
Appendix:
An efficient graph generative model for navigating

ultra-large combinatorial synthesis libraries

Aryan Pedawi
Atomwise Inc.

aryan@atomwise.com

Paweł Gniewek
Atomwise Inc.

pawel@atomwise.com

Chaoyi Chang
Atomwise Inc.

cchang373@atomwise.com

Brandon M. Anderson
Atomwise Inc.

branderson@gmail.com

Henry van den Bedem
Atomwise Inc.

UCSF, Dept. of Bioengineering & Therapeutic Sciences
vdbedem@atomwise.com

A CSLVAE details

This section provides additional details on CSLVAE omitted from the main paper due to the page
limit.

A.1 Training and ex-post density estimation algorithms

We describe the CSLVAE training procedure in Algorithm 1 and the CSLVAE ex-post density
estimation procedure in Algorithm 2.

A.2 Architecture

Below, we walk through the CSLVAE architecture utilized in our experiments. Supplementary Table
3 summarizes the overall CSLVAE architecture used in our experiments. In total, the version of
CSLVAE we utilized is comprised of 384,512 learnable parameters.

A.2.1 Atom and bond embeddings

Both the synthon encoder and molecular encoder, which are parameterized as message passing
graph neural networks, take shared atom and bond embeddings as the initial node and edge features,
respectively. Atoms and bonds are represented by a set of binary features, which we described in
Supplementary Tables 1 and 2, respectively. In our implementation, the node and edge dimensions
are set to 64 each. As such, the atom embeddings consist of 50 × 64 = 3,200 parameters, and the
bond embeddings consist of 12 × 64 = 768 parameters.

A.2.2 Synthon encoder

The SynthonEncoder is a message passing graph neural network, taking node, edge, and graph
features as input, and producing updates to these features after every round of message passing in a
residual fashion. We describe a single message passing layer below.

Preliminaries A graph G = (V, E) is represented by a set of node features {x0
i : i ∈ V}, edge

features {e0ij : (i, j) ∈ E}, and graph features g0. Superscripting by zero indicates that these are the
initial or input features; below, superscripting by ℓ denotes the result after the ℓth round of message
passing.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Algorithm 1 CSLVAE training procedure
input Full library D∗, library sub-sampler p(D|D∗), batch size N , model parameters θ, KL
divergence weight β ≥ 0, choice of optimizer
while stopping criteria not reached do

Prepare a minibatch
Sample a library D ∼ p(D|D∗)
Sample a minibatch of reaction-synthon chain pairs, (tn, un) ∼ p(t, u|D) for n = 1 . . . N
Form the corresponding products via synthesis, xn = f(tn, un) for n = 1 . . . N
Encode the library
Get the synthon representations, hS

s for each s ∈ S, as per equation (5)
Get the R-group representations, hR

r for each r ∈ R, as per equation (6)
Get the reaction representations, hT

t for each t ∈ T , as per equation (7)
Get the reaction keys, kT

t for each t ∈ T , as per equation (8)
Get the synthon keys, kS

s for each s ∈ S, as per equation (9)
Encode the products
Sample the product queries, zn for each n = 1 . . . N , as per equation (10)
Calculate the KL divergence contributions, KLDn = DKL(q(z|xn)∥p(z)) for each n = 1 . . . N
Decode the products wrt the library
Get the reaction queries, [qT]n for n = 1 . . . N , as per equation (11)
Get the reaction probabilities, p(t|zn,D) for each t ∈ T and n = 1 . . . N , as per equation (12)
Get the synthon queries, [qS

tn,r]n for each n = 1 . . . N and r ∈ σ(tn), as per equation (13)

Get the synthon probabilities, p(s(i)j |zn, tn, r
(i)
tn ,D) for each n = 1 . . . N , s(i)j ∈ ψ(r

(i)
tn), and

r
(i)
tn ∈ σ(tn), as per equation (14)

Calculate the LL contributions, LLn = log p(tn|zn,D) +
∑|un|

i=1 log p(u
(i)
n |zn, tn, r(i)tn ,D) for

each n = 1 . . . N
Compute the loss and update parameters
Calculate the loss, which is the negative of the weighted ELBO, ℓ = 1

N

∑N
n=1 βKLDn − LLn

Compute gradients∇θℓ and update θ using choice of optimizer, i.e., θ ← optimizer(θ,∇θℓ)
end while
return Fitted model parameters θ∗ ← θ

Algorithm 2 CSLVAE ex-post density estimation procedure
input Master library D, number of examples N , fitted model parameters θ∗, density estimator qλ
for n = 1, . . . , N do

Sample xn ∼ p(x|D), as per equation (1)
Sample a product query zn ∼ qθ∗(z|xn) as per equation (10)

end for
Fit density qλ(z) to the aggregated product queries {zn}Nn=1
return Fitted density estimator qλ∗ ← qλ

Edge model The edge model updates the edge features as follows. For an edge (i, j) ∈ E , we
concatenate the current iterate ℓ of the edge features, graph features, and the two corresponding node
features. The concatenated features are then layer normalized and processed by a two-layer MLP,
producing ∆eℓ+1

ij = Linear(ReLU(Linear(ReLU(LayerNorm([eℓij∥gℓ∥xℓ
i∥xℓ

i]))))). The output
dimension of the final linear layer is set to be equal to the dimensionality of the edge features, which
allows the edge features to be updated in a residual fashion, i.e., eℓ+1

ij = eℓij +∆eℓ+1
ij . Note that for

an edge (i, j) ∈ E , we separately maintain edge features for i→ j and i← j updates; these features
are identical for ℓ = 0, but are not the same in general for subsequent layers.

Node model Given a node i ∈ V , we first form a message from all its neighboring nodes by
summing over the associated incoming edge features, mℓ+1

i =
∑

j∈N (i) e
ℓ+1
ij . Similar to the

edge model, the node feature, message, and graph feature are concatenated, layer normalized, and
passed through a two-layer MLP in which the final linear layer has output dimension equal to the
dimensionality of the node features. This produces a residual update for the node feature, given

2

Supplementary Table 1: Atom feature types.

Feature Choices Number of choices
Element type *, B, Br, C, Cl, F, Fe, I, N, O, P, S, Se, Si, Sn 15
Node degree 1, 2, 3, 4, 5, 6, ≥7 7
Hybridization S, SP, SP2, SP3, SP3D, SP3D2, Unspecified 7

Chirality CW, CCW, Other, Unspecified 4
Bonded hydrogens 0, 1, 2, 3, 4, 5, 6, ≥7 8

Formal charge ≤-3, -2, -1, 0, 1, 2, ≥3 7
Aromatic False, True 2

50

Supplementary Table 2: Bond feature types.

Feature Choices Number of choices
Bond type Single, Double, Triple, Aromatic 4
Conjugated False, True 2

In a ring False, True 2
Stereochemistry One, Z, E, Any 4

12

by ∆xℓ+1
i = Linear(ReLU(Linear(ReLU(LayerNorm([xℓ

i∥m
ℓ+1
i ∥gℓ]))))). The node features are

thus updated according to xℓ+1
i = xℓ

i +∆xℓ+1
i .

Graph model The graph features are updated by accumulating messages from each node
in V as follows. Node messages to the graph {nℓ+1

i : i ∈ V} are formed using
the now familiar layer norm + MLP design, with the final linear layer having output di-
mension equal to the dimensionality of the graph feature. These messages, nℓ+1

i =

Linear(ReLU(Linear(ReLU(LayerNorm([xℓ
i∥m

ℓ+1
i ∥gℓ]))))), are then aggregated via sum pool-

ing to form a residual to the graph features, ∆gℓ+1 =
∑

i∈V nℓ+1
i , which updates the graph features

accordingly, gℓ+1 = gℓ + ∆gℓ+1. Implementation-wise, the node and graph model use a shared
MLP with the output dimension equal to the sum of the node and graph feature dimensions, and the
outputs are then split into two parts: one which routes to the node update, and the other to the graph
update.

Putting it all together The message passing neural network applies a sequence of message passing
layers as outlined above. In our implementation, we set the node, edge, and graph feature dimensions
to 64 and utilize four message passing layers. For the input graph features, we simply use a
vector of zeros. The final graph features serve as the synthon representations, which are used in
producing synthon keys and the cascaded representations for the R-groups and reactions. In total, the
SynthonEncoder we utilize in experiments is described by 152,832 parameters.

A.2.3 R-group encoder

The RGroupEncoder follows the design outlined in DeepSets, wherein the synthon representations
are each processed separately by an MLP, pooled together (here, we use mean pooling to allow the
network to focus on characteristics of the distribution of synthons belonging to an R-group), and the
result processed by yet another MLP. In our experiments, both MLPs are set as two-layer networks
with ReLU activation in between the two linear operations. All dimensions are 64, and as such the
RGroupEncoder utilizes 16,640 parameters in total.

A.2.4 Reaction encoder

The ReactionEncoder follows the same design as the RGroupEncoder, with the exception that
sum pooling is utilized instead of mean pooling to allow the network to focus on the multi-set of
R-groups in a reaction. All dimensions are 64, and as such the ReactionEncoder also utilizes
16,640 parameters in total.

3

A.2.5 Synthon key generator

The SynthonKeyGenerator is an MLP which produces a synthon key from a synthon representation.
In our implementation, we simply use a linear layer. The input and output dimensions are both set to
64, and as such the SynthonKeyGenerator utilizes 4,160 parameters in total.

A.2.6 Reaction key generator

The ReactionKeyGenerator is an MLP which produces a reaction key from a reaction representa-
tion. In our implementation, we simply use a linear layer. The input and output dimensions are both
set to 64, and as such the ReactionKeyGenerator utilizes 4,160 parameters in total.

A.2.7 Molecular encoder

The MolecularEncoder produces molecular queries and utilizes the same message passing design
as the SynthonEncoder, so refer to the early subsection describing the architecture. Again, the
node, edge, and graph features are all set to 64, and we use four layers of message passing. However,
differently from the SynthonEncoder, the MolecularEncoder has an additional variational linear
layer that produces a conditional mean and conditional log variance vector from the graph features
produced by the final message passing round. The variational linear layer takes a 64 dimensional
graph feature as input and produces a 128 dimensional output, which is split into the mean and log
variance portions. As such, the MolecularEncoder utilizes a total of 152,832 + 8,320 = 161,152
parameters.

A.3 Molecular query processing network

The molecular queries are regularized to be close to the prior p(z) as a consequence of the VAE
objective. To allow the decoder to make better use of these features, the molecular queries are
processed by an MLP prior to being passed to the reaction and synthon query generators. Opting for
simplicity, we use a simple two-layer MLP with intermediate ReLU activation; all dimensions are 64,
which results in 8,320 parameters.

A.3.1 Reaction query generator

The ReactionQueryGenerator is an MLP which produces a reaction query from the molecular
query. In our experiments, we utilize a two-layer network with intermediate ReLU activation. All
dimensions are set to 64, so the ReactionQueryGenerator utilizes 8,320 parameters in total.

A.3.2 Synthon query generator

Finally, the SynthonQueryGenerator is an MLP with produces a synthon query from the molec-
ular query, reaction representation, and R-group representation. In the general case, we suggest
concatenating these three feature types; because we have utilized a common dimensionality of 64
throughout and to keep implementation simple, we use sum instead of concatenation in our experi-
ments (which can be shown to be equivalent to concatenating with an additional constraint on the
weight matrix for the subsequent linear layer). Like the ReactionQueryGenerator, we also use a
two-layer MLP with intermediate ReLU activation, resulting in a total of 8,320 parameters for the
SynthonQueryGenerator.

B Comparison of CSLVAE to RationaleRL and JT-VAE

In this section, we provide additional details on the experiment comparing CSLVAE with two state-
of-the-art graph generative models, RationaleRL and JT-VAE, which is summarized by Table 1 in the
body of the paper.

B.1 Dataset preparation

The Enamine REAL library is a combinatorial synthesis library of roughly 1300 reaction types,
ranging from 2- to 4-component reactions, along with roughly 340K synthons. In total, the REAL

4

Supplementary Table 3: Summary of CSLVAE architecture used in experiments.

Module Module type Number of parameters
Atom embedding Embedding 3,200
Bond embedding Embedding 768
Synthon encoder GNN 152,832
R-group encoder DeepSets 16,640
Reaction encoder DeepSets 16,640

Synthon key generator Linear 4,160
Reaction key generator Linear 4,160

Molecular encoder GNN 161,152
Molecular query processing network MLP 8,320

Reaction query generator MLP 8,320
Synthon query generator MLP 8,320

384,512

library describes a chemical space in excess of 16B make-on-demand compounds. For the two
baseline models we compare against, we faced memory issues when using the author-provided code
on the full REAL library (both in the vocabulary generation steps as well as with writing products to
disk). As such, the two baselines were trained and evaluated on a subset of the full REAL library.
We did not face such memory limitations with CSLVAE, which we trained on the full library and
evaluated as such. Hence, RationaleRL and JT-VAE can be compared on a per-item basis (each
having been trained on the same subset of REAL), whereas our results for CSLVAE reflect training
on the larger and more diverse full REAL library. We note that RationaleRL and JT-VAE were not
developed with the goal of searching through combinatorial synthesis libraries in mind, and our use
of them serves as an attempt to compare our method with the application of existing state-of-the-art
graph generative model on combinatorial synthesis libraries out-of-the-box and without modification.

To construct the data on which RationaleRL and JT-VAE were trained, we ranked the ∼1300 reaction
types by the number of products contained in each reaction and selected 50 of the middle-sized
reactions. In total, these reactions describe a chemical space of ∼125M compounds. We sampled
products from each reaction such that all synthons are represented, amounting to a training set of
∼500K compounds.

B.2 RationaleRL details

We utilize the pre-training phase of RationaleRL, which trains a graph-based variational autoencoder
that seeks to reconstruct a molecular graph from a starting rationale (and does not require RL, as the
name might suggest; that is part of the fine-tuning phase, which we do not utilize here). Given the
starting rationale and full molecule, RationaleRL’s decoder completes the molecule autoregressively
in an atom-by-atom, bond-by-bond fashion. To form the starting rationale, we take a product from
REAL and remove all but one synthon. Hence, RationaleRL is tasked with completing the missing
synthon given the full molecule (as input to the encoder) and the starting rationale (as input to the
decoder, along with the latent code). In Supplementary Figure 1, we show that as the number of
distinct reactions in training is increased, the probability that completions generated by RationaleRL
yield a product from the library drops precipitously; after 50 reactions are included, fewer than half of
all completions yield a product in the REAL library. Our experiments are based on the author-provided
code, which can be found at https://github.com/wengong-jin/multiobj-rationale.

B.3 JT-VAE details

JT-VAE is a graph-based variational autoencoder which generates molecules according to a tree-
structured scaffold of fragments. Unlike RationaleRL, JT-VAE samples chemical fragments in an
autoregressive fashion, rather than atoms or bonds. Prior to training, we apply the vocabulary genera-
tion step described in the JT-VAE paper to the sampled products from the subset of REAL utilized in
the baseline experiments, which yields a total of 325 fragments. Our experiments are based on the
author-provided code, which can be found at https://github.com/wengong-jin/icml18-jtnn.

5

https://github.com/wengong-jin/multiobj-rationale
https://github.com/wengong-jin/icml18-jtnn

Supplementary Figure 1: As the number of distinct reactions present in training increases, the in-
library proportion for generated samples from RationaleRL quickly decreases, dropping to below
50% after just 50 reactions are included.

B.4 CSLVAE details

During training we utilize an annealing schedule on β [3] (see Algorithm 1), starting with β = 0 and
incrementing by 1e-5 every 2000 iterations, with a max value of β = 1. We train for a total of 200K
iterations, in which time CSLVAE has seen a total of 2000 × 200K = 400M compounds (although
not 400M unique compounds, due to the batch sampling strategy). As such, by the time training is
halted, CSLVAE has seen no more than 2.5% of the full REAL library.

C Test-time distribution shift in CSLVAE

As described in Algorithm 1, we sample small subsets of the full library in each training iteration for
tractability. In particular, the library sub-sampler we utilize first samples uniformly over the reactions
and subsequently samples a constant number of products in each reaction at random; the synthons
associated with these sampled products comprise the synthons in the library subset. In training the
CSLVAE model used in our experiments, we sample 20 reactions and 100 products per reaction,
which yields a minibatch of 2000 products. As described in the paper, these associated library subsets
describe a chemical space of roughly 300K-1.5M compounds each. At test time, however, we wish to
decode according to the full library of 16B compounds, which constitutes a fairly drastic test-time
distribution shift.

Supplementary Figure 2 illustrates the magnitude of the test-time distribution shift on reconstruction
quality (measured by average likelihood). We start by sampling five library subsets as described
above, drawing 2000 compounds for each subset; each of these five draws is represented by a different
color in the figure. We then grow these library subsets by first including all synthons across the 20
sampled reactions, and calculate the average reconstruction likelihood for the same 2000 products
according to the expanded library, and further increase the library by adding all synthons for 100
randomly sampled additional reactions, and then all synthons for yet another 100 randomly sampled
additional reactions, and finally include all synthons and all reactions. At each step, the library subsets
describe an increasingly larger chemical space. We observe that the average likelihood decreases in a
roughly linear-log fashion in the library size as a result of this distribution shift.

6

Supplementary Figure 2: Test-time distribution shift as a function of library size.

D Ex-post density estimation

In Section 3.3 of the paper, we describe the use of ex-post density estimation on latent codes
corresponding to products sampled uniformly from the library as a way to force random samples
from CSLVAE to track more closely to sampling uniformly at random from the library. Algorithm 2
outlines this procedure.

We carry out a simple experiment to demonstrate that this procedure achieves the intended result. The
experiment proceeds as follows. We draw 10,000 molecules from the library uniformly at random
which we treat as a training set for the ex-post density estimator. We consider three density estimators
of increasing expressivity: a multivariate normal (MVNormal), a mixture of five normals (MoG-5),
and a mixture of ten normals (MoG-10). We also compare to the standard approach of sampling from
the isotropic multivariate normal prior. As such, we have four alternative schemes for sampling latent
codes which are subsequently decoded into compounds from the library. We then sample another
10,000 molecules from the library, again uniformly at random, which is treated as a reference set for
comparison.

Supplementary Table 4: Divergences between query sampling strategies and a reference set of
compounds sampled uniformly at random from the library.

Train Prior MVNormal MoG-5 MoG-10
Uniqueness 100% 96.9% 99.8% 99.7% 99.8%
SA (JSD) 0.0179 0.3340 0.0651 0.0557 0.0452
QED (JSD) 0.0134 0.2200 0.0572 0.0266 0.0225
MW (JSD) 0.0169 0.4370 0.0970 0.0650 0.0686
logP (JSD) 0.0144 0.0259 0.0643 0.0686 0.0703

Following [2], we compare the aforementioned sets of generated molecules to the reference set of
molecules on the following computable molecular properties: synthetic accessibility (SA), quantitative
estimation of drug-likeness (QED), molecular weight (MW), and logarithm of the octanol-water
partition coefficient (logP). In particular, we calculate the Jensen-Shannon distance (square root of the
Jensen-Shannon divergence) between the distribution of these properties on the reference set and each
set in question. Supplementary Table 4 summarizes the results of this exercise. Three items worth
noting are that (a) the reference compounds and the compounds sampled for training the ex-post
density estimators have low divergence across the various properties, (b) sampling from the prior
generates compounds with high divergence relative to uniform sampling over the library, and (c)
using more expressive density estimators for the latent codes leads to increasingly lower divergence

7

across the various properties with the reference set, as they are able to better match the distribution of
latent codes for the training set (which is exchangeable with the reference set).

E Comparison to existing analogue enumeration approaches

We attempt a comparison of CSLVAE’s analoguing capabilities with that of Arthor, a state-of-the-art
commercial similarity search tool for synthesis libraries developed by NextMove Software. Arthor
performs analogue enumeration using a custom ECFP4 bit vector representation of molecules,
returning compounds with high Tanimoto similarity according to this fingerprint. For a given query
compound, we enumerate the top-100 analogues returned by Arthor from REAL. Similarly, we
encode each query compound with the CSLVAE encoder and generate a corresponding 100 stochastic
decodings. For every analogue, we compute its RDKit ECFP4 Tanimoto similarity with the query
compound and retain only the top-1 analogue. We then compare the distribution of Tanimoto
similarities of the top-1 analogues returned in this way between Arthor and CSLVAE. As a control,
we use a naive random baseline policy which samples 100 compounds at random from REAL, again
selecting the top-1 analogue based on RDKit ECFP4 Tanimoto similarity. Because both CSLVAE
and the random baseline constitute stochastic policies, we repeat this procedure 30 times for each
query compound and take the average top-1 Tanimoto similarity.

Supplementary Table 5: List of FDA novel drug approvals in 2021 used in analogue comparison.

Molecule Canonical SMILES
asciminib O=C(Nc1ccc(OC(F)(F)Cl)cc1)c1cnc(N2CCC(O)C2)c(-c2ccn[nH]2)c1

atogepant CC1C(c2c(F)ccc(F)c2F)CC(NC(=O)c2cnc3c(c2)CC2(C3)C(=O)Nc3ncccc32)C(=O)N1CC(F)(F)F

avacopan Cc1ccc(NC(=O)C2CCCN(C(=O)c3c(C)cccc3F)C2c2ccc(NC3CCCC3)cc2)cc1C(F)(F)F

belumosudil CC(C)NC(=O)COc1cccc(-c2nc(Nc3ccc4[nH]ncc4c3)c3ccccc3n2)c1

belzutifan CS(=O)(=O)c1ccc(Oc2cc(F)cc(C#N)c2)c2c1C(O)C(F)C2F

cabotegravir CC1COC2Cn3cc(C(=O)NCc4ccc(F)cc4F)c(=O)c(O)c3C(=O)N12

casimersen CN(C)P(=O)(OC[C@@H]1CNC[C@H](n2ccc(=N)nc2O)O1)N1CCN(C(=O)OCCOCCOCCO)CC1

drospirenone CC12CCC3c4ccc(O)cc4CCC3C1C(O)C(O)C2O

finerenone CCOc1ncc(C)c2c1C(c1ccc(C#N)cc1OC)C(C(N)=O)=C(C)N2

fosdenopterin Nc1nc(=O)c2c([nH]1)N[C@@H]1O[C@@H]3COP(=O)(O)O[C@@H]3C(O)(O)[C@@H]1N2

maralixibat CCCCC1(CCCC)CS(=O)(=O)c2ccc(N(C)C)cc2C(c2ccc(OCc3ccc(C[N+]45CCN(CC4)CC5)cc3)cc2)C1O

maribavir CC(C)Nc1nc2cc(Cl)c(Cl)cc2n1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O

mobocertinib C=CC(=O)Nc1cc(Nc2ncc(C(=O)OC(C)C)c(-c3cn(C)c4ccccc34)n2)c(OC)cc1N(C)CCN(C)C

piflufolastat O=C(O)CCC(NC(=O)NC(CCCCNC(=O)c1ccc(F)nc1)C(=O)O)C(=O)O

ponesimod CCCN=C1SC(=Cc2ccc(OCC(O)CO)c(Cl)c2)C(=O)N1c1ccccc1C

samidorphan NC(=O)c1ccc2c(c1O)C13CCN(CC4CC4)C(C2)C1(O)CCC(=O)C3

serdexmethylphenidate COC(=O)C(c1ccccc1)C1CCCCN1C(=O)OC[n+]1cccc(C(=O)NC(CO)C(=O)[O-])c1

sotorasib C=CC(=O)N1CCN(c2nc(=O)n(-c3c(C)ccnc3C(C)C)c3nc(-c4c(O)cccc4F)c(F)cc23)C(C)C1

tepotinib CN1CCC(COc2cnc(-c3cccc(Cn4nc(-c5cccc(C#N)c5)ccc4=O)c3)nc2)CC1

tivozanib COc1cc2nccc(Oc3ccc(NC(=O)Nc4cc(C)on4)c(Cl)c3)c2cc1OC

trilacicilib CN1CCN(c2ccc(Nc3ncc4cc5n(c4n3)C3(CCCCC3)CNC5=O)nc2)CC1

umbralisib CC(C)Oc1ccc(-c2nn(C(C)c3oc4ccc(F)cc4c(=O)c3-c3cccc(F)c3)c3ncnc(N)c23)cc1F

vericiguat COC(=O)Nc1c(N)nc(-c2nn(Cc3ccccc3F)c3ncc(F)cc23)nc1N

viloxazine CCOc1ccccc1OCC1CNCCO1

For the query compounds, we use 24 of the 51 novel drugs approved in 2021 by the FDA, filtering out
drugs which do not satisfy a routine set of small molecule criteria (such as monoclonal antibodies);
the compounds used in this experiment are listed in Supplementary Table 5. Supplementary Figure 3
shows a boxplot of the top-1 Tanimoto similarities for Arthor, CSLVAE, and the random baseline.
While CSLVAE finds more distant ECFP4 analogues compared to Arthor (which is a gold standard
for fingerprint similarity search), it is nonetheless able to identify analogues1 for unseen, novel drugs
in a routine manner.

Of particular note, CSLVAE is considerably less resource intensive than Arthor, which is specially
designed for fast and efficient fingerprint-based analogue enumeration and requires appropriate

1It is typical to use a Tanimoto similarity threshold in the range 0.3-0.35 to indicate whether a pair of
molecules can be seen as analogues.

8

Supplementary Figure 3: Comparing CSLVAE to Arthor in top-1 analogue search.

infrastructure and setup. For these reasons, it is difficult to do a direct apples-to-apples comparison
of the compute requirements. Nevertheless, we share the following pertinent information. The
CSLVAE experiments were run on a machine with an NVIDIA Tesla K80 GPU and an Intel Xeon
E5-2686 CPU. On average, sampling 100 analogues for a given query using CSLVAE completed in
11.41 seconds with this setup (encoding and decoding). Further, all of the parameters and buffers
(including representations and keys for the synthon, R-group, and reactions) of the trained CSLVAE
model required just 170MB memory. By comparison, the Arthor experiments are run in a distributed
fashion on 100 pods, each with 8 CPUs, with top-100 analogue enumeration requiring a total of 32.46
seconds, for an approximate total CPU time of 25,968 seconds. Furthermore, Arthor needs to devote
rather significant amounts of memory and storage to carry out analogue enumeration; our in-house
setup uses 3GB per shard and makes 64GB RAM requests for each Arthor worker.

We note that CSLVAE’s ability to represent large CSLs with significantly fewer resources and perform
analogue retrieval with notably improved execution time (perhaps three orders of magnitude faster)
owes to its decoding strategy, which utilizes parallel synthon look-ups, thereby requiring a number of
keys that is on the order of number of synthons in the library rather than on the order of number of
products in the library, and further permits a kind of similarity search in time that is logarithmic in
the number of products in the library (rather than linear).

As a final remark, we view this exercise as a demonstration of CSLVAE’s potential as a backbone
in search applications, not as a definitive implementation of an analogue enumeration strategy
with CSLVAE. There are a number of requirements of a good analogue enumeration tool that we
purposefully do not focus on here (e.g., enumerating k distinct analogues rather than top-1 analogue,
where k could be large). While this may be of interest in subsequent work, it is not our focus
in this paper. We believe that the quality of analogues found with CSLVAE-based decoders can
begin to approach those found by existing, specially-tailored tools for analogue enumeration with
additional efforts aimed at such applications, and that such directions could prove fruitful in an era of
combinatorial library explosion that challenges traditional enumerative strategies.

F Encoder transfer to molecular property prediction

The CSLVAE training objective can be viewed as a kind of contrastive pretext task, which seeks
to align the representation of a given molecule with representations that correspond to retrieval
instructions in a CSL. Hence, it is natural to wonder whether the encoder of a trained CSLVAE

9

model could demonstrate good transfer performance in prediction tasks that may be of interest. To
investigate, we compare MLPs trained on CSLVAE with those trained on molecular fingerprints
(ECFP4 and ECFP6) for molecular property prediction tasks. We use the octanol-water partition
coefficient (logP) and the quantitative estimate of drug likeness (QED) [1] as targets for prediction.

Supplementary Table 6: Encoder transfer on logP and QED prediction. The cells report the average
RMSE ± one standard deviation, calculated over five runs.

REAL 100K ZINC 250K REAL 100K ZINC 250K
Dimensionality logP logP QED QED

CSLVAE 64 0.539 ± 0.002 0.591 ± 0.001 0.072 ± 0.001 0.068 ± 0.001
ECFP4 256 0.827 ± 0.001 0.679 ± 0.002 0.091 ± 0.002 0.079 ± 0.001
ECFP6 1024 0.601 ± 0.002 0.490 ± 0.001 0.072 ± 0.001 0.064 ± 0.001

For this experiment, we construct a dataset by sampling 100K compounds uniformly at random from
REAL, splitting the examples into training, validation, and testing folds using an 80-10-10 split. For
each compound, we extract as feature descriptor its CSLVAE query, in addition to its ECFP4 and
ECFP6 fingerprints. Using the training fold, we fit an MLP on each of these feature descriptors
separately to predict the molecule’s logP and QED score. We select the iteration which attains the
lowest validation RMSE, recording its test RMSE. This is repeated five times, and we report the
average test RMSE and standard deviation. To demonstrate the extent to which CSLVAE learns
molecular features that are predictive of such molecular properties for out-of-domain compounds,
we repeat this exercise on a dataset of 250K molecules from ZINC. The results of this exercise are
summarized in Supplementary Table 6.

The results of this experiment confirm that the latent space learned by CSLVAE can indeed be
utilized to success in predicting quantities like logP and QED, especially in the in-domain case
where it out-performs the predictors fit on chemical fingerprints. However, in the out-of-domain case,
the predictor fit on ECFP6 fingerprints performs notably better than the predictor fit on CSLVAE
queries, suggesting that the features learned by CSLVAE may be missing some pertinent predictive
information about input molecules which differ significantly from the CSL on which it was trained.

References
[1] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.

Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2):90–98, 2012.

[2] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (MOSES): a benchmarking platform for molecular generation
models. Frontiers in Pharmacology, 11:1931, 2020.

[3] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder variational autoencoders. Advances in Neural Information Processing Systems, 29, 2016.

10

	CSLVAE details
	Training and ex-post density estimation algorithms
	Architecture
	Atom and bond embeddings
	Synthon encoder
	R-group encoder
	Reaction encoder
	Synthon key generator
	Reaction key generator
	Molecular encoder

	Molecular query processing network
	Reaction query generator
	Synthon query generator

	Comparison of CSLVAE to RationaleRL and JT-VAE
	Dataset preparation
	RationaleRL details
	JT-VAE details
	CSLVAE details

	Test-time distribution shift in CSLVAE
	Ex-post density estimation
	Comparison to existing analogue enumeration approaches
	Encoder transfer to molecular property prediction

