
Appendix

This appendix is structured as follows:

• In Section A, we provide an overview of the notation we use throughout the paper.
• In Section B, we provide a discussion of additional related work.
• In Section C, we provide experiment details.
• In Section D, we provide additional experimental results.
• In Section E, we provide an ablation investigating the difference between evaluating the loss

term on the same minibatch used to compute the base optimizer step vs a separate randomly-
sampled minibatch. Using a separate random minibatch yields a similar meta-objective to
that studied in Wu et al. [85], which suffers from short-horizon bias.

• In Section F, we provide a derivation of Eq. 4.
• In Section G, we derive classic first- and second-order optimization algorithms (gradient

descent, Newton’s method, and natural gradient) starting from the proximal objective for the
PPM (Eq. 3).

• In Section H, we provide the proof for Theorem 1, which shows that exactly optimizing the
proximal meta-objective with respect to the preconditioner P can recover various first- and
second-order optimization methods.

• In Section I, we list the KFAC assumptions and prove Corollary 2, which shows that under
the assumptions of Theorem 1 and the KFAC assumptions, exactly optimizing the proximal
meta-objective yields the KFAC update.

• In Section J, we show an ablation over λWSD and λFSD, and evaluate how well APO performs
with different meta-update intervals.
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A Table of Notation

Notation Description

D Data-generating distribution
Dtrain Finite training dataset

(x, t) ∼ D An input/target pair
B Mini-batch of data
N Number of training data points, N = |Dtrain|
θ Network parameters
ϕ Optimization parameters (e.g. learning rate or preconditioning matrix)
P Preconditioning matrix
G Hessian of the function-space discrepancy
W Weight matrix of some particular layer of the network
PS Structured preconditioner, PS = (A⊗B)diag(vec(S))2(A⊗B)⊤

A,B,S Block matrices for EKFAC parameterization
λ Weighting of the discrepancy term in the PPM

λFSD Weighting of the function-space discrepancy term
λWSD Weighting of the weight-space discrepancy term
η Base optimizer learning rate
α Meta optimizer learning rate
K Meta update interval
p Number of optimization hyperparameters
m Number of parameters

f(x,θ) Network function with parameters θ applied to input x
L(y, t) Loss function (e.g. mean-squared error or cross-entropy)
J (θ) Cost function, J (θ) = 1

N

∑N
i=1 L(f(x(i),θ), t(i))

JB(θ) Loss on a mini-batch of data, JB(θ) = 1
|B|

∑
(x,t)∼B L(f(x,θ), t)

Q(ϕ) Proximal meta-objective function
ρ(·, ·) Output-space divergence (e.g. KL divergence)
D(·, ·) Discrepancy function for the proximal point method

DF(·, ·, ·) Function-space discrepancy function
DW(·, ·) Weight-space discrepancy function
vec(·) Vectorization function
diag(·) Diagonalization function

u(θ,ϕ,B) Base optimizer update (e.g. stochastic gradient descent)
θ′(ϕ) Shorthand for u(θ,ϕ,B) where the data B is implicit
⊗ Kronecker product
⊙ Elementwise product

Table 5: A summary of notation used in this paper.

B Extended Related Work

Short-Horizon Bias. Short-horizon bias (SHB) has been identified as a core challenge in the
meta-optimization of optimizer parameters such as learning rates. Wu et al. [85] analyzed the setting
where the meta-objective is the expected loss after an optimization step EB∼Dtrain [JB(u(θ,ϕ,B))].
Note that the expectation over the entire dataset is intractable and can be typically approximated
using a single mini-batch. This meta-objective yields undesirable behaviour where the learning rate
decreases rapidly to reduce fluctuations of the loss caused by stochastic mini-batch evaluation.

While our proximal meta-objective is greedy (e.g. it relies on a single lookahead step), APO
empirically does not suffer from SHB. We attribute this to the fact that the first term in our proximal
meta-objective evaluates the loss on the same mini-batch used to compute the gradient rather than a
randomly-selected mini-batch. We refer readers to Appendix E for an ablation demonstrating the
difference between using the same and a different mini-batch in computing the first term in our
meta-objective.

18



Method High-Dim
Meta-Params

Online
Adaptation

No Task
Distribution

Short
Unrolls Meta-Params

Random [13] ✗ ✗ ✓ ✗ Any hyperparameter
PBT [34] ✗ ✓ ✓ ✓ Any hyperparameter

BayesOpt [72] ✗ ✗ ✓ ✗ Any hyperparameter
BPTT [50] ✓ ✓ ✓ ✗ Differentiable hyperparams
RTHO [22] ✗ ✓ ✓ ✓ Differentiable hyperparams

IFT [47] ✓ ✓ ✓ ✓
Differentiable

regularization hyperparams
L4 [59] ✗ ✓ ✓ ✓ LR

MARTHE [17] ✗ ✓ ✓ ✓ LR
FDS [58] ✗ ✗ ✓ ✗ LR, momentum, WD

Meta-SGD [45] ✗ ✗ ✗ ∼ Diagonal preconditioner

Meta-Curvature [66] ✓ ✗ ✗ ∼ Preconditioner parameterized
by tensor products

WarpGrad [21] ✓ ✗ ✗ ✓ Preconditioning “warp-layers”

MetaMD [23] ✓ ∼ ✗ ✗
Parameterization of

Bregman Divergence
Learned Optimizers

[42, 2, 84, 57] ✓ ✓ ✗ ✗ Learned optimizer parameters

HD [6] ✗ ✓ ✓ ✓ LR
FOP [61] ✓ ✓ ✓ ✓ MM⊤ preconditioner

APO (Ours) ✓ ✓ ✓ ✓ EKFAC preconditioner, LR

Table 6: A comparison of hyperparameter optimization and meta-learning methods. For each method,
we consider: 1) whether it scales to high-dimensional meta-parameters—most gradient-based methods
do, except those that rely on forward-mode auto-diff; 2) whether it dynamically adapts the meta-
parameters online or only learns a fixed meta-parameter used for a full training run; 3) whether it
requires a task distribution for training, or can operate on a single task of interest; 4) whether it
operates on short unrolls of the training procedure (as opposed to requiring complete training runs for
each meta-parameter update); and 5) which meta-parameters it can tune.

Forward-Mode Differentiation. In principle, short horizon meta-objectives cannot model long-
term behavior. Forward-mode autodiff like Real-Time Recurrent Learning (RTRL) and its approxi-
mations (UORO [76], KF-RTRL [62], OK [12]) can perform online optimization without suffering
from SHB in principle (but still suffering from hysteresis). However, they do not scale well to many
parameters, and thus are be used to tune the preconditioner. Other approaches like PES [82] use
a finite-differences approximation to the gradient, which does not scale to the dimensionality of
the preconditioner. RTRL has been applied to hyperparameter adaptation by Franceschi et al. [22],
and a method for LR adaptation that interpolates between hypergradient descent and RTRL, called
MARTHE, was introduced in [17].

Black-Box Hyperparameter Optimization. Finding good optimization hyperparameters is a
longstanding problem [10]. Black-box methods for hyperparameter optimization, such as grid search,
random search [13], and Bayesian optimization [72, 75, 73], are expensive, as they require performing
many complete training runs, and can only find fixed hyperparameter values (e.g., a constant learning
rate). Hyperband [44] can reduce the cost by terminating poorly-performing runs early, but is still
limited to finding fixed hyperparameters. Population Based Training (PBT) [34] trains a population of
networks simultaneously, and throughout training it terminates poorly-performing networks, replaces
their weights with a copy of the weights of a better-performing network, perturbs the hyperparameters,
and continues training from that point. PBT can find a coarse-grained learning rate schedule, but
because it relies on random search, it is far less efficient than gradient-based meta-optimization.

Loss-Based Learning Rate Adaptation. Several works have proposed modern variants of Polyak
step size methods [28, 80, 81, 46] for automatic learning rate adaptation. In a similar vein, Rolinek &
Martius [70] proposed a method that tracks an estimated minimal loss and tunes a global learning
rate to drive the loss on each mini-batch to the minimal loss.
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Learned Optimization. Some authors have proposed learning entire optimization algorithms [42,
43, 2, 84, 57, 84]. Li & Malik [42] view this problem from a reinforcement learning perspective,
where the state consists of the objective function J and the sequence of prior iterates {θ(t)} and
gradients {∇θJ (θ(t))}, and the action is the step ∆θ. In this setting, the update rule α is a policy
that can be found via policy gradient methods [74]. Approaches that learn optimizers must be trained
on a set of objective functions {f1, . . . , fn} drawn from a distribution F . This setup can be restrictive
if we only have one instance of an objective function. In addition, the initial phase of training the
optimizer on a distribution of functions can be expensive. Learned optimizers require offline training,
and typically must use long unrolls to ameliorate short horizon bias, making training expensive. APO
requires only the objective function of interest as it does not have trainable parameters.

Few-Shot Meta-Learning Methods. Meta-SGD [45] extends MAML [20] by learning not only
a shared initialization which can be fine-tuned in a few steps for many different tasks but also a
diagonal preconditioning matrix used for the fine-tuning gradient steps (e.g., the inner-loop of MAML,
adapting to a specific task). Meta-SGD requires a task distribution, and only learns a fixed diagonal
preconditioner which is not adapted during the task-adaptive optimization procedure. In contrast,
APO learns a more expressive, block-diagonal preconditioner from a single training run, which is
adapted online during training.

Meta-Curvature (MC) [66] meta-learns a preconditioning matrix to improve generalization after a
small number of (preconditioned) gradient steps in MAML-style meta-learning. Meta-Curvature
requires a task distribution for training, and relies on the assumption that related tasks have similar
curvature; the method learns a single, fixed preconditioning matrix that is applied across tasks (and to
new tasks at meta-test time). In contrast, APO does not require a task distribution, and dynamically
adapts the meta-learned preconditioning matrix during a single training run, rather than keeping it
fixed as done in MC.

Lee and Choi [41] proposed Transformation Networks (T-nets), which learn an activation-space-
metric that modifies the update direction and step size taken to adapt to each task in a few-shot setting,
and Mask Transformation Networks (MT-nets), which extend T-nets by learning which subset of
weights to update for each task. Similarly to Meta-SGD and Meta-Curvature, MT-nets require a task
distribution for meta-training, and only learn fixed meta-parameters which are not adapted during
training of new tasks.

APO is a generic framework for online meta-learning of optimization parameters. We demonstrate
its effectiveness for two specific types of meta-parameters: the preconditioning matrix and the
global learning rate. Our main contribution is the use of a principled meta-objective based on the
proximal point method, which we prove can recover existing first- and second-order optimization
algorithms given appropriate approximations to the loss term and FSD term. We focused on tuning
the KFAC-style preconditioner as this is a popular block-diagonal second-order method, and allows
us to draw the connection to KFAC in Corollary 1. However, the APO meta-objective can be applied
to tune different parameterizations as well; in particular, one could use interleaved warp-layers to
parameterize a preconditioner similarly to [41, 21].

C Experimental Details

C.1 Computing Environment

All experiments were implemented using the PyTorch [67] and JAX [14] libraries, and we ran all
experiments on NVIDIA P100 GPUs.

C.2 Meta-Optimization Setup

In all experiments, we perform 1 meta-update every 10 updates of the base optimizer (e.g. K = 10
in Algorithm 1). Hence, the computational overhead of APO is just a small fraction of the original
training procedure. We perform grid searches over λFSD and λWSD for both learning rate and
preconditioner adaptation.

Learning Rate Adaptation Setup. For our learning rate adaptation experiments, we used RMSProp
as the meta-optimizer with a meta-learning rate of 0.1. For SGD-APO and SGDm-APO, we set the
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initial learning rate to 0.1, while for RMSProp-APO and Adam-APO, we set the initial learning rate
to 3e-4. These specific values are not important for good performance; we show in Appendix J.2 that
APO is robust to the choice of initial learning rate.

Preconditioner Adaptation Setup. For preconditioner adaption experiments, we used Adam as the
meta-optimizer with a meta-learning rate chosen from {1e-4, 3e-5}. We initialized the block matrices
such that the preconditioner is the identity, so that our update is equivalent to SGD at initialization.
Furthermore, we used a warm-up phase of 3000 iterations at the beginning of training that updates
the parameters with SGDm (or Adam for Transformer) but still meta-learns the preconditioning
matrix (e.g. performing meta-gradient steps on P). When updating the parameters, we scaled the
preconditioned gradient by a fixed constant of 0.9 for stability.

C.3 Regression on UCI Collection

We used Slice, Protein, and Parkinson data from the UCI collection. In training, we normalized the
input features and targets to have a zero mean and unit variance. We used batch size of 128 and
trained the network for 500 epochs without weight decay.

We conducted hyperparameter searches over learning rates for all baseline models, making choices
based on the final training loss. With the chosen set of hyperparameters, we repeated the experiments
3 times with different random seeds. For SGDm, we set the momentum to 0.9 and swept over the
learning rates {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. For Adam, we performed a
grid search on learning rate of {1e-2, 3e-3, 1e-3, 3e-4, 3e-4, 1e-4}. For Shampoo, we swept over
the learning rates {10, 5, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001} as suggested by Gupta et al. [27].
For KFAC, we did a grid search on learning rates of {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} and
damping values of {3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4}. For APO-Precond, we set λFSD = 0 and grid
searched over λWSD = {3, 1, 0.1, 0.01}.

C.4 Image Reconstruction

We used the same experimental set-up from Martens & Grosse [54] for the deep autoencoder experi-
ment. The loss function was defined to be the binary entropy and we further added a regularization
term λWD

2 ∥θ∥
2 to the loss function, where λWD = 10−5. The layer widths for the autoencoder were

set to be [784, 1000, 500, 250, 30, 250, 500, 1000, 784] and we used the sigmoid activation function.
We trained the network for 1000 epochs with the batch size of 512.

We conducted extensive hyperparameter searches for all baseline models, making choices based on
the final training loss. With the chosen set of hyperparameters, we repeated the experiments 3 times
with different random seeds. For SGDm, we set the momentum to 0.9 and performed a grid search
over the learning rates {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. For Adam, we swept
over learning rate of {3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 3e-4, 1e-4, 3e-5, 1e-5}. For Shampoo, we tried
setting learning rates in range of {10, 5, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}. For KFAC, we did a
grid search on learning rates of {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001} and
damping values of {3e-1, 1e-1, 3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4}. For APO-Precond, we performed
a grid search over λFSD = {0.3, 0.1} and λWSD = {3, 1, 0.3, 0.1}. We set the FSD to measure the
KL divergence.

C.5 Image Classification

CIFAR-10 & CIFAR-100. We used the standard procedure from Zagoruyko & Komodakis [86] for
training convolutional neural networks. The images are zero-padded with 4 pixels on each side and
then a random 32× 32 crop is extracted from the image, horizontally flipped with the probability of
0.5. We further normalize the inputs with per-channel mean and standard deviations. We performed
the extensive search over the hyperparameters for all networks. We held out 5k examples from the
CIFAR-10 and CIFAR-100 to form the validation set following Zagoruyko & Komodakis [86] and
selected the hyperparameters with the highest validation accuracy. With the chosen hyperparameters,
we re-trained the network with the full training dataset and reported the final test accuracy.

Preconditioning Adaptation. Across all experiments, we used the batch size of 128 and trained the
network for 200 epochs. With the chosen set of hyperparameters, we repeated the experiments 3 times
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with different random seeds and reported the mean accuracy on the test dataset. For SGDm, we set
the momentum to 0.9 and performed a grid search over the learning rates {0.3, 0.1, 0.03, 0.01, 0.003,
0.001, 0.0003, 0.0001}. For Adam, we swept over learning rate of {3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 3e-4,
1e-4}. For KFAC, we did a grid search on learning rates of {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001,
0.00003, 0.00001} and damping values of {3e-2, 1e-2, 3e-3, 1e-3, 3e-4, 1e-4}. For APO-Precond,
we performed a grid search over λFSD = {0.3, 0.1} and λWSD = {3, 1, 0.3, 0.1} for architectures
without batch normalization. As batch normalization makes the parameters scale-invariant [3], we
imposed a higher regularization in the function space and lower regularization in the weight space,
searching over λFSD = {3, 1} and λWSD = {0.3, 0.1, 0.03, 0.01}. We set the FSD term to measure
the KL divergence. We also searched over the weight decay in range of {5e-4, 1e-4, 5e-5} for all
optimizers.

Learning Rate Adaptation. For ResNet32, we trained for 400 epochs, and used a manual schedule
that decays the learning rate by a factor of 10 at epochs 150 and 250, following Lucas et al. [49]. For
ResNet34 and WideResNet 28-10, we trained for 200 epochs, with a manual schedule that decays the
learning rate by a factor of 5 at epochs 60, 120, and 160, following Zagoruyko & Komodakis [86].

For the baseline optimizers, we performed grid searches over the fixed learning rate
or initial learning rate for a fixed step schedule, as well as the weight decay. For
all base optimizers and APO-tuned variants, we searched over weight decay values in
{0.01, 0.003, 0.001, 0.0003, 0.0001, 0.0}. For SGD and SGDm, we searched over learning rates
in {1.0, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}. For RMSprop and Adam, we searched
over learning rates in {0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}. For each
of the APO-tuned variants (e.g. SGDm-APO), we kept λWSD = 0 and searched over λFSD ∈
{0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001}.

C.6 Neural Machine Translation

We trained a Transformer [79] composed of 6 encoder and decoder layers, with a word embedding
and hidden vector dimension of 512. The architecture has feed-forward size of 1024, 4 attention
heads, dropout value 0.3, and weight decay value 0.0001. For the AdamW baseline, we used a
warmup-then-decay learning rate schedule widely used in practice, and for the SGD baseline and
APO-Precond, we kept the learning rate fixed after the warmup. For APO-Precond, following the
practice from Zhang et al. [87], we used a diagonal block matrix in the structured preconditioner
of the embedding weight matrix to reduce memory overhead. We used the Fairseq toolkit [65] to
conduct all experiments.

For SGDm, we grid searched over the learning rates in {10, 3, 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001}
and tried both the fixed learning rate and inverse sqrt learning rate schedules. For AdamW, we set
β1 = 0.9, β2 = 0.98, and ϵ = 10−1 and searched over the learning rates in range {0.05, 0.001,
0.0005, 0.0001}. AdamW also used the inverse sqrt learning rate schedule with 4000 warmup steps.
For APO-Precond, we searched over λFSD = {0.3, 0.1} and λWSD = {3, 1, 0.3, 0.1} and let FSD term
to measure the KL divergence. As we found a fixed learning rate schedule to work best for SGDm,
we also used a fixed learning rate schedule for APO-Precond. We selected the hyperparameters based
on the BLEU score on the validation set and reported on the final test BLEU score on the checkpoint,
which achieved the highest validation BLEU score.
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D Additional Results

D.1 Rosenbrock Function
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Figure 6: Training loss on the Rosen-
brock function. Both the learn-
ing rate schedules and the precondi-
tioner adapted by APO outperform
the optimal fixed learning rate for
SGD.

We validated APO on the two-dimensional Rosenbrock func-
tion defined as:

f(x, y) = (1− x)2 + 100(y − x2)2

with initialization (x, y) = (1,−1.5). In Figure 6, we used
APO to tune the learning rate for SGD, as well as the full
preconditioning matrix. Both APO-tuned methods outper-
formed vanilla SGD with the optimal fixed learning rate (cho-
sen through a careful grid search). Because Rosenbrock has ill-
conditioned curvature, second-order optimization with APO-
Precond dramatically speeds up the convergence and achieves
a lower loss.

D.2 SVHN

We also evaluated APO on the Google Street View House Numbers dataset (SVHN) [63], using a
WideResNet 16-8. We followed the experimental setup of Zagoruyko & Komodakis [86], and used
the same decay schedule for the baseline, which decays the learning rate by 10× at epochs 80 and
120. The optimal fixed learning rate achieves test accuracy fluctuating around 97.20%, while the
manual schedule achieves 98.17%. APO rapidly converges to test accuracy 97.96%, outperforming
the baseline while being slightly worse than the manual schedule (Figure 7).
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Figure 7: Test Accuracy on SVHN with SGDm.

D.3 CIFAR-10

APO Preconditioning Adaptation. We show the plots for for experiments listed in Table 2 in
Figure 8 and Figure 9.
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Figure 8: LeNet, AlexNet, and VGG16 on CIFAR-10, using SGDm, Adam, KFAC, and APO-
Precond.
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Figure 9: ResNet-18 and ResNet-32 on CIFAR-10, using SGDm, Adam, KFAC, and APO-Precond.

Furthermore, we show the test accuracy as a function of wall-clock time with various values of K
in Figure 10. We observed that APO is robust to the values of K and setting K = 10, as done in
our main experiments, show a significant improvement in the test accuracy over SGDm while only
introducing a small computational overhead.
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Figure 10: AlexNet on CIFAR-10, using SGDm, KFAC, and APO-Precond with various values of K.
We show the test accuracy as a function of wall-clock time.

APO Learning Rate Schedules. We show the plots for each base-optimizer and network architec-
ture as below. We find that APO achieves better performance than the best fixed LR, and is comparable
to the manual schedule. The learning rate schedules discovered by APO are nontrivial: most exhibit a
large increase in the learning rate at the start of training to make rapid progress, followed by a gradual
decrease in the learning rate to fine-tune the solution as optimization approaches a local optimum.
The APO learning rate schedules often span two orders of magnitude, similarly to manual decay
schedules.

CIFAR-10 (ResNet32)
Fixed Decayed APO

SGD 90.07 ± 0.38 93.30 ± 0.18 92.71 ± 0.25
SGDm 89.40 ± 1.38 93.34 ± 0.15 92.75 ± 0.13

RMSprop 89.84 ± 0.43 91.94 ± 0.33 91.28 ± 0.35
Adam 90.45 ± 0.24 92.26 ± 0.34 91.81 ± 0.15

Table 7: Test accuracy on CIFAR-10 using ResNet32. APO consistently outperforms the best fixed
learning rate for each optimizer, and is on par with carefully-tuned manual schedules. Each reported
result is the mean of 4 random restarts, and we report ± the standard deviation.
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Figure 11: ResNet34 on CIFAR-10, using SGD. The shaded regions show the min/max values over 4
random restarts.
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CIFAR-10 (ResNet34)
Fixed Decayed APO

SGD 93.00 ± 0.35 93.54 ± 0.01 94.27 ± 0.02
SGDm 92.99 ± 0.14 95.08 ± 0.24 94.47 ± 0.24

RMSprop 92.87 ± 0.32 93.97 ± 0.11 93.97 ± 0.07
Adam 93.23 ± 0.15 94.12 ± 0.10 93.80 ± 0.14

Table 8: Test accuracy on CIFAR-10 using ResNet34. APO consistently outperforms the best fixed
learning rate for each optimizer, and is on par with carefully-tuned manual schedules. Each reported
result is the mean of 4 random restarts, and we report ± the standard deviation.

CIFAR-10 (WideResNet-28-10) CIFAR-100 (WideResNet-28-10)

Fixed Decayed APO Fixed Decayed APO

SGD 93.38 ± 0.29 94.86 ± 0.20 94.85 ± 0.21 76.29 ± 0.32 77.92 ± 0.26 76.87 ± 0.31
SGDm 93.46 ± 0.28 95.98 ± 0.17 95.50 ± 0.25 74.81 ± 0.04 81.01 ± 0.08 79.33 ± 0.18

RMSprop 92.91 ± 0.28 93.60 ± 0.21 94.22 ± 0.23 72.06 ± 0.16 76.06 ± 0.11 74.17 ± 0.09
Adam 92.81 ± 0.20 94.04 ± 0.07 93.83 ± 0.13 72.01 ± 0.18 75.53 ± 0.22 76.33 ± 0.17

Table 9: Test accuracy on CIFAR-10 using WideResNet-28-10. APO consistently outperforms the
best fixed learning rate for each optimizer, and is on par with carefully-tuned manual schedules. Each
reported result is the mean of 4 random restarts, and we report ± the standard deviation.
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Figure 12: ResNet34 on CIFAR-10, using SGDm. The shaded regions show the min/max values over
4 random restarts.
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Figure 13: ResNet34 on CIFAR-10, using RMSprop. The shaded regions show the min/max values
over 4 random restarts.
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Figure 14: ResNet34 on CIFAR-10, using Adam. The shaded regions show the min/max values over
4 random restarts.
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Figure 15: ResNet32 on CIFAR-10, using SGDm. The shaded regions show the min/max values over
4 random restarts.
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Figure 16: ResNet32 on CIFAR-10, using RMSprop. The shaded regions show the min/max values
over 4 random restarts.
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Figure 17: ResNet32 on CIFAR-10, using Adam. The shaded regions show the min/max values over
4 random restarts.
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Figure 18: WideResNet 28-10 on CIFAR-10, using SGDm. The shaded regions show the min/max
values over 4 random restarts.
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Figure 19: WideResNet 28-10 on CIFAR-10, using RMSprop. The shaded regions show the min/max
values over 4 random restarts.
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Task Model SGDm KFAC APO-P

CIFAR-10 LeNet 75.65 ± 0.24 74.95 ± 0.55 77.25 ± 0.28
CIFAR-10 ResNet-18 94.15 ± 0.23 92.72 ± 0.13 94.79 ± 0.15

CIFAR-100 ResNet-18 73.53 ± 0.29 73.12 ± 0.22 75.47 ± 0.11

Table 10: Test accuracies with ± standard deviation of 16-bit nets on CIFAR 10/100.
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Figure 20: WideResNet 28-10 on CIFAR-10, using Adam. The shaded regions show the min/max
values over 4 random restarts.

D.4 CIFAR-100

APO Learning Rate Schedules. We show training curve plots for the Adam base-optimizer below.
We find that APO achieves better performance than the fixed LR, and is comparable with the manual
schedule.
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Figure 21: WideResNet on CIFAR-100, using Adam. The shaded regions show the min/max values
over 4 random restarts.

D.5 16-bit Neural Network Training

We show the training curve plots for training 16-bit ResNet-18 on CIFAR-10 and CIFAR-100 in
Figure 22 .
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Figure 22: Test accuracy curves for 16-bit neural networks: ResNet-18 on CIFAR-10 (left) and
CIFAR-100 (right).

D.6 Comparison to HD, L4, and FOP

In this section, we compare APO to Hypergradient Descent (HD) [6] and L4 [70] for the learning rate
adaptation problem, and First-Order Preconditioning (FOP) [61] for the preconditioning adaptation
problem.
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D.6.1 Hypergradient Descent

Here, we compare to Hypergradient Descent (HD) [70], a method for online learning rate adaptation.
The meta-objective used in HD is the expected value of the training loss after updating the learning
rate, E[L(u(θ, ϕ)]. This is the same objective that was analyzed theoretically by Wu et al. [85], that
was shown to lead to sub-optimal behavior when the objective is stochastic. In particular, [85] showed
that this meta-objective encourages the learning rate to drop rapidly, which reduces the expected loss
in the short-term by eliminating fluctuations in the loss caused by random mini-batch sampling, at
the cost of worse long-term behavior (as discussed in Appendix B). In our experiments, we found
that HD suffers from the short horizon bias issue; the only way to prevent the LR from reducing too
quickly is to use a very small meta-learning rate, which becomes more heuristic. Empirically (and
as discussed in more detail in Appendix E), the APO meta-objective does not suffer from this issue,
allowing us to use larger meta-learning rates without having the LR decrease too quickly. Because
the meta-learning rate for HD must be small, HD is not robust to the initial learning rate; the initial
LR must be tuned in order to obtain decent performance. In contrast, APO is very robust to the initial
learning rate, behaving nearly identically for initial learning rates spanning 6 orders of magnitude,
from 1e-1 to 1e-7 (shown in Appendix J.2).

Comparison. We ran hypergradient descent versions of SGD, SGDm, and Adam, denoted SGD-HD,
SGDm-HD, and Adam-HD, respectively. There was no existing implementation of RMSprop-HD, so
we left out this optimizer. For fair comparison to APO, we used the same exponential learning rate
parameterization for both APO and HD. For SGD-HD and SGDm-HD, we performed a grid search
over initial learning rates {1e-1, 1e-2, 1e-3}, meta-learning rates {3.0, 1.0, 1e-1, 1e-2, 1e-3}, and
weight decay coefficients {1e-2, 1e-3, 5e-4, 1e-4, 0.0}. For Adam-HD, we performed a grid search
over initial learning rates {1e-2, 1e-3, 1e-4}, meta-learning rates {3.0, 1.0, 1e-1, 1e-2, 1e-3}, and
weight decay coefficients {1e-3, 5e-4, 1e-4, 0.0}.

On the Meta-Learning Rate for HD. In our experiments, we found that HD only works decently
when run with a large initial learning rate and a small meta-learning rate, which has the effect of
reducing the LR slowly rather than dramatically (as is expected from the analysis in [85]). However,
using a larger meta-learning rate, which optimizes the meta-objective more rapidly, exhibits the
short horizon bias issue. In Figures 23,25, we plot the learning rates adapted by HD with a small
meta-learning rate (0.001) and a large meta-learning rate (1.0), for each of SGD-HD, SGDm-HD,
and Adam-HD. We also plot the corresponding test accuracies for each of these experiments in
Figures 24,26, to show that the LR adapted using a large meta-learning rate catastrophically affects
training and leads to substantially worse test accuracy. In summary, these results provide evidence
that the HD meta-objective is not a very good target for meta-optimization.

CIFAR-10 (ResNet-32)

Fixed Decay HD [6] L4 [70] APO (Ours)

SGD 90.07 ± 0.38 93.30 ± 0.18 88.75 ± 1.07 83.90 ± 0.19 92.71 ± 0.25
SGDm 89.40 ± 1.38 93.34 ± 0.15 90.34 ± 0.26 89.05 ± 0.35 92.75 ± 0.13

RMSprop 89.84 ± 0.43 91.94 ± 0.33 - 87.35 ± 0.38 91.28 ± 0.35
Adam 90.45 ± 0.24 92.26 ± 0.34 90.38 ± 0.22 89.80 ± 0.09 91.81 ± 0.15

Table 11: We compare the test accuracies achieved by the optimal fixed learning rate, the manual step decay
schedule, hypergradient descent (HD) [6], L4 [70], and the APO-discovered schedule, training ResNet-32 [29]
on CIFAR-10. We report the mean and standard deviation of four random restarts for each method. APO
outperforms the optimal fixed learning rate, HD, and L4, and is competitive with manual schedule.
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Figure 23: ResNet32, CIFAR-10, Hypergradient Descent (HD) [6] learning rate schedules for each optimizer
SGD-HD, SGDm-HD, and Adam-HD. The shaded regions show the min/max values over 4 random restarts.
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CIFAR-10 (ResNet-34)

Fixed Decay HD [6] L4 [70] APO (Ours)

SGD 93.00 ± 0.35 93.54 ± 0.01 92.53 ± 0.14 85.93 ± 0.25 94.27 ± 0.02
SGDm 92.99 ± 0.14 95.08 ± 0.24 92.79 ± 0.35 88.35 ± 0.09 94.47 ± 0.24

RMSprop 92.87 ± 0.32 93.87 ± 0.11 - 80.93 ± 0.36 93.97 ± 0.07
Adam 93.23 ± 0.15 94.12 ± 0.10 92.54 ± 0.05 85.10 ± 0.10 93.80 ± 0.14

Table 12: We compare the test accuracies achieved by the optimal fixed learning rate, the manual step decay
schedule, hypergradient descent (HD) [6], L4 [70], and the APO-discovered schedule, training ResNet-34 [29]
on CIFAR-10. We report the mean and standard deviation of four random restarts for each method. APO
outperforms the optimal fixed learning rate, HD, and L4, and is competitive with manual schedule.
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Figure 24: ResNet32, CIFAR-10, Hypergradient Descent (HD) [6] test accuracies for each optimizer SGD-HD,
SGDm-HD, and Adam-HD. The shaded regions show the min/max values over 4 random restarts.
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Figure 25: ResNet34, CIFAR-10, Hypergradient Descent (HD) [6] learning rate schedules for each optimizer
SGD-HD, SGDm-HD, and Adam-HD. The shaded regions show the min/max values over 4 random restarts.
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Figure 26: ResNet34, CIFAR-10, Hypergradient Descent (HD) [6] test accuracies for each optimizer SGD-HD,
SGDm-HD, and Adam-HD. The shaded regions show the min/max values over 4 random restarts.

D.6.2 Comparison to L4

We also compared APO to the L4 optimizer [70], which adapts a global learning rate in an online
fashion based on Polyak’s update rule. We applied L4 to tune the global learning rate for four base
optimizers—vanilla SGD without momentum, SGD with momentum coefficient 0.9 (denoted SGDm),
RMSprop, and Adam—used to train ResNet32 and ResNet34 on CIFAR-10. For each experiment,
we performed a grid search over weight decay coefficients {1e-3, 5e-4, 1e-4, 0.0} and α values {0.1,
0.15, 0.3}, where α controls the scaling of the step size, and is the primary hyperparameter to tune
for L4. For the other L4 hyperparameters, we used the defaults γ = 0.9 and τ = 0.001.

The results are shown in Table 11 and Table 12. We found that L4 obtained poor generalization,
underperforming the other baselines and APO. Figures 27,28 and Figures 29,30 show the test accuracy
and learning rate adaptation obtained with each L4-tuned optimizer, on CIFAR-10 classification with
ResNet32 and ResNet34.
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Figure 27: ResNet32 L4-SGDm and RMSprop-L4. The shaded regions show the min/max values over 3
random restarts.
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Figure 28: ResNet32 RMSprop-L4 and Adam-L4. The shaded regions show the min/max values over 3 random
restarts.
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Figure 29: ResNet34 L4-SGDm and RMSprop-L4. The shaded regions show the min/max values over 3
random restarts.

0 20000 40000 60000 80000
Iteration

10 3

10 2

Le
ar

ni
ng

 R
at

e

RMSprop-L4

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

RMSprop-L4

0 20000 40000 60000 80000
Iteration

10 5

10 4

10 3

10 2

Le
ar

ni
ng

 R
at

e

Adam-L4

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8
Te

st
 A

cc
ur

ac
y

Adam-L4

Figure 30: ResNet34 RMSprop-L4 and Adam-L4. The shaded regions show the min/max values over 3 random
restarts.

D.6.3 First-Order Preconditioning

Task Model SGDm Adam KFAC FOP APO-Precond

CIFAR-10 LeNet 75.73 ± 0.50 73.41 ± 0.27 76.63 ± 0.51 75.25 ± 0.56 77.42 ± 0.55
CIFAR-10 AlexNet 76.27 ± 0.24 76.09 ± 0.31 78.33 ± 0.28 76.52 ± 0.23 81.14 ± 0.28
CIFAR-10 VGG16 91.82 ± 0.15 90.19 ± 0.31 92.05 ± 0.23 91.65 ± 0.41 92.13 ± 0.17
CIFAR-10 ResNet-18 93.69 ± 0.45 93.27 ± 0.09 94.60 ± 0.04 93.76 ± 0.31 94.75 ± 0.09
CIFAR-10 ResNet-32 94.40 ± 0.07 93.30 ± 0.14 94.49 ± 0.10 93.90 ± 0.28 94.83 ± 0.19

CIFAR-100 AlexNet 43.95 ± 0.07 41.82 ± 0.28 46.24 ± 0.33 44.66 ± 0.29 52.35 ± 0.26
CIFAR-100 VGG16 65.98 ± 0.25 60.61 ± 0.39 61.84 ± 0.37 61.64 ± 0.39 67.95 ± 0.30
CIFAR-100 ResNet-18 76.85 ± 0.07 70.87 ± 0.26 76.48 ± 0.13 75.93 ± 0.23 76.88 ± 0.06
CIFAR-100 ResNet-32 77.47 ± 0.25 68.67 ± 0.65 75.70 ± 0.13 75.66 ± 0.27 77.41 ± 0.11

Table 13: Average test accuracy over 4 random restarts on CIFAR-10 and CIFAR-100 dataset for
various optimizers. We also report ± the standard deviation.

Image Reconstruction. Following Section 6, we trained an 8-layer autoencoder on MNIST and
compared APO with FOP using the same experimental set-up from Appendix C.4. For FOP, we set the
momentum to 0.9 and performed grid search over the learning rates and hypergradient learning rates in
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range of {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} and {10−2, 10−3, 10−4, 10−5, 10−6},
respectively.

We show the training losses in Figure 31. APO-Precond converges faster than FOP and achieves
competitive training loss to KFAC (although there remains some performance gap with KFAC).
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Figure 31: Deep autoencoder on MNIST. We compare the training loss of SGDm, KFAC, FOP, and
APO-Precond.

Image Classification. We also compared APO with FOP on image classification task with
the same set-up from Appendix C.5. For FOP, we fixed the momentum to 0.9 and
again performed grid search over the learning rates and hypergradient learning rates in
{1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001} and {10−2, 10−3, 10−4, 10−5, 10−6}, respec-
tively. We also searched over the weight decay in range of {5e-4, 1e-4, 5e-5}.

The test accuracies of APO-Precond and FOP are summarized in Table 13. While APO-Precond
achieved competitive generalization performance to SGDm and KFAC on all tasks, FOP consistently
underperformed compared to KFAC.

D.7 Tuning Other Optimization Parameters

Here, we show proof-of-concept results for tuning different optimizer parameters, other than the
learning rate or preconditioner. In particular, we focus on two parameters of the RMSprop optimizer
that are rarely tuned by hand. The RMSprop update rule is:

st ← γst−1 + (1− γ)g2
t (11)

θt ← θt−1 −
η

sρt + ϵ
gt (12)

We consider adapting ϵ and ρ (the power to which st is raised in the denominator, which is fixed
to ρ = 1

2 in standard RMSprop). Both ϵ and ρ can be interpreted as having a damping effect
on the update. We investigated the effect of tuning {ϵ, ρ} using APO on two tasks: 1) training
a two-hidden-layer MLP with 1000 hidden units per layer on FashionMNIST; and 2) training a
ResNet32 on CIFAR-10. We set the learning rate to the best fixed value for the baseline: η =
0.001 for CIFAR-10 and η = 0.0001 for FashionMNIST. We used RMSprop with learning rate
0.01 for meta-optimization, and we performed a grid search over λFSD ∈ {1e-3, 1e-4, 1e-5} and
λWSD ∈ {1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6}. We compared to baseline RMSprop with its optimal
fixed learning rates (η = 0.001 for CIFAR-10 and η = 0.0001 for FashionMNIST) and with the
default values ϵ = 1e-8 and ρ = 0.5. The results for FashionMNIST and CIFAR-10 are shown in
Figures 32 and 33, respectively. We found that on each of these tasks, tuning {ϵ, ρ} resulted in faster
training and lower final training loss.
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Figure 32: Using APO to tune the {ϵ, ρ} hyperparameters of RMSprop, for an MLP trained on FashionMNIST.
Here, we used the best fixed learning rate obtained from a grid search using the best optimizer.
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Figure 33: Using APO to tune the {ϵ, ρ} hyperparameters of RMSprop, for ResNet32 trained on CIFAR-10.

E Importance of Using the Same Mini-batch

In this section, we verify empirically the importance of computing the first term of the meta-objective
on the same mini-batch that is used to compute the gradient of the base optimizer. Recall that our
meta-objective is:

Q(ϕ) = JB(u(θ,ϕ,B)) + λFSDE(x̃,·)∼D[DF(u(θ,ϕ,B),θ, x̃)] +
λWSD

2
||u(θ,ϕ,B)− θ||22 (13)

Note that the loss term is computed using the same mini-batch B used for the update u(θ,ϕ,B). An
alternative is to evaluate the loss term on a randomly-sampled mini-batch B′ ∼ D, yielding:

Q(ϕ) = JB′(u(θ,ϕ,B)) + λFSDE(x̃,·)∼D[DF(u(θ,ϕ,B),θ, x̃)] +
λWSD

2
||u(θ,ϕ,B)− θ||22 (14)

If we set λFSD = λWSD = 0, then Eq. 14 becomes the meta-objective analyzed by Wu et al. [85],
which was used to illustrate the short-horizon bias issue in stochastic meta-optimization.

Figures 34,35 show the result of using Eq. 13 vs. Eq. 14 for meta-optimizing the learning rate of a
ResNet32 model on CIFAR-10. We observe that when using a random mini-batch B′ to compute
the loss term, the learning rate decays rapidly, preventing long-term progress; in contrast, using the
same mini-batch B for the loss term yields a reasonable LR schedule which does not suffer from the
short-horizon bias issue empirically.
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Figure 34: Left, Center: Training loss/Test accuracy or RMSprop-APO compared between 1) using
the same mini-batch for the first term and 2) using a different mini-batch for the first term. Right:
Comparison of learning rates for the two conditions.

Same Mini-Batch for the FSD Term. Another alternative to the meta-objective is to compute the
FSD term using the same mini-batch used to compute the loss term, as shown in Eq. 15.

Q(ϕ) = JB(u(θ,ϕ,B)) +
λFSD

|B|
∑

(x̃,·)∈B

DF(u(θ,ϕ,B),θ, x̃) +
λWSD

2
||u(θ,ϕ,B)− θ||22 (15)
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Figure 35: Left, Center: Training loss/Test accuracy of SGDm-APO compared between 1) using
the same mini-batch for the first term and 2) using a different mini-batch for the first term. Right:
Comparison of learning rates for the two conditions.

Recall that DF(u(θ,ϕ,B),θ, x̃) = ρ(f(x̃, u(θ,ϕ,B)), f(x̃,θ)). The function evaluation
f(x̃, u(θ,ϕ,B)) must be performed to compute the loss term; thus, using the same mini-batch
B for the FSD term can allow us to reduce computation by re-using this function output in both
the loss and FSD computations. However, with the interpretation of the FSD term in Eq. 15 as a
Monte Carlo estimate of the expectation Ex̃∼D[DF(u(θ,ϕ,B),θ, x̃)], using the same mini-batch for
the loss and dissimilarity would yield a biased estimate. The effect of using a different vs the same
mini-batch to compute the FSD term is shown in Figure 36.
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Figure 36: Left, Center: Training loss/Test accuracy of Adam-APO compared between 1) using
the same mini-batch for the second term as for the first term of the meta-objective and 2) using a
different mini-batch for the second term. Right: Comparison of learning rates for the two conditions.

F Approximate Closed-Form Solution for the PPM

In Section 3.1, we introduced a general update rule for the stochastic PPM, which is defined as
follows:

θ(t+1) ← argmin
u∈Rm

JB(u) + λFSDEx̃∼D[DF(u,θ
(t),x)] + λWSDDW(u,θ(t)). (16)

We first take the infinitesimal limit by letting λFSD →∞. Then, the optimal update u⋆ will stay close
to the current parameters θ(t) and we can approximate the loss function with the first-order Taylor
approximation. Moreover, since the FSD term Ex̃∼D[DF(u,θ

(t),x)] is minimized when u = θ(t),
we have∇uEx̃∼D[DF(u,θ

(t),x)]|u=θ(t) = 0. Hence, the second-order Taylor expansion of the FSD
term would be:

Ex̃∼D[DF(f(x̃,u), f(x̃,θ
(t)))] ≈ 1

2
(u− θ(t))⊤G(u− θ(t)), (17)

where G = ∇2
uEx̃∼D[DF(u,θ

(t),x)]|u=θ(t) is the local Hessian of the FSD term. We further let the
weight space discrepancy function to be the squared Euclidean distance DW(u,θ(t)) = 1/2∥u−θ(t)∥22.
Combining these insights, we approximate Eqn. 16 by linearizing the loss and taking a quadratic
approximation to the FSD term:

θ(t+1) ≈ argmin
u∈Rm

[
∇θJB(θ(t))⊤(u− θ(t)) +

λFSD

2
(u− θ(t))⊤G(u− θ(t)) +

λWSD

2
∥u− θ(t)∥2

]
.

(18)
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Taking the gradient with respect to u and setting it equal to 0, we have:

∇θJB(θ(t)) + λFSDGu− λFSDGθ(t) + λWSDu− λWSDθ
(t) = 0. (19)

Rearranging the terms, we arrive at the approximate closed-form solution:

u⋆ ≈ θ(t) − (λFSDG+ λWSDI)
−1∇θJB(θ(t)). (20)

G Optimization Algorithms Derived from the Proximal Objective

In this section, we show how several classical optimization algorithms can be derived from the
proximal objective introduced in Section 3.2. Given a mini-batch B, recall that we consider the
following proximal objective for optimizing the model parameters θ:

θ(t+1) = argmin
θ∈Rm

{
JB(θ) + λFSDEx̃[DF(θ,θ

(t), x̃)] +
λWSD

2
||θ − θ(t)||22

}
. (21)

Method Loss Term Approx.
JB(u)

FSD Term Approx.
DF(u,θ,x)

FSD Term
Choice of DF

WSD Term
1
2
||u− θ||2

Gradient Descent 1st-order - - ✓

Newton’s Method 2nd-order - - ✗

Damped Newton’s Method 2nd-order - - ✓

Natural Gradient 1st-order 2nd-order KL ✗

Damped Natural Gradient 1st-order 2nd-order KL ✓

Generalized Gauss-Newton 1st-order 2nd-order Bregman ✗

Damped Generalized Gauss-Newton 1st-order 2nd-order Bregman ✓
Direct Proximal Optimization Exact Exact Any ✓

G.1 Gradient Descent

To derive vanilla gradient descent, we take the first-order Taylor series approximation to the loss term
JB(θ) about θ(t), and set λFSD = 0. We need to have λWSD > 0 to ensure that we do not take an
infinitely large step. Thus, each step of gradient descent minimizes an approximation to the proximal
objective which we denote by PGD

θ(t)(θ):

θ(t+1) = argmin
θ

PGD
θ(t)(θ), (22)

where:

PGD
θ(t)(θ) = JB(θ(t)) +∇JB(θ(t))⊤(θ − θ(t)) +

λWSD

2
||θ − θ(t)||22. (23)

Now, we set the gradient∇θP
GD
θ(t)(θ) = 0 and solve for θ:

∇θ

(
∇JB(θ(t))⊤(θ − θ(t)) +

λWSD

2
||θ − θ(t)||22

)
= 0 (24)

∇JB(θ(t)) + λWSD(θ − θ(t)) = 0 (25)

θ = θ(t) − 1

λWSD
∇JB(θ(t)) (26)

G.2 Newton’s Method

To derive Newton’s method, we take the second-order Taylor series approximation to the loss term
JB(θ) about θ(t), and set λFSD = 0. Below we derive the general form for the damped Newton
update, which incorporates the WSD term; setting λWSD = 0 leads to the undamped Newton update as
a special case. Each step of Newton’s method minimizes an approximation to the proximal objective
which we denote by PNewton

θ(t) (θ):

θ(t+1) = argmin
θ

PNewton
θ(t) (θ), (27)
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where:

PNewton
θ(t) (θ) = JB(θ(t)) +∇JB(θ(t))⊤(θ − θ(t)) +

1

2
(θ − θ(t))⊤H(θ − θ(t)) +

λWSD

2
||θ − θ(t)||22.

(28)

In Eq. 28, H = ∇2
θJB(θ). Now, we set the gradient∇θP

Newton
θ(t) (θ) = 0 and solve for θ:

∇θP
Newton
θ(t) (θ) = 0 (29)

∇JB(θ(t)) +Hθ −Hθ(t) + λWSDθ − λWSDθ
(t) = 0 (30)

(H+ λWSDI)(θ − θ(t)) = −∇JB(θ(t)) (31)

θ = θ(t) − (H+ λWSDI)
−1∇JB(θ(t)) (32)

G.3 Generalized Gauss-Newton Method

Next, we consider taking the first-order Taylor series approximation to the loss term, and an arbitrary
function-space discrepancy DF approximated by its second-order Taylor series expansion. We will
use the notation z = f(x,θ) to denote the outputs of a neural network with parameters θ on inputs x.
We have the following proximal objective:

Pθ(t)(θ) = JB(θ(t)) +∇JB(θ(t))⊤(θ − θ(t)) + λFSDEx̃[DF(θ,θ
(t), x̃))] +

λWSD

2
||θ − θ(t)||22

(33)

Taking the second-order approximation to DF (with respect to θ), we have:

DF(θ,θ
(t)) ≈ DF(θ

(t),θ(t))︸ ︷︷ ︸
=0

+∇θDF(θ,θ
(t))|⊤θ=θ(t)(θ − θ(t))︸ ︷︷ ︸

=0

+
1

2
(θ − θ(t))⊤∇2

θDF(θ,θ
(t))|θ=θ(t)(θ − θ(t)).

(34)

Using the chain rule, we can derive∇2
θDF(θ,θ

(t))|θ=θ(t) as follows:

∇2
θDF(θ,θ

(t))|θ=θ(t) =

(
∂z

∂θ

)⊤

︸ ︷︷ ︸
J⊤
zθ

(
∂2ρ

∂z2

)
︸ ︷︷ ︸

Hρ

(
∂z

∂θ

)
︸ ︷︷ ︸

Jzθ

= J⊤
zθ∇2

zρ(z, z
(t))Jzθ = J⊤

zθHρJzθ (35)

Letting G denote the expectation of the Hessian of the FSD function, G = Ex̃∼D[∇2
θDF(θ,θ

(t), x̃)],
we have:

Pθ(t)(θ) = JB(θ(t)) +∇JB(θ(t))⊤(θ − θ(t)) +
λFSD

2
(θ − θ(t))⊤G(θ − θ(t)) +

λWSD

2
||θ − θ(t)||22

(36)

If we set the gradient∇θPθ(t)(θ) = 0 and solve for θ, we obtain:

θ = θ − (λFSDG+ λWSDI)
−1∇JB(θ(t)) (37)

H Optimizing the 1-Step Meta-Objective Recovers Classic Methods

In this section, we show that when we approximate the loss term and FSD term of our meta-objective
Q(ϕ) and solve for the analytic argminϕQ(ϕ), we recover the preconditioners corresponding to
classic first- and second-order algorithms, including gradient descent, Gauss-Newton, Generalized
Gauss-Newton, and natural gradient. The preconditioners used by each of these methods are shown
in Table 1. These results parallel those for directly optimizing the parameters θ using the proximal
objective, but optimizing for the meta-parameters ϕ = P.

Throughout this exposition, we use the notation:

u(θ,ϕ,B) = u(θ,P,B) = θ −P∇θJB(θ) = θ −Pg (38)

where g = ∇θJB(θ). Note that g implicitly depends on the data B; we use this shorthand to simplify
the exposition.
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Theorem. Consider an approximation Q̂(P) to the meta-objective (Eq. 8) where the loss term is lin-
earized around the current weights θ and the FSD term is replaced by its second-order approximation
around θ:

Q̂(P) =EB∼D

[
∇θJB(θ)⊤(u(θ,P,B)− θ)

+ λFSD(u(θ,P,B)− θ)⊤G(u(θ,P,B)− θ) +
λWSD

2
∥u(θ,P,B)− θ∥2

]
. (39)

Denote the gradient on a mini-batch as g = ∇θJB(θ), and assume that the second moment matrix
EB∼D

[
gg⊤] is non-singular. Then, the preconditioning matrix which minimizes Q̂ is given by

P⋆ = (λFSDG+ λWSDI)
−1, where G denotes the Hessian of the FSD evaluated at θ.

Proof. We have the following meta-objective (where the loss term is expanded using its first-order
Taylor series approximation):

P⋆ = argmin
P

{
EB∼D

[
JB(θ) +∇θJB(θ)⊤︸ ︷︷ ︸

g

((θ −Pg)− θ) (40)

+ λFSDE(x̃,·)∼D [DF(u(θ,P,B),θ, x̃)] + λWSD

2
||θ −Pg − θ||2

]}
(41)

Let us first derive the second-order Taylor series approximation to the discrepancy term
DF(u(θ,ϕ,B),θ, x̃). To simplify notation, let d(θ′) ≡ DF(θ

′,θ, x̃) where θ and the data x̃ are
implicit. Then, the second-order expansion of d about θ is:

d(θ′) ≈ d(θ)︸︷︷︸
=0

+∇d(θ)⊤(θ′ − θ)︸ ︷︷ ︸
=0

+
1

2
(θ′ − θ)⊤∇2

θd(θ)(θ
′ − θ) (42)

We have d(θ) = DF(θ,θ, x̃) = ρ(f(x̃,θ), f(x̃,θ)) = 0, and ∇d(θ) = 0 because θ is a minimum
of d, so the first two terms are 0. Denote the network output on example x̃ by z = f(x̃,θ). To
compute ∇2

θd(θ), we have:

∇2
θd(θ) =

(
∂z

∂θ

)⊤

︸ ︷︷ ︸
J⊤
zθ

(
∂2ρ

∂z2

)
︸ ︷︷ ︸

Hρ

(
∂z

∂θ

)
︸ ︷︷ ︸

Jzθ

= J⊤
zθHρJzθ (43)

To simplify notation, we let G denote the expectation of the Hessian of the FSD function, G ≡
Ex̃∼D[∇2

θd(θ)]. Plugging this into the meta-objective, we have:

P⋆ = argmin
P

{
EB∼D

[
JB(θ)− g⊤Pg +

λFSD

2
g⊤P⊤GPg +

λWSD

2
g⊤P⊤Pg

]}
(44)

Next, we take the gradient with respect to P and set it to 0 to solve for P:

∇P

(
EB∼D

[
JB(θ)− g⊤Pg +

λFSD

2
g⊤P⊤GPg +

λWSD

2
g⊤P⊤Pg

])
= 0 (45)

E
[
−gg⊤ +

λFSD

2
(GPgg⊤ +G⊤Pgg⊤) + λWSDPgg⊤

]
= 0 (46)

E
[
−gg⊤ + λFSDGPgg⊤ + λWSDPgg⊤] = 0 (47)

(λFSDFP+ λWSDP− I)E
[
gg⊤] = 0 (48)

Assuming that the second moment matrix EB∼D[gg
⊤] is non-singular, we have:

λFSDGP+ λWSDP− I = 0 (49)
(λFSDG+ λWSDI)P = I (50)

P = (λFSDG+ λWSDI)
−1 (51)

Thus, P⋆ = (λFSDG+ λWSDI)
−1.

Below, we provide detailed derivations for several special cases (e.g. specific assumptions on the loss
term and FSD term) which yield gradient descent, damped Newton’s method, and natural gradient
descent.
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H.1 Gradient Descent

For gradient descent, we consider the first-order Taylor series approximation of the loss term about θ
and set λFSD = 0. We have:

P⋆ = argmin
P

{
EB∼D

[
JB(θ) +∇JB(θ)⊤((θ −Pg)− θ) +

λWSD

2
||θ −Pg − θ||2

]}
(52)

= argmin
P

{
EB∼D

[
JB(f(θ,x), t)− g⊤Pg +

λWSD

2
||Pg||2

]}
(53)

= argmin
P

{
EB∼D

[
JB(f(θ,x), t)− g⊤Pg +

λWSD

2
g⊤P⊤Pg

]}
(54)

Next, we take the gradient with respect to P and set it to 0 to solve for P⋆:

∇P

(
EB∼D

[
JB(θ)− g⊤Pg +

λWSD

2
g⊤P⊤Pg

])
= 0 (55)

E
[
−gg⊤ + λWSDPgg⊤] = 0 (56)(
P− 1

λWSD
I

)
E
[
gg⊤] = 0 (57)

Assuming that the second moment matrix EB∼D[gg
⊤] is non-singular, we have:

P =
1

λWSD
I (58)

Thus, the optimal preconditioner is P = 1
λWSD

I, which corresponds to using a global learning rate of
1

λWSD
, as we would expect from steepest descent with the WSD term.

H.2 (Damped) Newton’s Method

For Newton’s method, we consider the second-order Taylor series expansion of the loss term about θ,
and set λFSD = 0. Here, we consider the generic case where we have λWSD ≥ 0: if λWSD > 0 we
obtain a damped Newton update, while if λWSD = 0 we obtain the undamped update. We have:

P⋆ = argmin
P

{
EB∼D

[
JB(θ) +∇θJB(θ)⊤︸ ︷︷ ︸

g

((θ −Pg)− θ) (59)

+
1

2
((θ −Pg)− θ)⊤H((θ −Pg)− θ) +

λWSD

2
||θ −Pg − θ||2

]}
(60)

= argmin
P

{
EB∼D

[
JB(θ)− g⊤Pg +

1

2
g⊤P⊤HPg +

λWSD

2
||Pg||2

]}
(61)

= argmin
P

{
EB∼D

[
JB(θ)− g⊤Pg +

1

2
g⊤P⊤HPg +

λWSD

2
g⊤P⊤Pg

]}
(62)

Next, we take the gradient with respect to P and set it to 0 to solve for P⋆:

∇P

(
EB∼D

[
JB(θ)− g⊤Pg +

1

2
g⊤P⊤HPg +

λWSD

2
g⊤P⊤Pg

])
= 0 (63)

E
[
−gg⊤ +

1

2
HPgg⊤ +

1

2
H⊤Pgg⊤ + λWSDPgg⊤

]
= 0 (64)

(HP+ λWSDP− I)E
[
gg⊤] = 0 (65)

Assuming that the second moment matrix EB∼D[gg
⊤] is non-singular, we have:

HP+ λWSDP− I = 0 (66)
(H+ λWSDI)P = I (67)

P = (H+ λWSDI)
−1 (68)

Thus, if we take the second-order Taylor series approximation to the loss term and solve for the
optimal P⋆ through the 1-step lookahead θ′(P), we obtain the (damped) inverse Hessian, P⋆ =
(H+ λWSDI)

−1.
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H.3 Natural Gradient

For natural gradient, we consider a first-order approximation to the loss term and a second-order
approximation to the FSD term, where the output-space discrepancy measure ρ is taken to be the KL
divergence.

The second derivative of the KL divergence yields the Fisher information matrix F; here, we write
F = J⊤

zθHρJzθ. Plugging this into the meta-objective, we have:

P⋆ = argmin
P

{
E(x,t)∼D

[
L(f(θ,x), t)− g⊤Pg +

λFSD

2
g⊤P⊤FPg +

λWSD

2
g⊤P⊤Pg

]}
(69)

Next, we take the gradient with respect to P and set it to 0 to solve for P⋆:

(λFSDFP+ λWSDP− I)E
[
gg⊤] = 0 (70)

Assuming that the second moment matrix E(x,t)∼D[gg
⊤] is non-singular, we have:

P = (λFSDF+ λWSDI)
−1 (71)

I Optimizing the 1-Step Meta-Objective Yields the KFAC Update

In the previous section, we derived the optimal solutions to various approximate proximal objectives,
optimizing over an unconstrained preconditioner P. Here, we consider an analogous setup for a
structured preconditioner, where P is block-diagonal with the ℓth block (corresponding to the ℓth

layer in the network) given by Aℓ ⊗Bℓ.

I.1 KFAC Assumptions

This exposition of the KFAC assumptions is based on [25]. First we briefly introduce some notation
that will be used in the assumptions. Suppose a layer of a neural network has weights Wℓ and that its
input is the activation vector from the previous layer, aℓ−1. Then the output of the layer is a linear
transformation of the input, followed by a nonlinear activation function σ:

sℓ = Wℓaℓ−1 (72)
aℓ = σ(sℓ) (73)

where sℓ are the pre-activations. In the backward pass, we have the following activation and weight
derivatives:

Daℓ = W⊤Dsℓ+1 (74)

Dsℓ = Daℓ ⊙ σ′(sℓ) (75)

DWℓ = Dsℓa⊤ℓ−1 (76)

KFAC [54] makes the following assumptions on the neural network being optimized:

• The layers are independent, such that that the pseudo-derivatives dwi and dwj are uncor-
related when wi and wj belong to different layers. If this assumption is satisfied, then the
Fisher information matrix F will be block-diagonal.

• The activations {aℓ} are independent of the pre-activation pseudo-gradients {Dsℓ}. If aℓ−1

is independent of Dsℓ, then the ℓth block of the Fisher is:

Ĝℓ = AKFAC
ℓ ⊗BKFAC

ℓ (77)

where:

AKFAC
ℓ = E[aℓ−1a

⊤
ℓ−1] (78)

BKFAC
ℓ = E[DsℓDs⊤ℓ ] (79)

38



I.2 Proof of Corollary 2

Corollary. Suppose that (1) the assumptions for Theorem 1 are satisfied, (2) the FSD term measures
the KL divergence, and (3) λWSD = 0 and λFSD = 1. Moreover, suppose that the parameters θ satisfy
the KFAC assumptions listed in Appendix I. Then, the optimal solution to the approximate meta-
objective recovers the KFAC update, which can be represented using the structured preconditioner in
Eq. 9.

Proof. If the KFAC assumptions are satisfied, then F−1 is block-diagonal with the block
corresponding to the ℓth layer expressed as Gℓ = A−1

ℓ ⊗ B−1
ℓ where Aℓ = E[āℓ−1ā

⊤
ℓ−1] and

Bℓ = E[DsℓDs⊤ℓ ]. By Theorem 1, the optimal solution to the approximate meta-objective is
P⋆ = F−1. Hence P⋆ is this block-diagonal matrix, which can be expressed using our structured
parameterization (Eq. 9). Thus, APO recovers the KFAC update.

J Ablations

J.1 Ablation Over λWSD and λFSD

Figure 37 provides an ablation over λFSD for training an MLP on MNIST using APO to tune the
global learning rate for RMSprop (e.g. RMSprop-APO).
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Figure 37: Ablation over λFSD for training a two-layer MLP with 1000 hidden units per layer on
MNIST, using RMSprop-APO.

Figure 38 provides an ablation over λWSD and λFSD for training AlexNet on CIFAR-10 using APO to
adapt the preconditioning matrix. We kept the other proximity weight fixed when performing the
experiments. We found that APO-Precond is robust in various ranges of proximity weights λ.
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Figure 38: Ablation over (left) λWSD and (right) λFSD for training AlexNet on CIFAR-10, using
APO-Precond.

J.2 Robustness to Initial Learning Rate and Meta-Update Interval

We show in Figure 39(a,b) that when using APO to tune the global learning rate, APO is robust to the
initial learning rate of the base optimizer, achieving nearly identical training loss and test accuracy
using initial learning rates that span 6 orders of magnitude, from 1e-7 to 1e-1.
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Figure 39: Robustness to the initial learning rate. Figures (a) and (b) show that APO achieves almost
identical learning rate schedules and training losses for initial learning rates spanning 6 orders of
magnitude.

Next, we performed an ablation to evaluate how well APO performs with different meta-update
intervals (i.e. when making more or less frequent updates to the learning rate and preconditioning
matrix during training). We used APO to tune the learning rate, and experimented with performing
meta-updates once every 10, 20, 50, and 100 base optimization iterations. We trained a ResNet32
model on CIFAR-10, and used SGDm as the base optimizer. The results are shown in Figure 40. We
found that APO is robust to the meta-update interval, performing almost identically with respect to
training loss, test accuracy, and the adaptive learning rate schedule, for each meta-update interval.
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Figure 40: Robustness to the meta-update interval. Here, we trained ResNet32 on CIFAR-10 using
SGDm-APO, with meta-updates performed once every {10, 20, 50, 100} steps. We observe that APO
performs similarly using intervals from 10 to 100, corresponding to computation times approximately
1.3× to 1.03× that of the base optimizer.

To further examine how meta-update intervals affect the preconditioning adaptation, we trained
AlexNet model on CIFAR-10. We used APO to learn the preconditioning matrix and experimented
with performing meta-updates once every 10, 20, 50, and 100 base optimization iterations. The results
are shown in Figure 41. As in the learning rate adaptation problem, we found that APO performs
similarly using intervals from 10 to 100, achieving higher test accuracy than the baseline method.
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Figure 41: Robustness to the meta-update interval on AlexNet. CIFAR-10, APO-Precond.
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