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Abstract

Virtual, make-on-demand chemical libraries have transformed early-stage drug
discovery by unlocking vast, synthetically accessible regions of chemical space. Re-
cent years have witnessed rapid growth in these libraries from millions to trillions
of compounds, hiding undiscovered, potent hits for a variety of therapeutic targets.
However, they are quickly approaching a size beyond that which permits explicit
enumeration, presenting new challenges for virtual screening. To overcome these
challenges, we propose the Combinatorial Synthesis Library Variational Auto-
Encoder (CSLVAE). The proposed generative model represents such libraries as
a differentiable, hierarchically-organized database. Given a compound from the
library, the molecular encoder constructs a query for retrieval, which is utilized by
the molecular decoder to reconstruct the compound by first decoding its chemical
reaction and subsequently decoding its reactants. Our design minimizes autore-
gression in the decoder, facilitating the generation of large, valid molecular graphs.
Our method performs fast and parallel batch inference for ultra-large synthesis
libraries, enabling a number of important applications in early-stage drug discovery.
Compounds proposed by our method are guaranteed to be in the library, and thus
synthetically and cost-effectively accessible. Importantly, CSLVAE can encode
out-of-library compounds and search for in-library analogues. In experiments, we
demonstrate the capabilities of the proposed method in the navigation of massive
combinatorial synthesis libraries.

1 Introduction

Virtual high throughput screening (vHTS) [45] has gained significant traction in early-stage drug
discovery, owing in no small part to make-on-demand chemical libraries utilizing a combinatorial
synthesis construction. These combinatorial synthesis libraries (CSLs) enable access to ultra-large
swaths of chemical space from a considerably smaller set of chemically accessible building blocks
that can be combined according to known synthesis routines. In recent years, these libraries have
grown from millions, to billions, and now to trillions of compounds [21, 32, 42, 55]. For example,
the Enamine REadily AccessibLe (REAL) libraries [19] leverage off-the-shelf molecular building
blocks and parallel synthesis, permitting lead times on the order of a few weeks and ushering in an
era of ever-decreasing latency between in silico and in vitro high throughput screening.
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As a result of the combinatorial explosion these constructions enable, early-stage drug discovery
has now “crossed the Rubicon” into the non-enumerative regime. This presents new challenges for
in silico hit discovery and optimization, which rely on screening explicitly enumerated compounds.
These methods are ill suited to the non-enumerative setting, scaling linearly with the number of
compounds, which motivates our interest in designing scalable approaches for navigating such
libraries.

In this paper, we propose the Combinatorial Synthesis Library Variational Auto-Encoder, or CSLVAE
for short (pronounced like c’est la vie). CSLVAE is a graph-based generative model that exploits
the structure of CSLs towards efficient navigation of the relevant chemical space. Our model learns
a hierarchy of keys over the components of the library, and uses these keys to process queries for
retrieval. The encoder processes a molecular graph and returns as output a query vector, which
the decoder uses to retrieve the molecule through an efficient sequence of query-key comparisons
that utilizes the hierarchical construction of CSLs, requiring minimal autoregression and admitting
efficient parallelization.

The main contributions of this paper are as follows:

• We present a novel graph generative model which acts as a “neural database,” providing
random access to ultra-large, non-enumerable compound libraries. As such, our model is
guaranteed to generate valid and cost-effectively accessible molecules.

• Our model overcomes challenges with long autoregressive chains in compound generation,
improving scalability to large molecular graphs.

• Our model reduces the number of parameters ten-fold relative to comparable methods, and
offers considerable improvements in computational complexity for searching through CSLs.

2 Related Work

Virtual high throughput screening and enumeration Often, the first step in a vHTS campaign
is preparing a compound library for subsequent use [1, 16]. While highly optimized compound
sampling and scoring techniques have been developed [17], these approaches nevertheless rely on
an exhaustively accessible library. An exception is the virtual synthon hierarchical enumeration
screening (V-SYNTHES) approach [42], which leverages the modular nature of parallel synthesis
libraries. However, by design, V-SYNTHES does not permit query-based random access. On the
other hand, SpaceMACS [43] and SpaceLight [4] can provide query-based access to modular libraries
by decomposing the query into fragments, and matching those by similarity search to synthons in the
library. In parallel to these efforts, machine learning has received significant attention in vHTS: for
predicting activity scores given docked conformations [14, 41, 54], predicting activity scores given a
ligand and protein separately (undocked) [37, 53], and in improving or altogether replacing classical
molecular docking with machine learning approaches [38, 48, 49].

Deep learning approaches to molecular generation De novo drug design has assumed an increas-
ingly prominent role in identifying novel chemical matter in drug discovery campaigns [9, 35, 47, 51].
The two dominant neural network-based paradigms for molecular generation are text-based and
graph-based generative models. Early work in text-based generative models (also called chemical
language models) applied recurrent neural networks to SMILES strings [15, 44]. Although these
methods have shown a great deal of promise and spurred interest in molecular generation within the
ML community, they are not guaranteed to produce valid SMILES strings. Approaches utilizing
grammar constraints of SMILES notation have been proposed to improve validity [11, 28]; separately
the recently proposed SELFIES notation [27, 36] guarantees validity and has seen increased adoption
as such. In both cases, however, there remain known drawbacks to modeling with such text-based
representations of chemical matter (e.g., surjectivity, similar molecular structures having possibly
large edit distances).

For some applications, it is of interest to utilize generative models which can fit molecular databases,
permitting the navigation of these databases via the fitted model. The ability of language models to
fit molecular databases was investigated in a prior study [2] that applied deep language models to
GDB-13 [6], a database of 109 compounds formed by fully enumerating molecules up to 13 atoms
of element types C, N, O, S, and Cl, subject to simple chemical stability and synthetic feasibility

2



rules. The authors trained on 0.1% of the total library and �nd that the model was capable of covering
roughly 70% of compounds in the GDB-13 library. Furthermore, the language model they trained
generates compounds not satisfying the GDB-13 construction in approximately 15% of cases.

Graph generative models have received signi�cant attention in recent years as an alternative to their
text-based counterparts. The earliest of these models focused on generating graphs of a constant size
in a single shot [46] or generating graphs of arbitrary size autoregressively, one atom or bond at a
time [31, 40, 57, 34]. These approaches also struggle to reliably produce chemically valid molecules
and encounter dif�culties with large molecular graphs.

In an effort to address both points, fragment-based graph generative models have been proposed and
are growing in popularity [22, 23, 24, 26]. These models have the advantage of guaranteeing chemical
validity by decomposing molecules into valid sub-components and explicitly disallowing actions
which yield invalid combinations of fragments. Such explicit validity checks can be performed on
every action, at the cost of additional computation. While other text- and graph-based generative
models tend to struggle with large molecular graphs due to the long autoregression chains needed to
produce them, fragment-based graph generative models require autoregression lengths on the order
of the number of fragments that comprise a molecule. This can be signi�cant when the fragments
themselves contain many atoms.

However, some issues persist due to general dif�culties with autoregressive graph generation. Unlike
text-based models, in which there is less ambiguity in the autoregression order (e.g., tokens are
typically decoded in left-to-right order), graphs have no such canonical node order, which presents
challenges for graph-based autoencoders [31, 56]. Furthermore, although they require shorter
autoregression chains than their counterparts, existing fragment-based graph generative models
nevertheless require autoregression lengths that grow in the overall size of the molecule since
autoregressive decoding cannot be effectively parallelized.

While fragment-based graph generative models and SELFIES-based language models each address
the issue of chemical validity, there is the separate challenge of synthetic accessibility. Prior work
has cast doubt on the synthetic feasibility of compounds proposed by many existing generative
models [12], which can limit the practical utility of these models in drug discovery applications if not
appropriately addressed. Subsequent work has attempted to improve on these shortcomings by (i)
including explicit penalties for synthetic inaccessibility via a scoring function [18], (ii) limiting the
model to fragments from known compounds [33, 39, 50], or (iii) inducing bias towards simple and
known synthetic pathways [7, 8, 20].

3 Methodology

This section formalizes combinatorial synthesis libraries and the proposed model, CSLVAE. Figure 1
provides an illustration of the approach. Details on the architectures used for the various modules
which comprise CSLVAE can be found in the Appendix.

3.1 Preliminaries

CSLs are composed of a set of multi-dimensional synthesis tables (Figure 1, Panel A). Each synthesis
table describes a multi-component chemicalreaction, which we denote by an indext 2 T (e.g.,
a natural number). Following [42], we use the termR-groupto refer to a singular component in
a reaction, and denote it by an indexr 2 R. A multi-component reaction takes several reactants
(components) as input to produce a single molecule via chemical synthesis. We let : T ! P (R)
be the function which returns the set of R-groups (t) � R associated with a reactiont, whereP(�)
denotes the power set function.

Each R-group is spanned by a possibly large number of molecular building blocks, calledsynthons,
which can be utilized in the corresponding reaction. We denote a synthon by an indexs 2 S and
represent it with a molecular graph,Gs 2 GS . We note that a synthon can belong to multiple R-groups.
For convenience, we use� : R ! P (S) to represent the function which returns the set of synthons
� (r ) � S belonging to a particular R-groupr .

A product x 2 X is a molecule that is synthesized according to akt -component reaction with
R-groups (t) = ( r (1)

t ; : : : ; r (k t )
t ) and a corresponding synthon tupleu = ( s(1)

u ; : : : ; s(k t )
u ), where
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Figure 1:Overview of CSLVAE. Panel A: Illustration of a combinatorial synthesis table, which
form the basis of combinatorial synthesis libraries (CSLs).Panel B: CSLVAE is an autoencoder
whose encoder takes molecular graphs as input and returns query vectors as output, which the decoder
then utilizes to retrieve the corresponding products from the library.Panels C-E:The CSLVAE
library encoder represents CSLs via a hierarchy of learned representations. It proceeds by encoding
individual synthons, represented as molecular graphs, with a graph neural network. It subsequently
encodes R-groups with a set neural network over their constituent synthon representations. Finally, it
encodes reactions with a set neural network over their constituent R-group representations.Panel F:
The molecular encoder returns a query from an input molecular graph (in this case, a product from
the library).Panels G-H:The molecular decoder processes the query to retrieve a product from the
CSL, by �rst decoding the reaction type and subsequently decoding one synthon per R-group via
query-key lookups.

s( i )
u 2 � (r ( i )

t ) for all i = 1 ; : : : ; kt . We de�nef to be the synthesis rule which generates a compound
x from a reaction and synthon tuple pair(t; u), i.e.,x := f (t; u). In short, as a simple analogy, one
can think of a synthesis rulet as specifying an equation ofkt terms, where each term is an R-group,
and their associated synthons correspond to the allowed values for the corresponding term.

Hence, a combinatorial synthesis libraryD � (T; R; S; f;  ; � ) is fully characterized by its reactions
T, R-groupsR, and synthonsS, together with the synthesis rulef , reaction to R-groups mapping ,
and R-group to synthons mapping� .

Using the language of probability, one can describe a distribution over products induced byD via the
following factorization:

p(xjD ) =
X

t 2 T

X

u2 Ut

p(tjD ) p(ujt; D) pf (xjt; u); (1)

whereUt = � (r (1)
t ) � : : : � � (r (k t )

t ) is the set of all eligible synthon tuples for reactiont. This
factorization describes the generative process in which one �rst samples a reactiont � p(t jD ) / j Ut j,
then samples a valid synthon tupleu � p(ujt; D) = jUt j � 1 comprised of synthons from the respective
R-groups int, and joins these together via synthesis to form a productx (via the deterministic rulef ).

As written, all valid(t; u) pairs inD are equally probable underp. Note that if every product inD
can be reached according to just a single synthesis route, thenp(xjD ) is a uniform distribution over
the part of chemical spaceX accessible byD.

3.2 Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE)

We consider the task of looking up a productx from a libraryD, which amounts to �nding the
reactiont and synthon tupleu satisfyingx = f (t; u). This can be cast as an inference problem
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seekingp(t; u jx; D). A latent variable model forx gives rise to a variational formulation:

p(t; u jx; D) =
Z

z
p(t; u jz; D) q(zjx) dz; (2)

with p(z) denoting the prior distribution of the latent variable. One can further simplify the joint
conditional distribution oft andu by �rst selecting the reactiont and then selecting the synthons
s(1)

u ; : : : ; s(k t )
u independently conditional ont:

p(t; u jz; D) = p(tjz; D) p(ujz; t; D) (3)

= p(tjz; D)
k tY

i =1

p(s( i )
u jz; t; r ( i )

t ; D): (4)

This gives rise to a strategy in which one encodes a moleculex into the latent space,z � q(zjx),
and proceeds by �rst decoding the reaction typet � p(tjz; D) and then, conditional on the sampled
reaction, decoding one synthon per R-groups( i )

u � p(s( i )
u jz; t; r ( i )

t ; D) for i = 1 ; : : : ; kt to form the
synthon tupleu 2 Ut .

The resulting latent variable model is the proposed CSLVAE. Panels B-H in Figure 1 give a step-by-
step depiction of the method. In the forthcoming subsections, we will describe and formalize the
three primary modules that comprise CSLVAE in detail: (i) the library encoder, (ii) the molecular
encoder, and (iii) the molecular decoder. Module (ii) forms the basis forq(zjx), while modules (i)
and (iii) form the basis forp(t; u jz; D).

3.2.1 Library encoder

A CSL D � (T; R; S; f;  ; � ) is organized hierarchically, with synthonsS at the bottom of the
hierarchy, R-groupsR in the middle, and reactionsT at the top. We propose a strategy for learning
an associated hierarchy of representations that describe the library at these three levels of resolution
in an end-to-end fashion. These representations can then be used in retrieving results from queries
into the library. The library encoder is illustrated in panels C-E of Figure 1.

We start from the bottom of the hierarchy with the synthonsS. To learn a representation for each
synthon in a manner that is fully inductive, we use a graph neural network to parameterize the
SynthonEncoder : GS ! RdS , which applies a sequence of message passing steps followed by a
readout to arrive at adS -dimensional representation for each synthon.

Moving up the hierarchy, we use a deep set neural network to represent the R-groupsR by sum-
marizing the representations for the synthons belonging to a particular R-group. Formally, the
RGroupEncoder: RdS � � � � � RdS ! RdR learns adR -dimensional representation for a given R-
group from the set ofdS -dimensional representations of the constituent synthons. Following [58], the

R-group encoder has the formRGroupEncoder(f hS
s : 8s 2 � (r )g) = �

� L
s2 � ( r ) � (hS

s )
�

, where

� and� are parameterized by multi-layer perceptrons (MLPs) and
L

is a permutation-invariant
aggregation operator. While other potentially more performant set-to-vector neural networks could be
considered here, e.g., set transformers [30], an advantage of this simple construction is that it permits
fast querying over library subsets at test time since� (hS

s ) can be cached for alls 2 S, thereby
reducing the required computations for making queries into partitions of the library. We utilize mean
pooling as the aggregation operator to focus on characteristics of the distribution of synthons in an
R-group (as opposed to sum pooling which generally expresses characteristics of the multiset), which
improves performance when dealing with R-groups of varying cardinality.

Finally, to represent reactions, we use yet another deep set neural network as theReactionEncoder :
RdR � � � � � RdR ! RdT . This module takes as input a variable-sized set of R-group representations
corresponding to the reactants int and produces adT -dimensional representation for the reaction.
We utilize sum as the aggregation operator to learn multiset properties of the R-groups in a reaction.

Putting these together, the representations cascade as follows:

hS
s = SynthonEncoder(Gs); (5)

hR
r = RGroupEncoder(f hS

s : 8s 2 � (r )g); (6)

hT
t = ReactionEncoder (f hR

r : 8r 2  (t)g): (7)
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In (4), we considered a factorization of the likelihood such that, given a molecular representationz,
the molecular decoder proceeds by �rst decoding the reaction type and then decoding one synthon
for each R-group separately conditional on the reaction type. Hence, we require a key vector for each
reaction as well as for each synthon to compare with the associated query vectors (to be described).
As such, we introduce aReactionKeyGenerator : RdT ! RkT which returns a key vector given a
reaction representation, and similarly introduce aSynthonKeyGenerator : RdS ! RkS to produce
a key for each synthon. Each of these key generators can be parameterized by MLPs:

kT
t = ReactionKeyGenerator (hT

t ); (8)

kS
s = SynthonKeyGenerator(hS

s ): (9)

3.2.2 Molecular encoder

TheMolecularEncoder : GX ! RdX takes as input a molecular graphGx 2 GX and returns a
dX -dimensional feature representation,

z = MolecularEncoder (Gx ): (10)

In our implementation, theMolecularEncoder is a graph neural network with a variational linear
layer stacked on top of the readout, which produces a samplez � q(zjx) for a given input graphGx .
As depicted in Figure 1, we interpret the representationz as a query induced byx into the libraryD.

Note that theMolecularEncoder can in principle take any valid molecular graph as input is therefore
capable of producing queries for compounds that arenot in the libraryD. This can be useful for
�nding analogues by catalog– that is, compounds which can be purchased from a catalog and are
chemical analogues of a query molecule. This use case will be investigated in a later section.

3.2.3 Molecular decoder

Given a queryz = MolecularEncoder (Gx ) and a libraryD, the decoder is tasked with retrieving the
molecule from the library, i.e., identifying the reaction and synthon tuple which yield the molecule as
a product. We proceed by generating the reaction �rst. AReactionQueryGenerator : RdX ! RkT

generates a query from the molecular representation to compare against the reaction keys:

qT = ReactionQueryGenerator (z); (11)

n
p(t j jz; D)

o jT j

j =1
= softmax

0

@

(
qT � kT

t jp
kT

) jT j

j =1

1

A : (12)

This de�nes a probability distribution over reaction types inT. We can sample according to this
distribution to arrive at a reactiont � p(t jz; D).

Given the sampled reactiont, we know the required R-groups (via ) and further know which
synthons are eligible for each R-group (via� ). To decode the synthon tuple, we introduce a
SynthonQueryGenerator : RdX + dT + dR ! RkS which can be used to query synthons for each
R-groupr ( i )

t 2  (t) as follows:

qS
t;r = SynthonQueryGenerator ([zkhT

t khR
r ]); (13)

n
p(s( i )

j jz; t; r ( i )
t ; D)

o j � ( r ( i )
t ) j

j =1
= softmax

0

B
B
@

8
<

:

qS
t;r ( i )

t

� kS
s( i )

jp
kS

9
=

;

j � ( r ( i )
t ) j

j =1

1

C
C
A : (14)

In our implementation, both the reaction and synthon query generators are parameterized by MLPs.

3.3 Training algorithm

For a large CSLD � , encoding the entire library on each iteration of the training loop could require
an excessive amount of GPU memory. To overcome this, we utilize a minibatch strategy in which
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a random subsetD � D � is drawn from the full library according to a distributionp(DjD � ). From
D, we form the synthon, R-group, and reaction representations and keys. In particular, we use
a sub-samplerp(DjD � ) which (i) samples a subset of the reactions contained in the full library
uniformly at random, keeping only the R-groups contained in the sampled reactions, and (ii) for each
reaction, samples a random number of products, retaining only the synthons that are contained in
the sampled products. We also utilize teacher forcing, feeding in the ground truth reaction when
generating the synthon queries for the respective R-groups. Algorithm 1 in the Appendix describes
the training procedure.

Ex-post density estimation Given a trained generative modelp� (xjz), we wish to sample products
via (x; z) � p� (xjz) p(z) (discardingz).3 However, this in general will not correspond well to a
uniform distribution over the products inD due to the bias introduced by the batch sampling strategy
outlined above (which �rst uniformly samples reactions and then uniformly samples products given
the reaction).

Although this can be corrected with importance weighting during the training phase, we opt for a
more practical approach by using an ex-post density estimation strategy [13]. We sample a large
number of products from the target distributionx � p(xjD ) and encode these products via the
molecular encoderz � q� (zjx). We then �t a density estimator to the aggregated samples, written
q� (z). In our experiments, we utilize a multivariate normal distribution for simplicity, but one could
imagine using more expressive density estimators here (e.g., a mixture of multivariate normals).

Now, we can sample products via(x; z) � p� (xjz) q� (z), which will more closely align with
sampling fromp(xjD ). This helps to correct for bias in the distribution over product space that is
induced by the choice of batch sampling strategy.

3.4 Computational complexity, scalability, and ef�ciency

We now examine the computational complexity, scalability, and ef�ciency of the proposed method.

First, we note that the CSLD can be encoded withO(jSj + jRj + jT j) complexity – the constant
depends on the complexity of the synthon, R-group, and reaction encoders. Nonetheless, this is
logarithmic in comparison to naively encoding each product inD, which hasO(jDj ) complexity.

More noteworthy is the computational complexity of the molecular decoder. For clarity, let us consider
a simpli�ed D comprised of a singlek-component reaction. LetM i denote the number of synthons
for R-groupi = 1 ; : : : ; k. Naively, a nearest neighbor lookup inD requiresO(

Q k
i =1 M i ) complexity.

CSLVAE, on the other hand, performs the lookup over synthons in each R-group independently,
which attainsO(

P k
i =1 M i ) complexity: a logarithmic improvement. Hence, the proposed molecular

decoder is highly suitable for ultra-large CSLs that are of interest in early-stage drug discovery.

Another advantage of CSLVAE's decoding strategy is that it relies only minimally on autoregression.
In fact, we only ever need to do a single step of autoregression, irrespective of the size of the graph
being generated (autoregression length of exactly two). As such, CSLVAE gracefully scales to large
and variable-sized molecular graphs that follow a combinatorial synthesis construction.

Lastly, we point out that our method is guaranteed to generate chemically valid—and perhaps more
importantly, synthetically accessible—molecular graphs without performing explicit validity checks.
This compares favorably with prior work, in which the validity of each candidate action is veri�ed
at each step of the autoregression, with invalid actions excluded from the choice set. Although
cheminformatics libraries like RDKit [29] have ef�cient C++ implementations for these checks, they
nonetheless increase runtime rather signi�cantly. Further, in the absence of explicit validity checks,
these models have been shown to generate invalid molecular graphs at a markedly higher rate [22].

4 Experiments

This section covers some of our attempts to validate CSLVAE's performance and highlight its
capabilities. We include additional supplementary experiments in the Appendix.

3The parameter� represents the parameters for the modules written intypewriter font.
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Data We demonstrate the capabilities of CSLVAE on the Enamine REAL library, which is com-
prised of 340K synthons and over one thousand reactions. The reactions in REAL range from two
to four components and the number of synthons per R-group range from the single digits to tens of
thousands. In total, the REAL library describes a chemical space of over 16 billion commercially
available compounds.4 Note that this 16 billion compound library is relatively small compared to
over-trillion compound libraries that are commercially available today; we use this more modest
library size as it makes comparisons to other approaches tractable.

Training During training, we sample subsets of the library as follows. Of the roughly 1300 reaction
types in the REAL database, we �rst uniformly sample 20 reactions at random, and subsequently
sample 100 products per reaction, including the associated synthons in the library subset. These
library subsets therefore describe roughly 300K-1.5M compounds each, which is signi�cantly smaller
than the complete library of 16 billion compounds. See Algorithm 1 in the Appendix for details.

Testing For test-time inference, we decode with respect to the full library of 16 billion compounds.
This constitutes a test-time distribution shift relative to training, but we observed that CSLVAE
generalizes remarkably well to the full library without modi�cations. For completeness, we include
an analysis of the test-time distribution shift in the Appendix (Supplementary Figure 2). In the
forthcoming analyses, we share results when performing inference on the full library, as this is our
primary objective.

4.1 Molecular reconstruction and generation

Table 1: Comparison of RationaleRL, JT-VAE, and CSLVAE (ours) on synthon-based generative
modeling.

JT-VAE RationaleRL CSLVAE (ours)
# Parameters 4.7M 3.4M 380K
Validity 100.0% 100.0% 100.0%
Uniqueness 80.1% 96.3% 98.8%
Average likelihood 18.7% 62.3% 72.4%
In-library proportion 2.9% 50.9% 100.0%

We compare CSLVAE against two state-of-the-art molecular graph generative models: JT-VAE [22]
and RationaleRL [24]. All three models were trained from scratch on the Enamine REAL library.
Details on the experimental setup and architecture can be found in the Appendix.

In JT-VAE, molecular graphs are represented by junction trees over chemical fragments. Decoding
proceeds by �rst generating the junction tree in a depth-�rst manner, placing a fragment in each node,
and then subsequently orienting the fragments to match attachment points. RationaleRL, on the other
hand, takes as input a starting chemical fragment orrationale. The decoder's objective is to complete
the molecule in an autoregressive fashion (one graph edit per step). In our setting, we take a product
from the library and remove all but one synthon, treating the resulting graph as the starting rationale.
Thus, RationaleRL is tasked with generating the missing synthon.

Table 1 summarizes the key �ndings. First, we note that our implementation of CSLVAE has roughly
10x fewer parameters than the two alternatives considered, owing to the inductive nature of the library
encoder. All three methods achieve 100% chemical validity, but CSLVAE achieves this result without
explicit validity checks. The average likelihood is computed by taking the average of per-compound
reconstruction likelihoods across a large number of products sampled from the library. This is a
measure of how well the model is capable of reconstructing the full molecular graph (i.e., on average,
how likely are we to reproduce the query molecule via the decoder) and can also loosely be interpreted
as a measure of coverage/reachability (i.e., what proportion of the library are we able to faithfully
cover). Finally, we highlight the challenges existing graph generative models face when applied to
ultra-large CSLs, namely that they struggle to reliably generate in-library compounds. For JT-VAE,

4We release a subset of the library alongside our code for reproducing these experiments and to
foster further research in the machine learning community applied to combinatorial synthesis libraries:
https://github.com/AtomwiseInc/cslvae . Data provided with permission from and attribution to Enam-
ine Ltd.
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Figure 2:Latent space visualizations. Panel A:Moving left to right in raster order, we linearly
interpolate from the starting compound to the target compound. The immediately adjacent molecules
are reconstructions. Below each molecule are its Tanimoto similarities with the starting and target
compound, respectively.Panel B: We sample two random directions in the latent space around a
query compound and visualize the decoded molecules spaced evenly on the resulting 2D plane.

fewer than 1 in 34 compounds were found in REAL. RationaleRL, on the other hand, generates
in-library completions in only about half of the cases (see Supplementary Figure 1 in the Appendix),
but has the advantage that it is provided a starting rationale in the form of a compound from REAL
stripped of all but one synthon. In contrast, CSLVAE is guaranteed to stay in the library by design.

4.2 Latent space visualizations

Next, we qualitatively inspect the latent space learned by CSLVAE. In particular, we are interested in
verifying whether the proposed model has learned a latent space which varies relatively smoothly
over the covered chemical space (i.e., that small perturbations to the query induce only minor edits in
the resulting molecular graph). We perform two kinds of checks: latent space interpolations and local
neighborhood visualizations.

Panel A of Figure 2 contains an example of interpolations in the latent space. In particular, we
interpolate the molecular queries for the starting compound (top left) and target compound (bottom
right), in raster order. The molecules immediately adjacent to the starting and target compounds are
the associated reconstructions. Products are decoded with respect to the full REAL library of 16
billion compounds. Below each molecule are its Tanimoto similarity5 with the starting and target
molecule, respectively. We observe that the interpolations traverse through regions of chemical space
that gradually decrease (cf. increase) in similarity with respect to the starting (cf. target) compound.

Panel B of Figure 2 visualizes the latent space around a randomly sampled product from the REAL
library. Following prior work [28], we form a random 2D plane in the high-dimensional latent space
by sampling two random directions around the molecular query (center compound) and decoding the
resulting products using the argmax decision rule. We observe that the latent space is smooth in the
sense that molecules morph gradually, with only minor edits when the movement in latent space is
small (e.g., one synthon at a time, modi�cations to smaller functional groups), and that the molecular
scaffold is generally conserved locally.

4.3 Analogue retrieval via autoencoding

Lastly, we utilize CSLVAE to �nd analogues of a query compound in a large CSL. In Figure 3, we
present the model with two molecules: one which is in the library (left) and one which is not in the
library (right). Given the molecular query, we generate conditionally random completions from the

5The Tanimoto similarity [3] is calculated by taking the intersection-over-union between a pair of bit vectors
describing each molecule using a hash called amolecular �ngerprint[5].
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