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Abstract

We propose a framework for online meta-optimization of parameters that govern
optimization, called Amortized Proximal Optimization (APO). We first interpret
various existing neural network optimizers as approximate stochastic proximal
point methods which trade off the current-batch loss with proximity terms in both
function space and weight space. The idea behind APO is to amortize the mini-
mization of the proximal point objective by meta-learning the parameters of an
update rule. We show how APO can be used to adapt a learning rate or a structured
preconditioning matrix. Under appropriate assumptions, APO can recover existing
optimizers such as natural gradient descent and KFAC. It enjoys low computational
overhead and avoids expensive and numerically sensitive operations required by
some second-order optimizers, such as matrix inverses. We empirically test APO
for online adaptation of learning rates and structured preconditioning matrices
for regression, image reconstruction, image classification, and natural language
translation tasks. Empirically, the learning rate schedules found by APO generally
outperform optimal fixed learning rates and are competitive with manually tuned
decay schedules. Using APO to adapt a structured preconditioning matrix gener-
ally results in optimization performance competitive with second-order methods.
Moreover, the absence of matrix inversion provides numerical stability, making it
effective for low-precision training.

1 Introduction

Many optimization algorithms widely used in machine learning can be seen as approximations to
an idealized algorithm called the proximal point method (PPM). When training neural networks,
the stochastic PPM iteratively minimizes a loss function JB : Rm → R on a mini-batch B, plus a
proximity term that penalizes the discrepancy from the current iterate:

θ(t+1) ← argmin
u∈Rm

JB(t)(u) + λD(u,θ(t)), (1)

where D(·, ·) measures the discrepancy between two vectors and λ > 0 is a hyperparameter that con-
trols the strength of the proximity term. The proximity term discourages the update from excessively
changing the parameters, hence preventing aggressive updates. Moreover, the stochastic PPM has
good convergence properties [4]. While minimizing Eq. 1 exactly is usually impractical (or at least
uneconomical), solving it approximately (by taking first or second-order Taylor series approximations
to the loss or the proximity term) has motivated important and widely used optimization algorithms
such as natural gradient descent [1] and mirror descent [7]. Stochastic gradient descent (SGD) [69]
itself can be seen as an approximate PPM where the loss term is linearized and the discrepancy
function is squared Euclidean distance.
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Inspired by the idea that the PPM is a useful algorithm to approximate, we propose to amortize the
minimization of Eq. 1 by defining a parametric form for an update rule which is likely to be good at
minimizing it and adapting its parameters with gradient-based optimization. We consider adapting
optimization hyperparameters (such as the learning rate) for existing optimizers such as SGD and
RMSprop [78], as well as learning structured preconditioning matrices. By choosing a structure for
the update rule inspired by existing optimizers, we can take advantage of the insights that went into
those optimizers while still being robust to cases where their assumptions (such as the use of linear or
quadratic approximations) break down. By doing meta-descent on the optimization parameters, we
can amortize the cost of minimizing the PPM objective, which would otherwise take many steps per
parameter update. Hence, we call our approach Amortized Proximal Optimization (APO).

Eq. 1 leaves a lot of freedom for the proximity term. We argue that many of the most effective
neural network optimizers can be seen as trading off two different proximity terms: a function
space discrepancy (FSD) term which penalizes the average change to the network’s predictions,
and a weight space discrepancy (WSD) term which prevents the weights from moving too far,
encouraging smoothness to the update and maintaining the accuracy of second-order approximations.
Our meta-objective includes both terms.

Our formulation of APO is general, and can be applied to various settings, from optimizing a single
optimization hyperparameter to learning a flexible update rule. We consider two use cases that cover
both ends of this spectrum. At one end, we consider the problem of adapting learning rates of existing
optimizers, specifically SGD, RMSprop, and Adam [19]. The learning rate is considered one of the
most essential hyperparameters to tune [10], and good learning rate schedules are often found by
years of trial and error. Empirically, the learning rate schedules found by APO outperformed the best
fixed learning rates and were competitive with manual step decay schedules.

Our second use case is more ambitious. We use APO to learn a preconditioning matrix, giving the
update rule the flexibility to represent second-order optimization updates such as Newton’s method,
Gauss-Newton, or natural gradient descent. We show that, under certain conditions, the optimum of
our APO meta-objective with respect to a full preconditioning matrix coincides with damped versions
of natural gradient descent or Gauss-Newton. While computing and storing a full preconditioning
matrix for a large neural network is impractical, various practical approximations have been developed.
We use APO to meta-learn a structured preconditioning matrix based on the EKFAC optimizer [24].
APO is more straightforward to implement in current-day deep learning frameworks than EKFAC
and is also more computationally efficient per iteration because it avoids the need to compute eigen-
decompositions. Empirically, we evaluate APO for learning structured preconditioners on regression,
image reconstruction, image classification, and neural machine translation tasks. The preconditioning
matrix adapted by APO achieved competitive convergence to other second-order optimizers.

2 Preliminaries

Consider a prediction problem from some input space X to an output space T . We are given a
finite training set Dtrain = {(x(i), t(i))}Ni=1. For a data point (x, t) and parameters θ ∈ Rm, let
y = f(x,θ) be the prediction of a network parameterized by θ and L(y, t) be the loss. Our goal is
to minimize the cost function:

J (θ) = 1

N

N∑
i=1

L(f(x(i),θ), t(i)). (2)

We use JB(θ) to denote the mean loss on a mini-batch of examples B = {(x(i), t(i))}Bi=1. We
summarize our notation in Appendix A.

3 Proximal Optimization and Second-Order Methods:
A Unifying Framework

We first motivate the proximal objective that we use as the meta-objective for APO, and relate it to
existing neural network optimization methods. Our framework is largely based on Grosse [25], to
which readers are referred for a more detailed discussion.
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Figure 1: 1D illustration of the exact proximal update on a regression problem with a batch size of 1, inspired
by Grosse [25]. The weight of the discrepancy term(s) (λWSD and λFSD) is decreased from red to blue.

3.1 Proximal Optimization

When we update the parameters on a mini-batch of data, we would like to reduce the loss on that
mini-batch, while not changing the predictions on previously visited examples or moving too far in
weight space. This motivates the following proximal point update:

θ(t+1) ← argmin
u∈Rm

JB(t)(u) + λFSDEx̃∼D[DF(u,θ
(t), x̃)] + λWSDDW(u,θ(t)), (3)

where DF(u,θ,x) = ρ(f(x,u), f(x,θ)) and DW(u,θ) = 1/2∥u− θ∥22 are discrepancy functions
(described below). Here, λFSD and λWSD are hyperparameters that control the strength of each
discrepancy term, x̃ is a random data point sampled from the data-generating distribution D, and
ρ(·, ·) is the output-space divergence.

The proximal objective in Eq. 3 consists of three terms. The first term is the loss on the current mini-
batch. The second term is the function space discrepancy (FSD), whose role is to prevent the update
from substantially altering the predictions on other data points. The general idea of the FSD term
has been successful in alleviating catastrophic forgetting [11], fine-tuning pre-trained models [35],
computing influence functions [5], and training a student model from a teacher network [30].

The final term is the weight space discrepancy (WSD), which encourages the update to move the
parameters as little as possible. It can be used to motivate damping in the context of second-order
optimization [53]. While weight space distance may appear counterproductive from an optimization
standpoint because it depends on the model parameterization, analyses of neural network optimization
and generalization often rely on network parameters staying close to their initialization in the
Euclidean norm [33, 88, 9]. In fact, Wadia et al. [83] showed that pure second-order optimizers
(i.e. ones without WSD regularization) are unable to generalize in the overparameterized setting.

Figure 1 illustrates the effects of the WSD and FSD terms on the exact PPM update for a 1D regression
example with a batch size of 1. If the proximal objective includes only the loss and WSD term
(i.e. λFSD = 0), the PPM update makes the minimal change to the weights which fits the current
example, resulting in a global adjustment to the function which overwrites all the other predictions.
If only the loss and FSD terms are used (i.e. λWSD = 0), the update carves a spike around the current
data point, failing to improve predictions on nearby examples and running the risk of memorization.
When both WSD and FSD are penalized, it makes a local adjustment to the predictions, but one
which nonetheless improves performance on nearby examples.

3.2 Connection Between Proximal Optimization and Second-Order Optimization

Method Loss Approx. FSD WSD

Gradient Descent 1st-order - ✓

Hessian-Free 2nd-order - ✓

Natural Gradient 1st-order 2nd-order ✗
Proximal Point Exact Exact ✓

Table 1: Classical 1st and 2nd optimization algorithms
interpreted as minimizing approximations of the prox-
imal objective in Eq. 3, using 1st or 2nd order Taylor
expansions of the loss or FSD terms.

We further motivate our proximal objective by
relating it to existing neural network optimizers.
Ordinary SGD can be viewed as an approximate
PPM update with a first-order approximation to
the loss term and no FSD term. Hessian-Free
optimization [51], a classic second-order opti-
mization method for neural networks, approxi-
mately minimizes a second-order approximation
to the loss on each batch using conjugate gradi-
ents. It can be seen as minimizing a quadratic
approximation to Eq. 3 with no FSD term.
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Amari [1] motivated natural gradient descent (NGD) as a steepest descent method with an infinitesimal
step size; this justifies a first-order approximation to the loss term and a second-order approximation
to the proximity term. Optimizing over a manifold of probability distributions with KL divergence
as the proximity term yields the familiar update involving the Fisher information matrix. Natural
gradient optimization of neural networks [52, 54] can be interpreted as minimizing Eq. 3 with a
linear approximation to the loss term and a quadratic approximation to the FSD term. While NGD
traditionally omits the WSD term in order to achieve parameterization invariance, it is typically
included in practical neural network optimizers for stability [54].

In a more general context, when taking a first-order approximation to the loss and a second-order
approximation to the FSD, the update rule is given in closed form as:

θ(t+1) ≈ θ(t) − (λFSDG+ λWSDI)
−1∇θJB(θ(t)), (4)

where G is the Hessian of the FSD term. The derivation is shown in Appendix F. All of these rela-
tionships are summarized in Table 1, and derivations of all of these claims are given in Appendix G.

4 Amortized Proximal Optimization

In this section, we introduce Amortized Proximal Optimization (APO), an approach for online
meta-learning of optimization parameters. Then, we describe two use cases that we explore in the
paper: (1) adapting learning rates of existing base optimizers such as SGD, RMSProp, and Adam,
and (2) meta-learning a structured preconditioning matrix.

4.1 Proximal Meta-Optimization

We assume an update rule u parameterized by a vector ϕ which updates the network weights θ on a
batch B(t):2

θ(t+1) ← u(θ(t),ϕ,B(t)). (5)

One use case of APO is to tune the hyperparameters of an existing optimizer, in which case ϕ denotes
the hyperparameters. For example, when tuning the SGD learning rate, we have ϕ = η and the
update is given by:

uSGD(θ, η,B) = θ − η∇θJB(θ). (6)

More ambitiously, we could use APO to adapt a full preconditioning matrix P. In this case, we define
ϕ = P and the update is given by:

uPrecond(θ,P,B) = θ −P∇θJB(θ). (7)

In Section 3, we introduced a general proximal objective for training neural networks and observed
that many optimization techniques could be seen as an approximation of PPM. Motivated by this
connection, we propose to directly minimize the proximal objective with respect to the optimization
parameters. While still being able to take advantage of valuable properties of existing optimizers,
direct minimization can be robust to cases when the assumptions (such as linear and quadratic
approximation of the cost) do not hold. Another advantage of adapting a parametric update rule is
that we can amortize the cost of minimizing the proximal objective throughout training.

We propose to use the following meta-objective, which evaluates the proximal objective at u(θ,ϕ,B):

Q(ϕ) = EB∼D
[
JB(u(θ,ϕ,B)) + λFSDE(x̃,·)∼D[DF(u(θ,ϕ,B),θ, x̃)] (8)

+
λWSD

2
∥u(θ,ϕ,B)− θ∥2

]
.

In practice, we estimate the expectations in the meta-objective by sampling two different mini-batches,
B and B′, where B is used to compute the gradient and the loss term, and B′ is used to compute
the FSD term. Intuitively, this proximal meta-objective aims to find optimizer parameters ϕ that

2The update rule may also depend on state maintained by the optimizer, such as the second moments in
RMSprop [78]. This state is treated as fixed by APO, so we suppress it to avoid clutter.
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Figure 2: Amortized Proximal Optimization (APO). In each meta-optimization step, we perform a one-step
lookahead from the current parameters θ to obtain updated parameters θ′(ϕ), where ϕ denotes the optimization
parameters (e.g. learning rate η or preconditioner P). The meta-objective Q(ϕ) then evaluates the proximal
point objective at θ′(ϕ). Note that the loss term in Q(ϕ) is computed on the same data that was used to compute
the gradient for the lookahead step, B, while the FSD term is computed using a different datapoint (x̃, t̃) ∼ Dtrain.
The optimization parameters ϕ are updated via the meta-gradient ∇ϕQ(ϕ).

Algorithm 1 Amortized Proximal Optimization (APO) — Meta-Learning Optimization Parameters ϕ
Require: θ (initial model parameters), ϕ (initial optimization parameters), K (meta-update
interval), α (meta-LR)
Require: λWSD (weight-space discrepancy term weighting), λFSD (function-space discrepancy
term weighting)
while not converged, iteration t do
B ∼ Dtrain ▷ Sample mini-batch to compute the gradient and loss term
if t mod K = 0 then ▷ Perform meta-update every K iterations
B′ ∼ Dtrain ▷ Sample additional mini-batch to compute the FSD term
θ′(ϕ) := u(θ,ϕ,B) ▷ Compute the 1-step lookahead parameters
Q(ϕ) := JB (θ′(ϕ)) + λFSD/|B′|

∑
(x̃,·)∈B′ DF(θ

′(ϕ),θ, x̃) + λWSD/2 ∥θ′(ϕ)− θ∥22
▷ Compute meta-objective

ϕ← ϕ− α∇ϕQ(ϕ) ▷ Update optimizer parameters (e.g. LR or preconditioner)
end if
θ ← u(θ,ϕ,B) ▷ Update model parameters

end while

minimize the loss on the current mini-batch, while constraining the size of the step with the FSD and
WSD terms so that it does not overfit the current mini-batch and undo progress that has been made by
other mini-batches.

The optimization parameters ϕ are optimized with a stochastic gradient-based algorithm (the meta-
optimizer). The meta-gradient∇ϕQ(ϕ) can be computed via automatic differentiation through the
one-step unrolled computation graph (Figure 2). We refer to our framework as Amortized Proximal
Optimization (APO, Algorithm 1).

4.2 APO for Learning Rate Adaptation

One use case of APO is to adapt the learning rate of an existing base optimizer such as SGD. To do so,
we let uSGD(θ, η,B) be the 1-step lookahead of parameters and minimize the proximal meta-objective
with respect to the learning rate η. Although adaptive optimizers such as RMSProp and Adam use
coordinate-wise learning rates, they still have a global learning rate which is essential to tune. APO
can be applied to such global learning rates to find learning rate schedules (that depend on λFSD or
λWSD).

4.3 APO for Adaptive Preconditioning

More ambitiously, we can use the APO framework to adapt the preconditioning matrix, allowing the
update rule to flexibly represent various second-order optimization updates. We let uPrecond(θ,P,B)
denote the parameters after 1 preconditioned gradient step and adapt the preconditioning matrix P
according to our framework.
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If the assumptions made when deriving the second-order methods (detailed in Section 3.2) hold, then
the optimal preconditioning matrix is equivalent to various second-order updates, depending on the
choice of the FSD function.

Theorem 1. Consider an approximation Q̂(P) to the meta-objective (Eq. 8) where the loss term is
linearized around the current weights θ and the FSD term is replaced by its second-order approxima-
tion around θ. Denote the gradient on a mini-batch as g = ∇θJB(θ), and assume that the second
moment matrix EB∼D

[
gg⊤] is non-singular. Then, the preconditioning matrix which minimizes Q̂ is

given by P⋆ = (λFSDG+ λWSDI)
−1, where G denotes the Hessian of the FSD evaluated at θ.

The proof is provided in Appendix H. As an important special case, when the FSD term is derived
from the KL divergence between distributions in output space, G coincides with the Fisher informa-
tion matrix F = Ex∼D,y∼Py|x(θ)

[
∇θ log p(y|x,θ)∇θ log p(y|x,θ)⊤

]
, where Py|x(θ) denotes the

model’s predictive distribution over y. Therefore, the optimal preconditioner is the damped natural
gradient preconditioner, P⋆ = (F+ λWSDI)

−1 when λFSD = 1. Thus, when APO is used to exactly
minimize an approximate meta-objective, the update it yields coincides with classical second-order
optimization algorithms, depending on the choice of the FSD function.

4.4 Structured Preconditioner Adaptation

In the previous sections, the discussion assumed a full preconditioning matrix for simplicity. However,
a full preconditioner is impractical to represent for modern neural networks. Moreover, for practical
stability of the learned preconditioned update, we would like to enforce the preconditioner to be
positive semidefinite (PSD) so that the transformed gradient is a descent direction [64].

To satisfy these requirements, we adopt a structured preconditioner analogous to that of the EKFAC
optimizer [24]. Given a weight matrix W ∈ Rmi×mi+1 of a layer, we construct the preconditioning
matrix as a product of smaller matrices:

PS = (A⊗B)diag(vec(S))2(A⊗B)⊤, (9)

where A ∈ Rmi+1×mi+1 , B ∈ Rmi×mi , and S ∈ Rmi×mi+1 are small block matrices. Here, ⊗
denotes the Kronecker product, diag(·) denotes the diagonalization operator, and vec(·) denotes the
vectorization operator. This parameterization is memory efficient: it requires m2

i +m2
i+1 +mimi+1

parameters to store, as opposed to m2
im

2
i+1 parameters for a full preconditioning matrix. It is

straightforward to show that the structured preconditioner in Eq. 9 is PSD, as it takes the form
CDC⊤, where D is PSD. The preconditioned gradient can be computed efficiently by using the
properties of the Kronecker product:

PSvec(∇WJB(θ)) = vec(B(S2 ⊙B⊤∇WJB(θ)A)A⊤), (10)

where ⊙ denotes elementwise multiplication. This is tractable to compute as it only requires four
additional matrix multiplications and elementwise multiplication of small block matrices in each layer
when updating the parameters. While EKFAC uses complicated covariance estimation and eigenvalue
decomposition to construct the block matrices, in APO, we meta-learn these block matrices directly,
where ϕ = [vec(A)⊤, vec(B)⊤, vec(S)⊤]⊤. As APO does not require inverting (or performing
eigendecompositions of) the block matrices, our structured representation incurs less computation
per iteration than EKFAC.

While we defined an optimizer with the same functional form as EKFAC, it is not immediately
obvious whether the preconditioner which is actually learned by APO will be at all similar. A
Corollary of Theorem 1 shows that if certain conditions are satisfied, including the assumptions
underlying KFAC [54], then the structured preconditioner minimizing Eq. 8 coincides with KFAC:

Corollary 2. Suppose that (1) the assumptions for Theorem 1 are satisfied, (2) the FSD term measures
the KL divergence, and (3) λWSD = 0 and λFSD = 1. Moreover, suppose that the parameters θ
satisfy the KFAC assumptions listed in Appendix I. Then, the optimal solution to the approximate
meta-objective recovers the KFAC update, which can be represented using Eq. 9.

The proof is in Appendix I. If the KFAC assumptions are not satisfied, then APO will generally learn
a different preconditioner. This may be desirable, especially if differing probabilistic assumptions
lead to different update rules, as is the case for KFAC applied to convolutional networks [26, 38].
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4.5 Computation and Memory Cost

Computation Cost. Computing the FSD term requires sampling an additional mini-batch from
the training set and performing two additional forward passes for f(x̃,θ) and f(x̃, u(θ,ϕ,B)).
Combined with the loss term evaluated on the original mini-batch, one meta-optimization step
requires three forward passes to compute the proximal objective. It additionally requires a backward
pass through the 1-step unrolled computation graph (Figure 2) to compute the gradient of the proximal
meta-objective Q(ϕ) with respect to ϕ. This overhead can be reduced by performing a meta-update
only once every K iterations: the overhead will consist of 3/K additional forward passes and 1/K
additional backward passes per iteration, which is small for modest values of K (e.g., K = 10).

Memory Cost. APO requires twice the model memory for the 1-step unrolling when computing
the proximal meta-objective. In the context of structured preconditioner adaptation, we further need
to store block matrices A, B, and S (in Eq. 9) for each layer, as in KFAC and EKFAC.

5 Related Work

We provide extended related work and a conceptual comparison of meta-optimization methods in
Appendix B and Table 6, respectively.

Gradient-Based Learning Rate Adaptation. Maclaurin et al. [50] backpropagate through the full
unrolled training procedure to meta-optimize learning rate schedules offline. This is expensive, as it
requires completing a full training run to make a single hyperparameter update. A related approach is
to unroll the optimization for a small number of steps and perform truncated backpropagation [16, 22].
Micaelli et al. [58] perform offline hyperparameter optimization using forward-mode (FDS) rather
than reverse-mode gradient accumulation. FDS performs one update to the hyperparameters after
each full training run, and thus requires multiple training runs, in contrast to APO, which operates
within a single training run. Hypergradient descent [6] adapts the learning rate to minimize the
expected loss in the next iteration.

Second-Order Optimization. Although preconditioned methods have better convergence rates
than first-order methods [8, 64], storing and computing the inverse of preconditioning matrices is
impractical for high-dimensional problems. To mitigate these computational issues, Hessian-free
optimization [51, 55] approximates Newton’s update by only accessing the curvature matrix through
Hessian-vector products. Other works impose a structure on the preconditioner by representing it as a
Kronecker product [54, 26, 56, 24, 27, 77], a diagonal matrix [19, 36], or a low-rank matrix [39, 60].
However, these approximate second-order methods may not be easy to implement in deep learning
frameworks, and can still be expensive as they often require matrix inversion or eigendecomposition.

Gradient-Based Preconditioner Adaptation. There has been some prior work on meta-learning
preconditioners. Moskovitz et al. [61] learn the preconditioning matrix with hypergradient descent.
Meta-curvature [66] and warped gradient descent [41, 21] adapt the preconditioning matrix that
yields effective parameter updates across diverse tasks in the context of few-shot learning.

6 Experiments

Our experiments investigate the following questions: (1) How does the structured preconditioning
matrix adapted by APO perform in comparison to existing first- and second-order optimizers? (2)
How does the learning rate adapted by APO perform compared to optimal fixed learning rates and
manual decay schedules commonly used in the literature?

We used APO to meta-learn the preconditioning matrices for a broad range of tasks, including several
regression datasets, autoencoder training, image classification on CIFAR-10 and CIFAR-100 using
several network architectures, neural machine translation using transformers, and low-precision
(16-bit) training. Several of these tasks are particularly challenging for first-order optimizers. In
addition, we used APO to tune the global learning rate for multiple base optimizers – SGD, SGD with
momentum (denoted SGDm), RMSprop, and Adam – on CIFAR-10 and CIFAR-100 classification
with several network architectures.
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Figure 3: A comparison of SGDm, Adam, KFAC, Shampoo, and APO-Precond on UCI regression tasks. Across
all tasks, APO-Precond achieves lower loss with competitive convergence compared to second-order optimizers.
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Figure 4: Left: Synthetic data for poorly-conditioned regression; Middle: Deep autoencoder on MNIST;
Right: Tuning the global learning rate with APO—we show the training loss for a two-layer MLP trained on
MNIST, using SGDm and RMSprop (solid lines), and their APO-tuned variants (dashed lines).

We denote our method that adapts the structured preconditioning matrix as “APO-Precond”. The
method that tunes the global learning rate of a base optimizer is denoted as “Base-APO” (e.g.
SGDm-APO). Experiment details and additional experiments, including ablation studies, are given in
Appendix C and J, respectively.

6.1 Meta-Learning Preconditioners

Poorly-Conditioned Regression. We fist considered a regression task traditionally used to illustrate
failures of neural network optimization [68]. The targets are given by t = Ax, where A is an ill-
conditioned matrix with κ(A) = 1010. We trained a two-layer linear network f(x,θ) = W2W1x
and minimized the objective J (θ) = Ex∼N (0,I)

[
∥Ax−W2W1x∥2

]
. In Figure 4 (left), we show

training curves for SGDm, Adam, Shampoo [27], KFAC, and APO-Precond. As the problem is
ill-conditioned, 2nd-order optimizers such as Shampoo and KFAC converge faster than 1st-order
methods. APO-Precond performs comparably to 2nd-order optimizers with lower loss than KFAC.

UCI Regression. Next, we validated APO-Precond on the Slice, Protein, and Parkinsons datasets
from the UCI regression collection [18]. We trained a 2-layer MLP with 100 hidden units per
layer and ReLU activations for 500 epochs. The training curves for each optimizer are shown in
Figure 3. By tuning the preconditioning matrix during training, APO-Precond consistently achieved
competitive convergence compared to other second-order optimizers and reached lower training loss
than all baselines.

Image Reconstruction. We trained an 8-layer autoencoder on MNIST [40]; this is known to be a
challenging optimization task for first-order optimizers [31, 55, 54]. We followed the experimental
set-up from Martens & Grosse [54], where the encoder and decoder consist of 4 fully-connected
layers with sigmoid activation. The decoder structure is symmetric to that of the encoder, and they do
not have tied weights. The logistic activation function and the presence of a bottleneck layer make
this a challenging optimization problem compared with most current-day architectures. We compare
APO-Precond with SGDm, Adam, Shampoo, and KFAC optimizers and show the training losses
for each optimizer in Figure 4 (middle). APO-Precond converges faster than first-order methods
and achieves competitive training loss to other second-order methods (although there remains a
performance gap compared with KFAC).

3We used AdamW optimizer [48] for training Transformer model.
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Task Model SGDm Adam KFAC APO-Precond

CIFAR-10 LeNet 75.73 73.41 76.63 77.42
CIFAR-10 AlexNet 76.27 76.09 78.33 81.14
CIFAR-10 VGG16 91.82 90.19 92.05 92.13
CIFAR-10 ResNet-18 93.69 93.27 94.60 94.75
CIFAR-10 ResNet-32 94.40 93.30 94.49 94.83

CIFAR-100 AlexNet 43.95 41.82 46.24 52.35
CIFAR-100 VGG16 65.98 60.61 61.84 67.95
CIFAR-100 ResNet-18 76.85 70.87 76.48 76.88
CIFAR-100 ResNet-32 77.47 56.58 75.70 77.41

SVHN ResNet-18 96.19 95.59 96.08 96.89

IWSLT14 Transformer 31.43 34.60 3 - 34.62

Table 2: Test accuracy on CIFAR-10 and CIFAR-100, and BLEU score on the IWSLT’14 German-to-
English translation dataset for various optimizers.

Image Classification. To investigate whether adapting the preconditioner with APO improves
generalization, we conducted image classification experiments on CIFAR-10 and CIFAR-100. We
trained LeNet [40], AlexNet [37], VGG-16 [71] (w/o batch norm [32]), ResNet-18, and ResNet-
32 [29] architectures for 200 epochs on batches of 128 images. The test accuracies for SGDm,
Adam, KFAC, and APO-Precond are shown in Table 2. We found that APO-Precond achieved
competitive generalization performance to SGDm and KFAC. In particular, for architectures without
batch normalization (LeNet, AlexNet, and VGG-16), APO-Precond improved the test accuracy
substantially.

Neural Machine Translation. To verify the effectiveness of APO on various tasks, we applied
APO-Precond on the IWSLT’14 German-to-English translation task [15]. We used a Transformer [79]
composed of 6 encoder and decoder layers, with word embedding and hidden vector dimensionality
512. We compared APO-Precond to SGDm and AdamW [48]. For AdamW, we used a warmup-
then-decay learning rate schedule widely used in practice, and for SGD and APO-Precond, we kept
the learning rate fixed after the warmup. In Table 2, we show the final test BLEU score for SGDm,
AdamW, and APO-Precond. While keeping the learning rate fixed, we achieved a BLEU score
competitive with AdamW.

Task Model SGDm KFAC APO-P

CIFAR-10 LeNet 75.65 74.95 77.25
CIFAR-10 ResNet-18 94.15 92.72 94.79
CIFAR-100 ResNet-18 73.53 73.12 75.47

Table 3: Test accuracy of 16-bit networks on CIFAR-10
and CIFAR-100.

Low Precision Training. Low precision train-
ing presents a challenge for second-order op-
timizers such as KFAC which rely on matrix
inverses that may be sensitive to quantization
noise. We trained LeNet and ResNet-18 with
16-bit floating-point arithmetic to examine if
APO-Precond is applicable in training the net-
works in lower precision. We used the experimental setup from Section 6.1 but stored parameters,
activations, and gradients in 16-bit precision. We found that KFAC required a large damping factor
to maintain stability, and this prevented it from fully utilizing curvature information. In contrast, as
APO-Precond does not require matrix inversion, it remained stable with the same choice of FSD and
WSD weights we used in the full precision experiments. The final test accuracies on ResNet-18 for
SGDm, KFAC, and APO-Precond are shown in Table 3.

6.2 Meta-Learning Learning Rates

Image Classification on MNIST. First, we compared SGDm and RMSprop to their APO-tuned
variants to train an MLP on MNIST. We used a two-layer MLP with 1000 hidden units per layer and
ReLU nonlinearities, and trained on mini-batches of size 100 for 100 epochs. Figure 4 (Right) shows
the training loss achieved by each approach; we found that for both base optimizers, APO improved
convergence speed and obtained substantially lower loss than the baselines.

Image Classification on CIFAR-10 & CIFAR-100. For learning rate adaptation on CIFAR-10,
we experimented with three network architectures: ResNet32 [29], ResNet34, and WideResNet
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Figure 5: WideResNet 28-10 on CIFAR-10, using SGD with momentum (SGDm). We compare the training loss
(left), test accuracy (middle), and learning rate schedules (right) of baselines with fixed and decayed learning
rates, and APO. The training loss plot uses hyperparameters chosen based on training loss, while the middle and
right plots use hyperparameters chosen based on validation accuracy. The shaded regions show the min/max
values over 4 random restarts.

C-10, ResNet-32 C-10, ResNet-34 C-10, WRN 28-10 C-100, WRN 28-10

Fixed Decay APO Fixed Decay APO Fixed Decay APO Fixed Decay APO

SGD 90.07 93.30 92.71 93.00 93.54 94.27 93.38 94.86 94.85 76.29 77.92 76.87
SGDm 89.40 93.34 92.75 92.99 95.08 94.47 93.46 95.98 95.50 74.81 81.01 79.33

RMSprop 89.84 91.94 91.28 92.87 93.87 93.97 92.91 93.60 94.22 72.06 76.06 74.17
Adam 90.45 92.26 91.81 93.23 94.12 93.80 92.81 94.04 93.83 72.01 75.53 76.33

Table 4: Tuning the global LR for CIFAR-10 (“C-10”) and CIFAR-100 (“C-100”): We compare the test
accuracies achieved by the optimal fixed learning rate, the manual step decay schedule, and the APO-adapted
schedule, using ResNet-32 [29], ResNet-34, and WideResNet 28-10 [86]. Results are the mean of four random
restarts. APO outperforms optimal fixed learning rates, and is often competitive with manual schedules. APO
generally achieves test accuracy comparable to manual schedules in fewer training iterations (App. D).

(WRN-28-10) [86]. For ResNet32, we trained for 400 epochs, and the decayed baseline used a step
schedule with 10× decay at epochs 150 and 250, following [49]. For ResNet34 and WRN-28-10,
we trained for 200 epochs, and the decayed baseline used a step schedule with 5× decay at epochs
60, 120, and 160, following [86]. For CIFAR-100, we used WRN-28-10 with the same schedule as
for CIFAR-10. For each of the base optimizers, we compared APO to (1) the optimal fixed learning
rate and (2) a manual step learning rate decay schedule. The test accuracies for each base optimizer
and their APO-tuned variants are shown in Table 4. In addition, Figure 5 shows the training loss,
test accuracy and learning rate adaptation for WRN-28-10 on CIFAR-10, using SGDm as the base
optimizer. Using APO to tune the global learning rate yields higher test accuracy than the best fixed
learning rate, and is competitive with the manual schedule.

7 Conclusion

We introduced Amortized Proximal Optimization (APO), a framework for online meta-learning of op-
timization parameters which approximates the proximal point method by learning a parametric update
rule. As the meta-parameters are updated only once per K steps of optimization, APO incurs minimal
computational overhead. We applied APO to two settings: (1) meta-learning the global learning
rate for existing base optimizers (e.g., SGD, RMSprop, and Adam) and (2) meta-learning structured
preconditioning matrices, which provides a new approach to 2nd-order optimization. Compared to
methods such as KFAC, APO eliminates the need to compute matrix inverses, yielding improved
efficiency and numerical stability. On a range of tasks, we showed that APO is competitive with
2nd-order methods, and improves generalization compared to baseline 1st- and 2nd-order optimizers.
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(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] We provide these details in
Appendix C.1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited all datasets

and model architectures we used in our experiments (Section 6).
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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