
Improving Generative Adversarial Networks
via Adversarial Learning in Latent Space

Yang Li1, Yichuan Mo12, Liangliang Shi1, Junchi Yan1∗
1Department of Computer Science and Engineering,

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
2Key Lab. of Machine Perception (MoE),

School of Intelligence Science and Technology, Peking University
{yanglily,shiliangliang,yanjunchi}@sjtu.edu.cn

mo666666@stu.pku.edu.cn

Abstract

For Generative Adversarial Networks which map a latent distribution to the target
distribution, in this paper, we study how the sampling in latent space can affect
the generation performance, especially for images. We observe that, as the neu-
ral generator is a continuous function, two close samples in latent space would
be mapped into two nearby images, while their quality can differ much as the
quality generally does not exhibit a continuous nature in pixel space. From such
a continuous mapping function perspective, it is also possible that two distant
latent samples can be mapped into two close images (if not exactly the same).
In particular, if the latent samples are mapped in aggregation into a single mode,
mode collapse occurs. Accordingly, we propose adding an implicit latent trans-
form before the mapping function to improve latent z from its initial distribution,
e.g., Gaussian. This is achieved using well-developed adversarial sample mining
techniques, e.g. iterative fast gradient sign method (I-FGSM). We further propose
new GAN training pipelines to obtain better generative mappings w.r.t quality and
diversity by introducing targeted latent transforms into the bi-level optimization of
GAN. Experimental results on visual data show that our method can effectively
achieve improvement in both quality and diversity. The implementation is publicly
available at https://github.com/yangco-le/AdvLatGAN.

1 Introduction

Generative Adversarial Networks (GANs) [1] have shown effectiveness for generating high-fidelity
data, especially for images under various settings [2; 3; 4; 5; 6]. Based on the zero-sum game, the
model is trained by the adversarial process between the generator and the discriminator. Many efforts
have been made to achieve a more realistic generation from different perspectives. For instance,
WGAN [7], SNGAN [8], LSGAN [9] aim to design better objective functions. ImprovedGAN [10],
AC-GAN [11] propose practical training techniques. While more complex network structures are
studied in BigGAN [12], StyleGAN [13], SAGAN [14].

Despite the above progress, a relatively less studied question is how the latent space affects the
generation quality and diversity, which can be orthogonal to the above frequently studied factors
like model architectures and training techniques. In this paper, we argue that the latent samples
from a standard continuous distribution (e.g. Gaussian) can often be mapped to varying-quality
samples for the generation. One reason is that the generator is a continuous function (as neural nets)

∗Junchi Yan is the correspondence author who is also with Shanghai AI Laboratory.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/yangco-le/AdvLatGAN

(a) Quality Discontinuity (b) Our Sampling Transform

Figure 1: Red dashed lines: real data manifolds and their
preimages; yellow circles/squares: samples for sound gener-
ation; black circles/squares: samples for bad generation; orange
dashed lines: the generator mapping; blue dashed lines: z trans-
form; blue shades and solid blue lines: latent distribution and
generated distribution. Due to the continuity of the network-
based generator, close samples in latent space will be mapped
to close images in pixel space, while the quality can vary. Cat
(a) and Cat (b) are close in pixel space, but Cat (a) loses its right
ear. Our method transforms bad latent z towards the preimage
of the nearest real manifold, thus avoiding terrible generation.

Figure 2: The generated distri-
butions mapped from a fixed la-
tent distribution reflect the map-
ping quality (same legends as in
Fig. 1). Left: bad generation
quality as the generated distribu-
tion does not match the real dis-
tribution well. Right: bad gen-
eration diversity as the mapping
misses modes.

while the generation quality reflected by the matching degree to the natural image distribution in
pixel space does not exhibit a continuous nature as two nearby images’ quality can differ much.
It has been shown in GAN literature [15] that image objects lie upon multiple disjoint manifolds.
A continuous mapping from a continuous latent distribution, e.g., Gaussian, may generate invalid
samples in the between of the manifolds when the generator seeks to cover all the meaningful modes.
See Fig. 1 (a) for illustration. This fact also implies a dilemma: for complex real-world data, there
is a trade-off between quality and diversity when the latent vectors are sampled from a continuous
uni-mode distribution. On the other hand, to effectively capture the natural image distribution through
a continuous generative mapping, it is necessary to maintain a disconnected latent space support.

The above contradiction between the discontinuity in generation data quality and the continuity of
latent distribution as well as mapping function, can be one of the significant factors leading to the
well-known training difficulty/instability of GANs, especially for generators, as one unreasonably
hopes to enforce a discontinuous mapping via continuous neural nets. On the other hand, the mapping
is also critical to the performance of functions with continuous nature, as badly trained mapping can
lead to poorly fitted generated distribution. Meanwhile, by realizing that the mapping function allows
for many-to-one mapping, mode collapse [16] can naturally happen when different latent samples are
mapped into few or even a single mode in the target space. See Fig. 2 for the schematic diagram.

To tackle these issues, we impose an extra (implicit) transform function z∗(·) on the raw sampling z,
and then the generation can be written by G(z∗(z)) which requires us to make twofold efforts on
both G(·) and z∗(·). From this perspective, most existing works employ z∗(·) as an identity function,
while we try to find a more effective one. We model the z transform process as making perturbations
to the original sampling since z∗(z) shall not depart much from z as we hope the main content of
the generated image remains the same. The hope that small perturbations can achieve considerable
positive quality variation leads us to the adversarial sample mining methods. Specifically, the implicit
function based transform z∗(·) can be achieved by updating the raw latent distribution samples z to
minimize lossG i.e. log(1−D(G(z))) using adversarial sample mining techniques e.g. iterative fast
gradient sign method (I-FGSM) [17], and we name the method as AdvLatGAN-z. See Fig. 1 (b)
for the schematic diagram. We will show that our z transform (perturbations) can deliver a latent
distribution better fitting the real distribution with the fixed G.

On top of our first effort, we propose a training strategy to improve the generative mapping G
respectively for quality and diversity. This is achieved by introducing z optimization (i.e., targeted
implicit transforms on z) into GAN training, specifically, updating raw latent distribution samples
z using I-FGSM to find latent variables which benefit the optimization to calculate the loss during
GAN training. Respectively for quality and diversity, we use two iterative updating strategies for

2

Figure 3: Generation examples of StyleGAN2-ada [18]. Sampling equidistantly from p(z) in latent
space, the samples from the generated distribution in pixel space are shown here. The beginning and
ending images of each row locate in different manifolds. The intermediate results are sampled in the
between of disjoint manifolds. The discontinuity causes weird generation (see yellow boxes – top:
missed ear and crooked head; middle: white spots on the nose; bottom: two bodies share one head).

z under different objectives, and we name the two training algorithms as AdvLatGAN-qua and
AdvLatGAN-div. The highlights of this paper include:

1) We rethink the role of the generator as a continuous function, which may incur quality discontinuity
in target space when the latent samples are directly sampled from a continuous distribution, together
with poorly fitted generated distribution and mode aggregation (collapse) when the function suffers
bad properties w.r.t. quality or diversity. We propose to formulate the mapping from G(z) to
G(z∗(z)). It provides new design guidance to GAN which requires efforts on both G(·) and z∗(·).
2) By introducing adversarial techniques into GAN, we propose a sampling transform pipeline for
z∗(·) and training pipelines for improving G(·). The generation results are obtained by first training
generative mappings by our proposed training pipeline AdvLatGAN-qua/div. Then the transform
z∗(·) namely AdvLatGAN-z is enforced and computed implicitly to obtain an improved distribution
for a more realistic generation. The training algorithms AdvLatGAN-qua and -div involve latent
sample transform under different objective functions for quality and diversity.

3) Experimental results on synthetic data and natural images including large-scale datasets e.g.
ImageNet show the notable improvements of our approach on both generation quality and diversity,
whereby the performance gain is basically orthogonal to those from existing GAN techniques.

2 Related Work

Our latent vector transform pipeline mines effective latent samples and the resulting perturbations
relate to adversarial methods. The proposed GAN training pipelines include the aforementioned
transform in network training, which can be viewed as mining adversarial samples in training, namely
adversarial training. Hence we briefly review existing works on latent space mining for GANs that
modify latent space samples to achieve specific targets e.g. latent space sampling improvement for
better generation and adversarial learning. Also, techniques for avoiding mode collapse are studied.

Latent space mining in GANs. Techniques have been devised for latent space mining for GANs.
By utilizing the steerability of GANs in latent space, StyleGAN [13] introduces a latent variable
shift to better decouple the various styles by using a linear network (which is still continuous).
[19], [20] and [21] introduce the latent space mining to training to achieve clustering objectives
or improve the dynamic of training. [22] and [23] achieve conditional generation by performing
gradient ascent in latent space to maximize classification neuron activations. Some recent works
focus on improving latent sampling quality to obtain high-quality images. Interactive evolutionary
computation is used to make the generation process more controllable in [24], which meanwhile
also brings additional manual efforts. To reduce manual intervention, [25; 26] use Koncept512
[27] as a criterion to improve the generation quality. However, as discussed in [25], this strategy is
somehow biased and can not work well for each dataset (e.g., Pokemons). The reason is that the
quality estimator is not even designated to access the real-data distribution information. Instead, the
generation is guided by a predefined score function. Exploring the real distribution’s guidance from
the discriminator, DOT [28] utilizes optimal transport in latent space to improve the initial sampled

3

distribution, DRS [29] proposes a rejection sampling scheme to to improve sampling quality, and
DDLS [30] develops discriminator driven Langevin dynamics to obtain high-quality samples.

Mitigating mode collapse for GANs. Efforts are made to mitigate mode collapse, which are based
on the thinking that real-world samples lie in disjoint manifolds [15]. One way is to introduce a
collection of generators such that each generator may cover a specific mode since a single generator
can hardly fulfill a discontinuous function [15]. However, more works focus on improving mapping
properties, explicitly obtaining a mapping covering more modes [31; 32; 33]. Note that the generated
distribution obtained by this method will contain invalid parts due to the continuity of the latent
distribution and the mapping. This calls for the selective sampling of the continuous latent distribution
or directly amending the latent distribution, which is rarely noticed in these works.

Adversarial samples and adversarial training. Adversarial samples are manipulated samples
crafted by adding indistinguishable perturbations to cause significant deep nets’ output variation e.g.
wrong classification prediction. Adversarial sample mining methods investigate how to manipulate
such samples, which are known as adversarial attacks. Since [34], various adversarial attack methods
have been devised [35; 17; 36]. For defense, adversarial training is meanwhile developed [35; 37; 38].
In particular, recent studies have shown that adversarial training can bring many benefits to GANs, not
just improving robustness. RGAN [39] shows that adversarial training can enhance the generalization
of the generator and discriminator. Based on theoretical analysis and empirical results, [40; 41; 42]
show that updating the discriminator’s parameters with the loss calculated by adversarial disturbed
image samples can stabilize training and accelerate convergence.

In this paper, we use an off-the-shelf adversarial sample mining method iterative fast gradient
sign method (I-FGSM) [17], to perform latent transform and mine effective z samples that benefit
GAN training in its bi-level optimization process. More adversarial methods e.g. PGD [36] and
MI-FGSM [43] are also tried and discussed in Appendix D. The pre-existing works mentioned above
that interplay between GANs and adversarial learning make perturbations on raw pixel space (real
samples or generated samples), while we instead work on mining the latent space and introducing
perturbations on latent samples, which we show is a novel and effective way to improve the generation.

3 Proposed Method

This section presents our twofold effort to lift the final generative performance: AdvLatGAN-z to
achieve the targeted transform z∗(·); training algorithms AdvLatGAN-qua and AdvLatGAN-div to
train generation mapping G with better generation quality (i.e., -qua) and diversity (i.e., -div). Both
methods are derived by introducing the iterative updating in latent space.

3.1 Preliminaries

This section introduces adversarial attack/defense techniques and the regularization technique devised
in MSGAN [32] for mode seeking. Adversarial techniques include: i) adversarial samples which we
introduce in the latent space sampling to achieve z∗(·); ii) adversarial training which we introduce in
the bi-level optimization of GAN to develop new training algorithms for a more powerful G(·).
Adversarial samples and adversarial training. Adversarial training [36; 44] aims to defend against
adversarial attacks. It uses adversarial samples to calculate the loss. In classification, for each
image-label pair (xi, yi) from the labeled training set, the adversarial samples x′ [34] is defined as:

x′
i = argmax

||x−xi||p≤ϵ

l(fθ(x), yi) (1)

Here ϵ is the radius of the closed ball to constrain perturbation. While fθ and l denote the attack target
(a neural net) and the corresponding loss (e.g. cross-entropy loss). p denotes the norm dimension.
Given in total n adversarial samples, adversarial training is fulfilled by the optimization:

θ = argmin
θ

1

n

n∑
i=1

l(fθ(x
′
i), yi) (2)

Mode coverage by regularizing distance of generated samples. MSGAN [32] mitigates mode
collapse for conditional generation by adding a regularizer over randomly sampled z1 and z2:

Lms =
dI (G(c, z1), G(c, z2))

dz (z1, z2)
(3)

4

Figure 4: Visualization results of AdvLatGAN-z on STL-10. The left column shows the generations
of raw Gaussian samples, while samples from left to right present the process of AdvLatGAN-z.

where c is the condition vector for generation, and dI and dz are the distance metrics in the target
(image) space and latent space, respectively. It encourages the distance to be maintained or even
enlarged in the target space to avoid the generated samples being trapped into an aggregation.

By integrating the regularization term with the original objective of cGANs [45], the final minimiza-
tion objective in MSGAN for training G and D is:

L = Lori + λmsLms, Lori = Ec,x[logD(c,x)] + Ec,z[log(1−D(c,G(c, z)))] (4)

where Lori denotes the original objective, x denotes real data, and λms is the weight hyper-parameter.
Since Eq. 3 is to be maximized hence one can interpret λms as a negative coefficient.

3.2 Latent Adversarial Mining for Generation Quality

3.2.1 AdvLatGAN-z: Latent Space Transform

Note that as the real-data space is a union of disconnected manifolds [15], via a continuous generative
mapping G, the optimal subset in the latent space w.r.t the fixed G is in no way connected. We denote
the real-data subset in the high-dimensional pixel space X as Xr ⊂ X , and each disjoint submanifold
as Mi. Then we obtain Xr =

⋃nr

i=1 Mi where M1 to Mnr
are disconnected to each other. Here we

require the splitting of Xr to the extent that each submanifold is itself a connected set.
Definition 3.1. Suppose G[·] : P(Z) → P(X) is the image-of-set function corresponding to the
generative mapping function G(·) : Z → X , where Z and X denote subsets in latent space and pixel
space, and P(·) denotes the power set. Then Zop(G) is the optimal subset corresponding to G in
latent space if G[Zop(G)] = Xr.
Proposition 3.2. For any given continuous G[·] whose codomain includes multiple disconnected
manifolds, Zop(G) is a union of disconnected subsets in the latent space.

The proof is given in Appendix B. Proposition 3.2 implies that with the fixed continuous G, fitting the
real-data manifolds requires a disconnected latent space support. Below we show how to implicitly
transform the latent raw samples from Gaussian (or other forms e.g. uniform) to a new distribution
closer to Zop(G) via the idea of mining adversarial samples as introduced above.

We utilize the discriminator’s output to quantify the generation quality, which is trained to capture
the difference between the generated and real distribution. Considering that small perturbations on z
can cause considerable quality variation (technically D’s output) as shown in Fig. 1 and Fig. 3, we
naturally resort to adversarial perturbation-based methods to achieve the transform. Guided by Eq. 1,
we first deliver the constrained optimization below, where both G and D are post-trained.

z∗(z0) = argmin
z∈{z|d(z0,z)≤ϵ}

log(1−D(G(z))) (5)

where z0 denotes the original latent vector, z∗(z0) denotes the newly computed z, d(·, ·) denotes the
distance which is ℓ∞ in this paper, in line with the popular protocol in literature [35].

The above target can be readily solved by the well-developed tools in adversarial sample mining,
e.g. the classic iterative fast gradient sign method (I-FGSM) [17] as formulated below in Eq. 6.
In Appendix D, we also present comparison of more adversarial techniques e.g. PGD [36], MI-
FGSM [43], that can be seamlessly incorporated by our framework, and we show the simple I-FGSM
outperforms. We conjecture the reason may be due to the simplicity of the latent space in our case.

zi+1 ← zi − ϵ · sgn (∇zi
log(1−D(G(zi)))) (6)

From the distribution perspective, the transform is given by:

p∗z = argmin
D(pz,p0

z)≤ϵ

Ez∼pz [log(1−D(G(z)))] (7)

5

where p0z denotes the original latent distribution, p∗z denotes the newly searched one. D(pz, p
0
z) ≤ ϵ

means that there is a limit to the distribution variation. A newly mined z can be considered as a
sample from p∗z if the sampling is within the perturbation circle. Fig. 4 shows the results by the
pre-trained SNGAN [8] (i.e. the given G and D) on STL-10 [46].

We then show that Eq. 7 guarantees the correct optimization direction that optimizes the source
distribution pz towards the optimal probability distribution in latent space according to the current
fixed G, i.e. popz (G) defined in Definition. 3.3. The proof for Proposition 3.4 is given in Appendix B.

Definition 3.3. Given G, popz (G) is the optimal probability distribution in latent space corresponding
to Zop(G) when popz (G) satisfies that if z ∼ popz (G) then G(z) ∼ pr. Here pr denotes the real-data
probability distribution in pixel space.

Proposition 3.4. Optimizing GAN’s training criterion i.e. minG maxD{Ez∼p0
z
[log(1−D(G(z)))]+

Ex∼pr
[log(D(x))]} is to minimize JSD(popz (G), p0z).

Prop. 3.4 implies that the GAN’s optimization is to minimize the difference between popz (G) and p0z .
Note that for optimizing pz , the criterion merely involves Ez∼pz [log(1−D(G(z)))] i.e. the objective
in Eq. 7. Given optimized fixed G and D (and popz is thereby fixed), leaving pz the only trainable
parameter, optimizing the training criterion with pz in the neighborhood of p0z is driving pz closer to
popz . Note that pz in the neighborhood of p0z is necessary otherwise the optimized criterion will depart
much from JSD, and we achieve this condition by enforcing D(pz, p

0
z) ≤ ϵ in Eq. 7.

3.2.2 AdvLatGAN-qua: Quality Targeted Training Pipeline

Considering the pairwise approach for adversarial sample mining, i.e. adversarial training fulfilled by
Eq. 2, we hope to mine samples that benefit the optimization in GAN training, which is achieved by
utilizing the aforementioned latent space transform. Conducting the transform in training to obtain
the new (probably disconnected) latent distribution for each iteration can compensate for the difficulty
for generators to align the pace of generators and discriminators, as it is widely recognized that it is
much more challenging to train the generator than the discriminator, for its inherent defect that it
cannot map a continuous distribution to a disconnected one with multiple modes.

Specifically, the transform is conducted to the raw Gaussian sampling in D updating iterations while
the rest of the training algorithm remains consistent with vanilla GAN [1] and other variants with
the orthogonal efforts to latent space mining. We present the algorithm in Alg. 1 in the appendix
which we call Adversarial Latent GAN with a post meaning quality (AdvLatGAN-qua). The latent
transform is first computed by I-FGSM to mine the targeted samples in latent space, then D and G
are updated. The iteration continues until enough steps or the convergence of G.

The above latent transform model does not consider how to avoid mode collapse, as each time only
one latent sample is considered for optimization in isolation. A similar constrained optimization
formulation can be devised to improve generation diversity, as shown in the following subsection.

3.3 AdvLatGAN-div: Latent Adversarial Mining for Diversity

In this section, we tend to modify the regularizer for mode seeking in MSGAN [32] by substituting
the randomly selected regularized z pairs with hard sample pairs that are more inclined to collapse,
lifting the efficiency for avoiding mode collapse. We first show how to search for such hard sample
pairs. Given a sample z0 from the raw latent distribution, we aim to search its paired sample z∗ to
form a hard sample pair, in the sense that their generations are close in the target space given G. We
consider two aspects. First, as hard samples, the paired samples shall still belong to the same category
c which can be modeled with conditional GAN. Second, their distance in the latent space shall also
be not too close, otherwise they may be aggregated in the target space due to continuous mapping. In
other words, hard samples causing mode collapse shall be those close in target space while apart in
latent space, when G is given. Hence, guided by Eq. 1, we design our search procedure as the form:

z∗(z0) = argmin
z∈{z|d(z0,z)≤ϵ}

dI(G(c, z0), G(c, z))

dz(z0, z)
(8)

6

Figure 5: Latent distribution transform with WGAN-GP/DCGAN as backbones on MNIST. As
the I-FGSM iteration guided by Eq. 5 continues, the latent distribution deviates from the standard
Gaussian, and contains more valleys and peaks which can be mapped into generated images as shown
at the bottom. Note that the generations by the valley points are of low quality, and our scheme can
effectively avoid them as the sampling probability is low (valley) in our transformed distribution.

Figure 6: Each of the six columns shows two compared pairs
of generated examples (first pair: 1st + 2nd row; second pair:
3rd row + 2nd row) by our diversity driven iterative transform
scheme in latent space with the same number of iterations
to obtain z∗ from initial z. Middle: generation by vanilla
latent sampling z; Top: by latent samples mined by Eq. 8;
Bottom: by latent samples mined by Eq. 8’s inverse form. It
shows that using Eq. 8 generates more similar image pairs
serving as hard training samples.

Figure 7: The logic of our 5 variant
methods in Sec. 4.1. Blue and red
is for quality and diversity.

Table 2: Five variants in Sec. 4.1.

Variant Latent
Transform z∗

Improved
mapping G

i) ✓ %

ii) % ✓
iii) % ✓
iv) ✓ ✓
v ✓ ✓

Table 1: Ratio between image and
latent distance by Eq. 8 to derive
new z∗. -inv: using inverse form.

Dataset Eq. 8 Eq. 8-inv

Cifar-10 0.241 4.023
FACADES 0.3785 1.3385

The symbols and terms are similar to Eq. 3. Akin to
AdvLatGAN-qua, we use I-FGSM to obtain z∗ and again use
ℓ∞ to control deviation magnitude. For each update step, we
randomly select the first latent vector z0, and the second vector
z∗ is searched by n iterations of the I-FGSM method under the
ℓ∞ restriction starting from the Gaussian neighborhood of z0
with a small standard deviation.

Table 1 shows the effectiveness of the above paired hard sample seeking method, where the results are
calculated over 5k generated images with DCGAN [47] as backbone. The visual results on Facades
as shown in Fig. 6 suggest that the pair obtained by solving Eq. 8 tend to collapse (as they are hard
samples), while the opposite leads to more different generation by using the inverse form of Eq. 8.

The above experiments verify the efficacy of our mining technique. We further introduce it into the
initial training process of MSGAN [32]. In MSGAN, the regularization term by Eq. 3 regularizes the
optimization process, where the selection of the pair is entirely random, without using any heuristic
information. We instead use the z pair that is more inclined to collapse by randomly taking one z and
iterating by the aforementioned method to get another z. The other settings remain unchanged.

By using sample pairs mined by Eq. 8 in the optimization as inspired by Eq. 2, we finally develop our
new diversity enhancing GAN training approach AdvLatGAN-div as shown in Alg. 2 in the appendix,
which can be further enhanced by post-training as discussed in experiments.

4 Experiments

Experiments on ImageNet and CelebA are performed on GPUs of Tesla V100. Other public bench-
mark results are performed on a single GPU of GeForce RTX 3090.

7

Table 3: Post-training latent sampling improvement with three architectures on STL-10 (best in bold).
Method DCGAN WGAN-GP SNGAN

IS(↑) FID(↓) IS(↑) FID(↓) IS(↑) FID(↓)
bare w/o sampling transform 7.199±0.027 58.675±0.023 8.749±0.093 35.706±0.395 8.482±0.138 37.059±0.768

EvolGAN [25] 7.174±0.086 58.761±0.030 8.773±0.068 35.851±0.003 8.517±0.069 36.343±0.512
DOT [53] 7.195±0.022 58.670±0.076 9.708±0.013 30.745±0.113 8.798±0.024 36.769±0.133

DDLS [30] 7.300±0.131 62.256±1.042 9.370±0.125 32.738±0.436 8.595±0.071 35.301±0.161
AdvLatGAN-z 7.933±0.041 54.913±0.451 10.549±0.048 27.053±0.245 9.426±0.058 31.891±0.027

4.1 Experimental Setup

We validate the effectiveness of the proposed methods for two parts, i.e., effective latent sampling
improvement z∗ and improved generation mapping G. Five variant methods can be derived for
different targets, among which AdvLatGAN-qua+ and AdvLatGAN-div+ are our final full version.

i) AdvLatGAN-z: post-training latent sampling improvement fighting against quality discontinuity;
ii) AdvLatGAN-qua: GAN training algorithm for better quality using in-training latent sampling
transform; iii) AdvLatGAN-div: GAN training algorithm for a more diverse generation by using in-
training latent sampling transform; iv) AdvLatGAN-qua+: conducting -z over the trained networks
of -qua; v) AdvLatGAN-div+: conducting -div over the trained networks of -div. We compare these
methods in Fig. 7 and Table 2.

We adopt the Inception Score, IS [48], Fréchet Inception Distance, FID [49] and density/coverage [50]
for evaluation. IS utilizes the classification results of the generated images by the Inception Network
to evaluate the generation quality. FID additionally considers the target distribution and evaluates
the quality by fitting the distribution distance. Density and coverage are more recently proposed
evaluation metrics that analyze the target and generated manifolds and estimate the similarity. In the
following experiments, IS and FID are calculated over 50,000 images, while density and coverage
are calculated over 10,000 images. Overhead discussion is presented in Appendix C.

4.2 AdvLatGAN-z: Performance Boosting by Post-training Latent Sampling

We evaluate the boosting effect of post-training latent sampling improvement method AdvLatGAN-z
(also previously denoted as z∗), which is guided by Eq. 5. It aims to mitigate quality discontinuity.

Results on Synthetic Data. We test AdvLatGAN-z on Grid and Ring datasets consisting of a mixture
of 25 and 8 2-D Gaussians as done in [51]. The result is given in Fig. 9. By updating the latent
variables, our method achieves high-quality generation (samples closer to target Gaussian centers).

Results on MNIST. Low complexity of MNIST [52] makes it possible to generate recognizable
results by two-dimensional latent variables which can be better visualized. The iterative latent
distribution change is illustrated in Fig. 5. We respectively conduct AdvLatGAN-z for the trained
DCGAN and WGAN-GP models, with single-step iteration constraint using ℓ∞ and iterated step size
ϵ is set as 0.03. We present the first 30 iterations that can reflect the most significant changes.

Results on STL-10. STL-10 [46] maintains a higher resolution and richer image representation.
We utilize AdvLatGAN-z for pre-trained DCGAN, WGAN-GP and SNGAN, with ℓ∞ single-step
constraint and the iteration step size ϵ is set as 0.05. We conduct 20 steps each time. IS and FID are
adopted for evaluation, which are calculated over 10,000 generated images. We compare other efforts
enhancing GAN performance by latent space mining including DOT, DDLS and EvolGAN. Table 3
present the results. AdvLatGAN-z outperforms the baselines and delivers at most 24.3% advantage
for FID on vanilla in the WGAN-GP setting.

(a) IS (b) FID

Figure 8: Influence of step size ϵ and
#Iteration: mean and std of differ-
ent random seeds.

Results on AFHQ and FFHQ. To address the issues in
Fig. 3, we evaluate on AFHQ [54] and FFHQ [55] based on
StyleGAN2-ada [18]. In Fig. 3 setting, when the sampling
encounters invalid examples, AdvLatGAN-z can transform
the bad z to generation-friendly z∗(z) to avoid bad gen-
eration. Here we verify whether invalid samples can be
improved with AdvLatGAN-z. We select six bad genera-
tions with the first three corresponding to those in Fig. 3 and
conduct AdvLatGAN-z to their latent vectors. Fig. 10 shows
that AdvLatGAN-z can effectively fix or avoid defects.

8

Table 4: Results of AdvLatGAN-qua and AdvLatGAN-qua+ for Cifar-10 and STL-10 (best in bold).

Dataset Method bare AdvLatGAN-qua AdvLatGAN-qua+
IS(↑) FID(↓) IS(↑) FID(↓) IS(↑) FID(↓)

C
if a

r-
10

DCGAN [47] 5.92± 0.05 46.4± 0.7 6.21± 0.07 41.7± 1.0 6.62± 0.26 40.2± 1.9
WGAN [7] 6.63± 0.05 32.8± 0.5 7.21± 0.04 27.3± 0.7 7.93± 0.02 26.9± 0.6

WGAN-GP [56] 7.47± 0.09 24.7± 0.2 7.60± 0.06 22.6± 0.4 8.84± 0.08 16.6± 0.4
SNGAN [8] 7.29± 0.09 25.5± 0.3 7.58± 0.03 22.3± 0.5 8.33± 0.03 18.1± 0.1
LSGAN [9] 5.87± 0.14 49.3 ± 2.2 6.13 ± 0.27 42.8 ± 1.3 6.55 ± 0.10 42.3 ± 1.3

WGAN-div [57] 7.43± 0.02 23.8 ± 0.3 7.81 ± 0.03 20.6 ± 0.4 8.87 ± 0.11 15.2 ± 0.6
ACGAN [58] 6.02± 0.28 59.5 ± 1.5 6.06 ± 0.21 53.7 ± 1.6 6.24 ± 0.16 53.9 ± 0.5

ST
L

-1
0

DCGAN [47] 7.18± 0.09 61.2± 1.2 7.33± 0.07 56.3± 1.0 7.98± 0.02 52.8± 0.4
WGAN [7] 6.51± 0.07 73.0± 0.2 7.62± 0.04 51.0± 0.6 8.57± 0.04 52.1± 2.9

WGAN-GP [56] 8.86± 0.05 37.4± 0.4 8.90± 0.05 34.2± 0.9 10.78± 0.02 25.0± 0.0
SNGAN [8] 8.49± 0.09 36.8± 0.4 8.63± 0.08 34.5± 0.21 9.64± 0.05 29.9± 0.1
LSGAN [9] 7.08± 0.12 62.9 ± 2.2 7.16 ± 0.15 58.5 ± 1.3 7.85 ± 0.08 55.3 ± 1.4

WGAN-div [57] 8.82± 0.02 37.7 ± 0.2 9.00 ± 0.01 32.0 ± 0.6 10.98 ± 0.28 23.0 ± 1.3

Figure 9: Post-training latent sampling improve-
ment on Grid and Ring by AdvLatGAN-qua.

Figure 10: Results of AdvlatGAN-z on AFHQ
and FFHQ. The top row are bad generations
(the first three correspond to those in Fig. 3)
with the defects as follows: 1st column: the cat
misses an ear; 2nd column: white spots on the
nose; 3rd column: two bodies share one head;
4th column: green face; 5th and 6th columns:
semi-existing glasses. The bottom row are re-
sults under AdvLatGAN-z. AdvLatGAN-z can
effectively mitigate defects.

Table 5: Larger-scale evaluation (best in bold).
Data Methods FID ↓ Density ↑ Coverage ↑

L
SU

N
-6

4

WGANGP 14.079± 0.192 0.747± 0.013 0.897± 0.005
WGANGP-qua 12.415± 0.028 0.755± 0.001 0.909± 0.003
WGANGP-qua+ 10.353± 0.257 0.765± 0.011 0.926± 0.021
SNGAN 11.961± 0.331 1.059± 0.014 0.925± 0.003
SNGAN-qua 9.917± 0.104 1.078± 0.033 0.939± 0.002
SNGAN-qua+ 7.285± 0.029 1.063± 0.003 0.963± 0.002

L
SU

N
-1

28

WGANGP 14.180± 0.583 0.754± 0.047 0.835± 0.007
WGANGP-qua 12.581± 0.145 0.851± 0.014 0.878± 0.013
WGANGP-qua+ 11.093± 0.210 0.869± 0.004 0.914± 0.004
SNGAN 16.078± 0.193 0.946± 0.035 0.863± 0.003
SNGAN-qua 14.277± 0.035 1.097± 0.052 0.869± 0.004
SNGAN-qua+ 11.244± 0.396 1.133± 0.068 0.908± 0.004

C
el

eb
A

-6
4

WGANGP 19.834±0.398 0.247±0.017 0.596±0.017
WGANGP-qua 18.972±0.174 0.246±0.005 0.602±0.005
WGANGP-qua+ 17.748±0.285 0.262±0.012 0.631±0.003
SNGAN 19.490±0.473 0.295±0.002 0.612±0.008
SNGAN-qua 18.255±0.209 0.301±0.006 0.632±0.002
SNGAN-qua+ 17.213±0.104 0.279±0.007 0.639±0.008

C
el

eb
A

-1
28

WGANGP 25.208±0.409 0.204±0.005 0.505±0.015
WGANGP-qua 22.376±0.181 0.247±0.007 0.579±0.012
WGANGP-qua+ 21.374±0.361 0.256±0.012 0.597±0.008
SNGAN 22.940±0.092 0.467±0.004 0.649±0.004
SNGAN-qua 22.476±0.023 0.462±0.006 0.651±0.005
SNGAN-qua+ 20.235±0.402 0.414±0.008 0.668±0.005

Im
ag

eN
et

WGANGP 78.150±0.298 0.200±0.002 0.289±0.005
WGANGP-qua 73.677±0.576 0.242±0.005 0.322±0.010
WGANGP-qua+ 71.227±0.444 0.251±0.002 0.333±0.004
SNGAN 98.344±0.758 0.188±0.003 0.213±0.007
SNGAN-qua 79.087±0.546 0.207±0.003 0.266±0.007
SNGAN-qua+ 74.643±0.844 0.209±0.009 0.288±0.009

Hyper-parameter Study. Considering the influence of the step size ϵ and the number of iterations,
we evaluate WGAN-GP’s performance on STL-10 adopting IS and FID metrics. Fig. 8 shows
the generative performance after the iteration number. We observe that a larger ϵ (e.g. 0.05) can
deliver fast improvement but can be unstable for more iterations, while a smaller ϵ can achieve
stable improvement but is slightly less significant. If time permits for sufficient parameter tuning, we
recommend adopting a larger ϵ like 0.05 along with a particularly selected iteration number, otherwise
a smaller ϵ like 0.01 with sufficient iterations will be enough for worthy performance gain.

4.3 AdvLatGAN-qua/div: Improving Generation Map

This section shows the effectiveness of our training pipelines, which aim to improve the generation
mapping G respectively for quality and diversity. The details are presented in Alg.1 and Alg.2.

AdvLatGAN-qua for Quality Improvement. Table 4 shows the results on Cifar-10 and STL-10,
using the mainstream architectures: DCGAN, WGAN, WGAN-GP, SNGAN, LSGAN, WGAN-
div and ACGAN. We do not include ACGAN in the unlabeled STL-10 setting because it requires
labels [58]. IS and FID are adopted. We adversarially train GAN using AdvLatGAN-qua. The

9

Table 6: Results of AdvLatGAN-div and AdvLatGAN-div+ for Cifar-10 and STL-10 (best in bold).
Dataset Metrics Models overall airplane automobile bird cat deer dog frog horse ship truck

C
ifa

r-
10

FID(↓)
MSGAN 30.225 73.083 69.518 78.258 74.525 57.778 86.831 63.287 69.705 69.994 66.434

AdvLatGAN-div 27.054 70.933 71.627 75.650 67.670 54.457 84.274 55.836 65.083 69.662 63.127
AdvLatGAN-div+ 26.169 67.100 67.499 73.449 67.070 55.817 85.815 55.227 64.159 67.265 63.223

density(↑)
MSGAN 0.517 0.351 0.226 0.289 0.605 0.536 0.264 0.685 0.307 0.353 0.221

AdvLatGAN-div 0.524 0.345 0.260 0.254 0.657 0.524 0.306 0.666 0.351 0.365 0.225
AdvLatGAN-div+ 0.492 0.348 0.311 0.227 0.595 0.430 0.296 0.590 0.332 0.366 0.247

coverage(↑)
MSGAN 0.828 0.789 0.848 0.596 0.765 0.833 0.610 0.880 0.916 0.957 0.775

AdvLatGAN-div 0.844 0.850 0.908 0.600 0.793 0.864 0.607 0.919 0.915 0.962 0.788
AdvLatGAN-div+ 0.849 0.874 0.922 0.604 0.800 0.891 0.599 0.934 0.877 0.959 0.780

ST
L

-1
0

FID(↓)
MSGAN 67.849 92.021 125.723 108.434 118.938 111.784 133.680 140.486 121.907 101.232 101.059

AdvLatGAN-div 65.088 92.007 125.237 109.672 118.645 104.859 132.424 140.266 113.745 93.833 99.739
AdvLatGAN-div+ 60.205 88.871 118.886 104.206 111.238 99.255 125.287 131.170 106.568 91.895 95.715

density(↑)
MSGAN 0.353 0.198 0.241 0.083 0.558 0.378 0.364 0.146 0.232 0.120 0.118

AdvLatGAN-div 0.429 0.220 0.292 0.114 0.686 0.404 0.384 0.193 0.336 0.164 0.123
AdvLatGAN-div+ 0.431 0.248 0.295 0.125 0.733 0.401 0.381 0.209 0.330 0.190 0.149

coverage(↑)
MSGAN 0.455 0.538 0.535 0.261 0.539 0.380 0.391 0.370 0.410 0.456 0.324

AdvLatGAN-div 0.514 0.526 0.455 0.350 0.624 0.483 0.409 0.513 0.439 0.513 0.363
AdvLatGAN-div+ 0.540 0.554 0.519 0.364 0.699 0.514 0.433 0.550 0.484 0.564 0.383

number of latent iterations in training is set as one per discriminator step, and other details is given in
Appendix J.1. As they are orthogonal to each other, we integrate AdvLatGAN-z with AdvLatGAN-
qua (i.e. AdvLatGAN-qua+) and include it in comparison. The iteration step size ϵ of AdvLatGAN-z
is set to 0.05 and we conduct 20 steps each time. Our method achieves a notable improvement
compared to that without the latent space transform strategy. AdvLatGAN-qua+ achieves the best
gain on IS in WGAN STL-10 setting from 6.51 to 8.57 and FID in WGAN-div from 37.7 to 23.0.

Table. 5 presents results on larger datasets: LSUN Church [59], CelebA [60] and ImageNet [61],
using WGAN-GP and SNGAN as backbones, evaluated by FID, density and coverage. We include
AdvLatGAN-qua and -qua+ in the comparison. The number of latent iterations during training is
set as 1 per discriminator step, and other details are given in Appendix J.1. The iteration step size
ϵ of AdvLatGAN-z is set to 0.01 for SNGAN and 0.002 for WGANGP and we conduct 100 steps
each time. AdvLatGAN-qua+ has achieved the best performance gain on FID in SNGAN LSUN-64
setting from 11.961 to 7.285.

AdvLatGAN-div for Diversity Improvement. We test on Cifar-10 and STL-10 for conditional
generation and we adopt FID, density and coverage as the metrics, respectively for the entire set
of generated images and for those in each label. We test AdvLatGAN-div and AdvLatGAN-div+
compared to the baseline MSGAN. The results are shown in Table 6. Our method outperforms
MSGAN by all the three metrics. Note that the models are trained on the overall set and for each
label and the optimization may not guarantee targeted enough guidance. AdvLatGAN-div+ achieves
the best overall performance gain on FID from 30.225 to 26.169, density from 0.353 to 0.431 and
coverage from 0.455 to 0.54.

5 Conclusion and Broader Impact

This work analyzes GANs from the continuous mapping perspective and notes that lifting the overall
generative performance requires a twofold effort including latent distribution transform and mapping
improvement. Adversarial sample mining techniques are introduced to explore latent space and
novel training pipelines are derived to improve the generative mapping. The proposed AdvLatGAN
has shown promising power in both quality and diversity. Our technique is basically orthogonal to
existing mainstream methods. For its limitation, it remains open for how to effectively combine the
proposed two techniques for diversity and quality. For potential negative social impact, fake content
by the generation models including ours shall always be carefully treated to avoid abuse.

Acknowledgements

This work was partly supported by National Key Research and Development Program of China
(2020AAA0107600), National Natural Science Foundation of China (61972250, 72061127003), and
Shanghai Municipal Science and Technology (Major) Project (2021SHZDZX0102,22511105100).

10

References
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio, “Generative adversarial nets,” in NIPS, 2014.

[2] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,
J. Totz, Z. Wang et al., “Photo-realistic single image super-resolution using a generative
adversarial network,” in CVPR, 2017.

[3] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks,” ICCV, 2017.

[4] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esrgan: Enhanced
super-resolution generative adversarial networks,” in ECCV Workshops, 2018.

[5] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, “Adversarial
attacks and defences: A survey,” arXiv preprint arXiv:1810.00069, 2018.

[6] F. Zhan, H. Zhu, and S. Lu, “Spatial fusion gan for image synthesis,” in CVPR, 2019.

[7] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in
ICML, 2017.

[8] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative
adversarial networks,” in ICLR, 2018.

[9] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least squares generative
adversarial networks,” in CVPR, 2017.

[10] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
techniques for training gans,” in NIPS, 2016.

[11] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier gans,”
in ICML, 2017.

[12] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural
image synthesis,” in ICLR, 2018.

[13] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial
networks,” in CVPR, 2019.

[14] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial
networks,” in ICML, 2019.

[15] M. Khayatkhoei, A. Elgammal, and M. Singh, “Disconnected manifold learning for generative
adversarial networks,” in NeurIPS, 2018.

[16] A. Srivastava, L. Valkov, C. Russell, M. Gutmann, and C. Sutton, “Veegan: Reducing mode
collapse in gans using implicit variational learning,” in NIPS, 2017.

[17] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples in the physical world,” 2016.

[18] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila, “Training generative
adversarial networks with limited data,” in NeurIPS, 2020.

[19] D. Mishra, A. Jayendran, and A. Prathosh, “Effect of the latent structure on clustering with
gans,” IEEE Signal Processing Letters, 2020.

[20] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent space clustering in
generative adversarial networks,” in AAAI, 2019.

[21] Y. Wu, J. Donahue, D. Balduzzi, K. Simonyan, and T. Lillicrap, “Logan: Latent optimisation
for generative adversarial networks,” arXiv preprint arXiv:1912.00953, 2019.

[22] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and J. Yosinski, “Plug & play generative
networks: Conditional iterative generation of images in latent space,” in CVPR, 2017.

11

[23] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the preferred
inputs for neurons in neural networks via deep generator networks,” NIPS, 2016.

[24] P. Bontrager, W. Lin, J. Togelius, and S. Risi, “Deep interactive evolution,” in EvoMUSART,
2018.

[25] B. Roziere, F. Teytaud, V. Hosu, H. Lin, J. Rapin, M. Zameshina, and O. Teytaud, “Evolgan:
Evolutionary generative adversarial networks,” in ACCV, 2020.

[26] B. Roziere, N. C. Rakotonirina, V. Hosu, A. Rasoanaivo, H. Lin, C. Couprie, and O. Teytaud,
“Tarsier: Evolving noise injection in super-resolution gans,” in ICPR, 2021.

[27] V. Hosu, H. Lin, T. Sziranyi, and D. Saupe, “Koniq-10k: An ecologically valid database for
deep learning of blind image quality assessment,” IEEE Transactions on Image Processing,
2020.

[28] H. Berard, G. Gidel, A. Almahairi, P. Vincent, and S. Lacoste-Julien, “A closer look at the
optimization landscapes of generative adversarial networks,” in ICLR, 2019.

[29] S. Azadi, C. Olsson, T. Darrell, I. Goodfellow, and A. Odena, “Discriminator rejection sampling,”
in ICLR, 2018.

[30] T. Che, R. Zhang, J. Sohl-Dickstein, H. Larochelle, L. Paull, Y. Cao, and Y. Bengio, “Your gan
is secretly an energy-based model and you should use discriminator driven latent sampling,” in
NeurIPS, 2020.

[31] M. Elfeki, C. Couprie, M. Riviére, and M. Elhoseiny, “Gdpp: Learning diverse generations
using determinantal point processes,” in ICML, 2019.

[32] Q. Mao, H.-Y. Lee, H.-Y. Tseng, S. Ma, and M.-H. Yang, “Mode seeking generative adversarial
networks for diverse image synthesis,” in CVPR, 2019.

[33] H. Meulemeester, J. Schreurs, M. Fanuel, B. Moor, and J. Suykens, “The bures metric for
taming mode collapse in generative adversarial networks,” in CVPR, 2020.

[34] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[35] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,”
arXiv preprint arXiv:1412.6572, 2014.

[36] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” in ICLR, 2018.

[37] A. Nøkland, “Improving back-propagation by adding an adversarial gradient,” arXiv preprint
arXiv:1510.04189, 2015.

[38] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu, “On the convergence and robustness of
adversarial training.” in ICML, 2019.

[39] S. Zhang, Z. Qian, K. Huang, J. Xiao, and Y. He, “Robust generative adversarial network,”
arXiv preprint arXiv:2004.13344, 2020.

[40] X. Liu and C.-J. Hsieh, “Rob-gan: Generator, discriminator, and adversarial attacker,” in CVPR,
2019.

[41] J. Zhong, X. Liu, and C.-J. Hsieh, “Improving the speed and quality of gan by adversarial
training,” arXiv preprint arXiv:2008.03364, 2020.

[42] F. Liu, M. Xu, G. Li, J. Pei, L. Shi, and R. Zhao, “Adversarial symmetric gans: Bridging
adversarial samples and adversarial networks,” Neural Networks, 2021.

[43] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting adversarial attacks with
momentum,” in CVPR, 2018.

12

[44] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu, “Improving adversarial robustness requires
revisiting misclassified examples,” in ICLR, 2019.

[45] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[46] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature
learning,” in AISTATS, 2011.

[47] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convo-
lutional generative adversarial networks,” ICLR, 2016.

[48] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
techniques for training gans,” in NIPS, 2017.

[49] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two
time-scale update rule converge to a local nash equilibrium,” in NIPS, 2017.

[50] M. F. Naeem, S. J. Oh, Y. Uh, Y. Choi, and J. Yoo, “Reliable fidelity and diversity metrics for
generative models,” in ICML, 2020.

[51] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial networks,”
in ICLR, 2017.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, 1998.

[53] A. Tanaka, “Discriminator optimal transport,” in NeurIPS, 2019.

[54] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, “Stargan v2: Diverse image synthesis for multiple
domains,” in CVPR, 2020.

[55] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial
networks,” in CVPR, 2019.

[56] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of
wasserstein gans,” in NIPS, 2017.

[57] J. Wu, Z. Huang, J. Thoma, D. Acharya, and L. Van Gool, “Wasserstein divergence for gans,” in
ECCV, 2018.

[58] M. Kang, W. J. Shim, M. Cho, and J. Park, “Rebooting acgan: Auxiliary classifier gans with
stable training,” in NeurIPS, 2021.

[59] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

[60] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in ICCV,
2015.

[61] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR, 2009.

[62] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models
resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[63] B. Zhou and P. Krähenbühl, “Don’t let your discriminator be fooled,” in ICLR, 2018.

[64] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying mmd gans,” in ICLR,
2018.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Abstract.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 4, Appendix H, Appendix I and Appendix J.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Section 4.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Proposed Method
	Preliminaries
	Latent Adversarial Mining for Generation Quality
	AdvLatGAN-z: Latent Space Transform
	AdvLatGAN-qua: Quality Targeted Training Pipeline

	AdvLatGAN-div: Latent Adversarial Mining for Diversity

	Experiments
	Experimental Setup
	AdvLatGAN-z: Performance Boosting by Post-training Latent Sampling
	AdvLatGAN-qua/div: Improving Generation Map

	Conclusion and Broader Impact

