 49 observations
as input, i.e., the global latent variable ca associated with object a is extracted from all available
observations y1:A

1:49. Since the overall performance crucially depends on the hyperparameter choices
unlike the initial value extraction task, we consider two sets of encoders: a “large” encoder with
z1 ∈ R100 and an MLP with 100 neurons as well as a “small” encoder with z1 ∈ R25 and an MLP
with 50 neurons. We furthermore perform comparisons with relu and elu activation functions for
the MLP. The results in the main paper are obtained with the “small” encoder with elu activation,
which yields the best or runner-up performance across all settings.

Training details All model variants are trained with the Adam optimizer [11] with learning rates
5e-4, 5e-4 and 1e-4 for GP, NN and BNN-based models. We perform an incremental optimization
scheme with three rounds, where randomly chosen 100 subsequences of length 5, 16, and 33 are used
for training. We perform 25000, 12500 and 12500 optimization iterations in each round. Training
each model respectively takes 9, 3 and 12 hours on NVIDIA Tesla V100 32GB. Finally, as proposed
in [8], we stabilize the BNN learning by weighting the KL term KL[q(W)||p(W)] resulting from the
BNN with a constant factor β = D/|W| in order to counter-balance the penalties on latent variables
ha ∈ RD and neural network weightsW ∈ R|W|.
Reported metrics For a single trajectory y1:A

1:N , the MSE and ELL metrics are computed as follows:

MSE =
1

LNA

L∑
l=1

N∑
n=1

A∑
a=1

(
ya
n − ŷa(l)

n

)2
ELL =

1

NA

N∑
n=1

A∑
a=1

logN (ya
n; µ̂a

n, σ̂
a
n),
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Table 3: A comparison of neural ODE variants on bouncing balls dataset, where the true, unknown
ODE system is defined in 4D. We suffix the dimensionality of the latent variables per object at the
end of model names.

NOISE
LEVEL

MODEL
TRAINING TEST

MSE ↓ ELL ↑ MSE ↓ ELL ↑

NO
NOISE

NODE 3.67± 0.35 −67.29± 8.04 30.07± 1.63 −911.95± 50.17
I-NODE 6.50± 1.71 −36.85± 11.80 8.45± 0.93 −61.90± 8.63

NODE-8 0.76± 0.22 −11.86± 9.03 29.53± 3.06 −885.24± 65.46
I-NODE-8 2.25± 0.65 −14.44± 10.35 9.37± 1.45 −159.48± 34.13

NODE-16 1.04± 0.38 −14.52± 6.88 26.39± 3.01 −615.33± 57.80
I-NODE-16 1.64± 0.42 −4.01± 4.49 8.23± 0.81 −115.14± 30.98

LOW
NOISE

NODE 2.35± 0.27 −34.82± 7.77 30.84± 1.94 −757.27± 56.12
I-NODE 9.63± 0.79 −65.07± 11.77 13.33± 0.93 −96.15± 12.47

NODE-8 0.76± 0.10 −9.12± 3.18 27.88± 1.93 −480.78± 46.87
I-NODE-8 3.06± 1.17 −15.25± 4.56 15.29± 0.71 −167.43± 12.04

NODE-16 1.46± 0.33 −18.71± 4.50 29.31± 2.76 −333.36± 30.79
I-NODE-16 1.59± 0.41 −5.05± 2.06 15.40± 0.87 −155.66± 19.79

HIGH
NOISE

NODE 2.83± 0.23 −43.38± 1.27 29.86± 1.38 −567.69± 47.49
I-NODE 12.28± 1.09 −87.61± 13.27 15.60± 1.47 −128.89± 23.21

NODE-8 1.14± 0.25 −24.70± 5.27 28.15± 1.48 −326.74± 32.69
I-NODE-8 2.67± 0.40 −20.16± 2.65 20.76± 1.22 −154.67± 15.24

NODE-16 1.94± 0.24 −28.39± 3.70 28.85± 3.14 −211.33± 21.87
I-NODE-16 1.20± 0.09 −15.03± 1.84 20.74± 1.47 −146.14± 3.18

HIGHER
NOISE

NODE 4.02± 0.78 −62.19± 6.82 31.57± 0.56 −519.68± 37.86
I-NODE 16.15± 0.21 −131.88± 10.11 18.35± 0.47 −164.60± 10.16

NODE-8 1.55± 0.07 −44.16± 1.70 28.87± 1.09 −246.94± 19.09
I-NODE-8 2.94± 0.42 −37.73± 2.34 23.54± 0.91 −119.53± 17.78

NODE-16 2.90± 0.63 −44.17± 4.19 31.06± 1.21 −146.58± 19.16
I-NODE-16 1.61± 0.22 −36.61± 3.79 24.67± 0.87 −143.61± 18.83

with ŷa(l)

n being the l-th Monte Carlo prediction of object a at time point tn and

µ̂a
n = mean

(
{ŷa(l)

n }Ll=1

)
, σ̂a

n = var
(
{ŷa(l)

n }Ll=1

)
.

Finally, we report averages of the test statistics over all trajectories.

1.4 Additional Results

Latent neural ODE comparisons The ODE systems in our framework as well as the baseline
models may be composed of positions, velocities and global latent variables. On the other hand,
alternative black-box approaches [9, 8] typically consider a latent ODE system with arbitrary di-
mensionality and a VAE embedding between the observed and latent space. We compare these two
modeling paradigms on the bouncing ball dataset. Since the reference methods are based on neural
ODEs, we only consider neural network approximations for the differential functions. The results
are presented in Table 3. In agreement with other comparisons, interaction models outperform their
simpler, non-interacting counterparts. Also, latent ODE models tend to reduce the training error and
increase the test error, which is a strong indicator of overfitting.
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Table 4: Quantitative findings in the disentanglement task. We consider test sequences with different
lengths. Note that all test sequences contain a single ball and thus the interaction function fb does not
play any role.

MODEL
Ttest = 10 Ttest = 33 Ttest = 100

MSE ↓ ELL ↑ MSE ↓ ELL ↑ MSE ↓ ELL ↑
GPODE 0.21± 0.03 −2.37± 1.38 0.59± 0.17 −4.09± 3.30 9.84± 0.41 −17.58± 4.66
NODE 0.14± 0.05 −1.09± 2.51 2.90± 1.34 −130.33± 62.02 10.64± 2.87 −443.05± 145.56

BNODE 0.61± 0.05 −12.03± 1.60 2.39± 0.14 −23.11± 2.58 11.22± 0.54 −37.05± 2.95

Figure 1: Additional plots comparing the independent kinematics functions of GP, NN and BNN
based interacting ODE models. Above test trajectories contain single ball. Each row corresponds to
one independent run of the experiment.
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Table 6: A comparison of NN and GP-based vanilla and interacting ODE systems on a bouncing balls
dataset with two balls. All other settings are identical to the main experiment.

NOISE
LEVEL MODEL

TRAINING TEST

MSE ↓ ELL ↑ MSE ↓ ELL ↑

NO
NOISE

I-GPODE 10.18± 0.46 −6.38± 0.56 12.41± 0.90 −9.08± 0.71
I-NODE 2.25± 0.28 −14.14± 4.19 4.53± 0.47 −56.24± 6.48
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GPODE 19.19± 0.72 −432.63± 8.55 19.68± 0.50 −442.38± 14.58
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BNODE 16.73± 0.55 −27.50± 3.19 17.54± 0.74 −31.85± 1.48
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I-BNODE 16.35± 0.63 −25.76± 3.11 16.49± 0.51 −26.00± 2.96
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Table 7: A comparison of NN and GP-based vanilla and interacting ODE systems on a bouncing balls
dataset with three balls. This experiment repeats the main findings plus the training results.

NOISE
LEVEL MODEL

TRAINING TEST

MSE ↓ ELL ↑ MSE ↓ ELL ↑

NO
NOISE

I-GPODE 14.44± 0.69 −18.99± 2.12 17.29± 1.18 −25.88± 3.56
I-NODE 6.50± 1.71 −36.85± 11.80 8.45± 0.93 −61.90± 8.63

I-BNODE 20.11± 0.77 −36.26± 4.63 20.39± 0.62 −37.81± 4.23

GPODE 22.27± 0.60 −553.24± 13.25 23.89± 0.91 −597.63± 28.48
NODE 3.67± 0.35 −67.29± 8.04 30.07± 1.63 −911.95± 50.17

BNODE 20.89± 0.97 −47.16± 2.66 23.22± 0.60 −56.57± 9.41

LOW
NOISE

I-GPODE 15.33± 0.46 −21.41± 4.41 17.76± 0.89 −26.48± 4.54
I-NODE 9.63± 0.79 −65.07± 11.77 13.33± 0.93 −96.15± 12.47

I-BNODE 20.28± 1.00 −38.31± 7.73 20.98± 0.78 −36.40± 2.77

GPODE 23.07± 0.45 −564.22± 16.33 23.63± 0.72 −580.82± 19.83
NODE 2.35± 0.27 −34.82± 7.77 30.84± 1.94 −757.27± 56.12

BNODE 20.46± 0.62 −45.61± 6.46 22.99± 0.77 −51.98± 5.68

HIGH
NOISE

I-GPODE 16.10± 0.37 −24.05± 2.33 18.36± 0.86 −29.38± 1.14
I-NODE 12.28± 1.09 −87.61± 13.27 15.60± 1.47 −128.89± 23.21

I-BNODE 20.31± 0.55 −38.04± 2.94 20.84± 0.72 −47.63± 10.51

GPODE 22.75± 1.30 −532.03± 21.28 24.25± 1.00 −569.29± 27.46
NODE 2.83± 0.23 −43.38± 1.27 29.86± 1.38 −567.69± 47.49

BNODE 19.46± 0.71 −43.96± 1.45 22.33± 0.52 −52.49± 7.41

HIGHER
NOISE

I-GPODE 17.77± 1.36 −35.19± 1.56 20.06± 0.60 −41.76± 2.21
I-NODE 16.15± 0.21 −131.88± 10.11 18.35± 0.47 −164.60± 10.16

I-BNODE 20.34± 0.52 −52.49± 3.60 20.88± 0.55 −56.44± 5.71

GPODE 23.85± 0.88 −517.26± 20.19 24.71± 1.25 −546.95± 31.79
NODE 4.02± 0.78 −62.19± 6.82 31.57± 0.56 −519.68± 37.86

BNODE 20.07± 0.98 −46.07± 3.54 22.36± 0.71 −54.53± 2.72

Table 8: A comparison of the standard GPODE against the latent I-GPODE variants on a bouncing
ball dataset without velocity observations. Note that the suffix “-S” stands for structured state space.
This table repeats the findings in the main paper, plus with training results.

NOISE
LEVEL

MODEL
TRAINING TEST

MSE ↓ ELL ↑ MSE ↓ ELL ↑

NO
NOISE

I-GPODE 23.44± 0.39 −299.14± 21.03 24.11± 1.18 −300.78± 23.35
I-GPODE-L 22.89± 0.44 −167.95± 25.76 23.32± 0.76 −176.04± 30.98

I-GPODE-L-S 18.09± 0.27 −34.69± 2.45 18.22± 1.01 −33.45± 1.96

LOW
NOISE

I-GPODE 23.50± 0.40 −243.65± 9.69 23.26± 0.77 −239.37± 11.10
I-GPODE-L 49.26± 51.33 −810.91± 1025.94 47.01± 47.38 −760.60± 921.56

I-GPODE-L-S 20.64± 0.21 −78.32± 22.79 20.46± 0.92 −76.35± 22.48

HIGH
NOISE

I-GPODE 23.42± 0.89 −241.66± 17.19 23.77± 0.68 −254.34± 16.43
I-GPODE-L 119.49± 96.91 −1306.78± 1277.32 119.24± 94.27 −1320.27± 1282.10

I-GPODE-L-S 21.51± 0.45 −116.33± 11.57 21.80± 0.69 −115.50± 19.20

HIGHER
NOISE

I-GPODE 24.06± 0.38 −271.81± 9.72 24.57± 1.27 −267.08± 26.09
I-GPODE-L 78.00± 29.98 −448.65± 299.58 78.49± 30.54 −450.42± 301.84

I-GPODE-L-S 23.27± 0.49 −141.95± 16.96 23.64± 1.38 −147.35± 21.42
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Table 9: A comparison of NN and GP-based interacting ODE systems on the charges dataset. Note
that here we repeat the main findings plus the training results.

MODEL
TRAINING TEST

MSE ↓ ELL ↑ MSE ↓ ELL ↑
WITHOUT
GLOBAL
LATENTS

I-GPODE 19.3± 0.5 −170± 6 19.2± 0.9 −171± 7
I-NODE 14.5± 0.7 −471± 23 14.1± 0.8 −460± 36

WITH
GLOBAL
LATENTS

I-GPODE 15.4± 1.8 −171± 85.7 15.4± 2.3 −172± 88
I-NODE 9.8± 0.4 −271± 12.3 9.9± 0.6 −282± 14

I-GPODE-S 12.8± 1.7 −176± 61 12.9± 2.1 −177± 60
I-NODE-S 9.6± 0.3 −271± 12 9.7± 0.2 −282± 8

GLOBALS
OBSERVED

I-GPODE 10.6± 0.6 −94± 8 10.7± 1.1 −97± 9
I-NODE 7.3± 0.8 −140± 21 7.5± 1.2 −148± 27

[10] Pashupati Hegde, Çağatay Yıldız, Harri Lähdesmäki, Samuel Kaski, and Markus Heinonen.
Bayesian inference of ODEs with Gaussian processes. arXiv preprint arXiv:2106.10905, 2021.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations, 2015.
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Figure 2: Additional plots comparing the uncertainty quantification of I-GPODE (left) and I-NODE
(right) on bouncing balls dataset. The first two row groups show the training fits and the last two
groups are the test predictions.
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