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8 Supplementary1

In this supplementary material, we provide additional details about:2

1. Supplementary video for qualitative examples (referenced in Sec. 1 of the main paper).3

2. Details of RLR-Audio-Propagation (referenced in Sec. 3.1).4

3. Details of APIs and interface (referenced in Sec. 3.3).5

4. Details of material configuration (referenced in Sec. 3.3).6

5. Statistics of the PanoIR dataset (referenced in Sec. 4).7

6. RT60 comparison with real measurements (referenced in Sec. 5.2).8

7. Training and implementation details of the navigation benchmark.9

8. Training and implementation details of the ASR benchmark.10

9. Discussion on societal impacts of this work.11

8.1 Supplementary video12

In this video, we provide several demos of the simulation, comparison with real measurements,13

impact of acoustic continuity, examples of the PanoIR dataset, navigation videos of the trained policy14

and far-field ASR example. Wear your headphone for spatial effects.15

8.2 Details of RLR-Audio-Propagation16

SoundSpaces 2.0 models indirect sound propagation using an energy-based bidirectional path tracing17

algorithm. The simulation begins by emitting rays from each sound source in the scene, where each18

ray carries a spectrum of energy in log-spaced frequency bands. These rays are then propagated19

through the scene via reflection, diffraction, and transmission, until they reach a maximum number20

of bounces. Reflections use a Phong BRDF [8], where the Phong exponent is determined from the21

material scattering coefficient. Diffraction of rays occurs probabilistically when they hit specially-22

constructed edge diffraction geometry [14]. Transmission of rays occurs with probability proportional23

to the material transmission coefficients. The vertices along each source ray path are retained for the24

listener ray tracing step.25

After tracing source rays, rays are then emitted from the listener and propagated through the scene in26

a similar way. At each listener path vertex, a connection is attempted to a random point on each sound27

source, as well as to a randomly selected vertex on that source’s ray paths. When a complete path28
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from source to listener is formed, the energy for that path is calculated using multiple importance29

sampling [5]. The path energy for each frequency band is then added to a histogram of energy with30

respect to propagation delay time. Spherical harmonic coefficients representing the sound directivity31

at each histogram bin are constructed as an energy-weighted sum of ray directions arriving in that bin.32

Early reflection (ER) paths (≤ 2 bounces) and direct sound are handled differently. Individual ER33

paths are clustered together into discrete reflections based on the plane equations of the reflecting34

surfaces.35

The resulting energy-based impulse response representation is then converted to a pressure impulse36

response so that it can be convolved with source audio. This is done by converting the energy37

histogram to a pressure envelope by taking the square root, and then synthesizing random phase by38

multiplying each frequency band’s envelope with pre-filtered white noise and summing frequency39

bands [7]. Early reflections and direct sound are added to the pressure IR as positive impulses40

with frequency-dependent amplitude. Spatialization is achieved by multiplying the omnidirectional41

pressure impulse response with the spherical harmonic coefficients at each IR time sample. The42

result is an ambisonic pressure IR which can also be converted to a binaural IR by convolving with43

an ambisonic representation of the head-related transfer function (HRTF) [20]. The spatial fidelity of44

the direct sound is preserved by barycentric interpolation of the original HRTF data, rather than using45

the ambisonic HRTF.46

8.3 Details of APIs and Interface47

See https://github.com/facebookresearch/habitat-sim/blob/main/docs/AUDIO.md48

for the detailed API and interface of RLR-Audio-Propagation. Below we briefly summarize the49

complete list of exposed parameters.50

Simulation parameters. The complete list of the exposed simulation parameters includes sampling51

rate, number of frequency bands, the spherical harmonic order used for calculating direct sound52

spatialization, the spherical harmonic order used for calculating indirect sound spatialization, number53

of CPU threads, simulation time step, maximum IR length, unit scale for the scene, initial pressure54

value, number of direct rays, number and maximum depth of source indirect rays, number and55

maximum depth of listener indirect rays, whether direct/indirect/diffraction/transmission is enabled,56

whether mesh is simplified for faster computation, whether temporal coherence is enabled for faster57

computation, and whether custom material properties are used.58

Microphone configurations. We provide seven built-in microphone types, including mono, stereo,59

binaural, quad, surround_5_1, surround_7_1 and ambisonics. The channel layout API takes the60

channel type and number of channels as input. Users can also configure their own microphone array61

by provide an array of mono microphones.62

8.4 Details of Material Configuration63

The material configuration consist of two parts. First, we need to define an acoustic material database,64

which has different materials and their corresponding acoustic parameters. Secondly, we define a65

mapping function that maps objects to their corresponding materials.66

In the material folder, we provide four configuration files: default_material_coefficients.py, de-67

fault_material_to_category.py, category_to_material_mapping.py and mp3d_material_config.json. de-68

fault_material_coefficients.py defines material database and the coefficients for each acoustic material.69

default_material_to_category.py defines the default mapping between material and categories. cate-70

gory_to_material_mapping.py defines the one-to-many mapping for the acoustic randomization strat-71

egy, where each object category has several plausible acoustic materials. mp3d_material_config.json72

is the combined configuration file that the simulation takes as input.73

8.5 Details of PanoIR Dataset74

In this dataset, we provide rendered panoramic images (RGB/Depth) and IRs for Matterport3D [1],75

Gibson [19] and HM3D [12] datasets. Each panoramic image is stitched from 18 images with 20 field76
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Figure 4: RT60 distribution in the PanoIR dataset
for different scene datasets.
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Figure 5: RT60 comparison with real measure-
ments.

of view (FoV) each, resulting in a size of 1152×384. Both the source and receiver are at height of 1.5m77

from the ground. The coordinates of the source is provided as polar coordinates in the format of (θ, d),78

where θ defines the rotation from the center of the panorama image anti-clockwise and d is the distance79

between the receiver and the source. Both the receiver and listener are randomly sampled from mesh80

environments and the distance is limited to be within 5m such that the local geometry is captured in the81

panorama. We use high-quality mode to render IRs for this dataset. The PanoIR dataset is available at82

https://github.com/facebookresearch/sound-spaces/blob/main/PanoIR/README.md.83

Fig. 4 shows the distribution of RT60s in the PanoIR dataset for different scene datasets. As we can84

see, the RT60 distribution varies from dataset to dataset. This difference comes from several factors:85

quality of the mesh, distribution of scene types and material properties. The main reason for the86

Matterport3D’s RT60 distribution skewing towards left is because there are lots of broken meshes87

in that dataset, which results in ray leaking from holes and smaller reverberation in general. On the88

contrary, Gibson and HM3D have higher quality mesh and have larger RT60s on average.89

8.6 RT60 Comparison with Real IRs90

Fig. 5 shows the RT60 comparison between real measurements and simulations in the Replica91

apartment [16] for 7 measurement positions and the 250Hz to 4000Hz frequency band. Both the92

original SoundSpaces and SoundSpaces 2.0 have an average relative RT60 error of 12.4%. Altogether93

with the DRR comparison in Fig.3(b), we show that SoundSpaces 2.0 has higher acoustic realism94

than the original SoundSpaces.95

These real measurements are included in the supplementary file as well, and are available at http:96

//dl.fbaipublicfiles.com/SoundSpaces/real_measurements.zip. Open sourcing these97

will allow researchers to test their own models against this real data.98

8.7 Training and Implementation Details of the Navigation Benchmark99

In this continuous audio-visual navigation benchmark, we use the AV-Nav agent [3] with the decen-100

tralized distributed proximal policy optimization (DD-PPO) [18]. We train the navigation policy for101

80 million steps on the same AudioGoal navigation dataset [3] except that the movement and audio102

are continuous. For continuous navigation, we define success as the agent issuing a stop action within103

1m of the goal location. We train the policy on 32 GPUs for 46 hours to converge.104

8.8 Training and Implementation Details of the ASR Benchmark105

For finetuning the pretrained ASR model on speech augmented with IRs, we first generate the same106

amount of IRs for the train-clean-100 split in LibriSpeech [10] (28539 IRs) with randomly sampled107

configurations (source, receiver and environment). For training, we convolve a given speech clip with108

a random IR in the training set. The batch size for finetuning is 24 and we finetune the ASR model on109
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8 GPUs for 60 epochs. The number of warmup steps for the transformer is set to 1000. After training,110

we test the finetuned ASR model on the test-clean split of LibriSpeech [10] convolved with real IRs111

from BUT ReverbDB [17] for sim2real evaluation. For fintuning on Pyroomacoustics [13], we also112

generate 28539 IRs by varying the room dimension configurations.113

8.9 Discussion on Societal Impacts114

We are not aware of any negative societal impact. We do believe this work will open up many115

possibilities for visual-acoustic learning research [2, 4, 9, 6, 11, 15]., which has many applications in116

robotics and AR/VR.117
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