
An efficient graph generative model for navigating
ultra-large combinatorial synthesis libraries

Aryan Pedawi
Atomwise Inc.

aryan@atomwise.com

Paweł Gniewek
Atomwise Inc.

pawel@atomwise.com

Chaoyi Chang
Atomwise Inc.

cchang373@atomwise.com

Brandon M. Anderson∗†

Atomwise Inc.
branderson@gmail.com

Henry van den Bedem†

Atomwise Inc.
UCSF, Dept. of Bioengineering & Therapeutic Sciences

vdbedem@atomwise.com

Abstract

Virtual, make-on-demand chemical libraries have transformed early-stage drug
discovery by unlocking vast, synthetically accessible regions of chemical space. Re-
cent years have witnessed rapid growth in these libraries from millions to trillions
of compounds, hiding undiscovered, potent hits for a variety of therapeutic targets.
However, they are quickly approaching a size beyond that which permits explicit
enumeration, presenting new challenges for virtual screening. To overcome these
challenges, we propose the Combinatorial Synthesis Library Variational Auto-
Encoder (CSLVAE). The proposed generative model represents such libraries as
a differentiable, hierarchically-organized database. Given a compound from the
library, the molecular encoder constructs a query for retrieval, which is utilized by
the molecular decoder to reconstruct the compound by first decoding its chemical
reaction and subsequently decoding its reactants. Our design minimizes autore-
gression in the decoder, facilitating the generation of large, valid molecular graphs.
Our method performs fast and parallel batch inference for ultra-large synthesis
libraries, enabling a number of important applications in early-stage drug discovery.
Compounds proposed by our method are guaranteed to be in the library, and thus
synthetically and cost-effectively accessible. Importantly, CSLVAE can encode
out-of-library compounds and search for in-library analogues. In experiments, we
demonstrate the capabilities of the proposed method in the navigation of massive
combinatorial synthesis libraries.

1 Introduction

Virtual high throughput screening (vHTS) [45] has gained significant traction in early-stage drug
discovery, owing in no small part to make-on-demand chemical libraries utilizing a combinatorial
synthesis construction. These combinatorial synthesis libraries (CSLs) enable access to ultra-large
swaths of chemical space from a considerably smaller set of chemically accessible building blocks
that can be combined according to known synthesis routines. In recent years, these libraries have
grown from millions, to billions, and now to trillions of compounds [21, 32, 42, 55]. For example,
the Enamine REadily AccessibLe (REAL) libraries [19] leverage off-the-shelf molecular building
blocks and parallel synthesis, permitting lead times on the order of a few weeks and ushering in an
era of ever-decreasing latency between in silico and in vitro high throughput screening.

∗Work performed while at Atomwise Inc. Current affiliation is with Atomic AI.
†Equal senior contributions.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

As a result of the combinatorial explosion these constructions enable, early-stage drug discovery
has now “crossed the Rubicon” into the non-enumerative regime. This presents new challenges for
in silico hit discovery and optimization, which rely on screening explicitly enumerated compounds.
These methods are ill suited to the non-enumerative setting, scaling linearly with the number of
compounds, which motivates our interest in designing scalable approaches for navigating such
libraries.

In this paper, we propose the Combinatorial Synthesis Library Variational Auto-Encoder, or CSLVAE
for short (pronounced like c’est la vie). CSLVAE is a graph-based generative model that exploits
the structure of CSLs towards efficient navigation of the relevant chemical space. Our model learns
a hierarchy of keys over the components of the library, and uses these keys to process queries for
retrieval. The encoder processes a molecular graph and returns as output a query vector, which
the decoder uses to retrieve the molecule through an efficient sequence of query-key comparisons
that utilizes the hierarchical construction of CSLs, requiring minimal autoregression and admitting
efficient parallelization.

The main contributions of this paper are as follows:

• We present a novel graph generative model which acts as a “neural database,” providing
random access to ultra-large, non-enumerable compound libraries. As such, our model is
guaranteed to generate valid and cost-effectively accessible molecules.

• Our model overcomes challenges with long autoregressive chains in compound generation,
improving scalability to large molecular graphs.

• Our model reduces the number of parameters ten-fold relative to comparable methods, and
offers considerable improvements in computational complexity for searching through CSLs.

2 Related Work

Virtual high throughput screening and enumeration Often, the first step in a vHTS campaign
is preparing a compound library for subsequent use [1, 16]. While highly optimized compound
sampling and scoring techniques have been developed [17], these approaches nevertheless rely on
an exhaustively accessible library. An exception is the virtual synthon hierarchical enumeration
screening (V-SYNTHES) approach [42], which leverages the modular nature of parallel synthesis
libraries. However, by design, V-SYNTHES does not permit query-based random access. On the
other hand, SpaceMACS [43] and SpaceLight [4] can provide query-based access to modular libraries
by decomposing the query into fragments, and matching those by similarity search to synthons in the
library. In parallel to these efforts, machine learning has received significant attention in vHTS: for
predicting activity scores given docked conformations [14, 41, 54], predicting activity scores given a
ligand and protein separately (undocked) [37, 53], and in improving or altogether replacing classical
molecular docking with machine learning approaches [38, 48, 49].

Deep learning approaches to molecular generation De novo drug design has assumed an increas-
ingly prominent role in identifying novel chemical matter in drug discovery campaigns [9, 35, 47, 51].
The two dominant neural network-based paradigms for molecular generation are text-based and
graph-based generative models. Early work in text-based generative models (also called chemical
language models) applied recurrent neural networks to SMILES strings [15, 44]. Although these
methods have shown a great deal of promise and spurred interest in molecular generation within the
ML community, they are not guaranteed to produce valid SMILES strings. Approaches utilizing
grammar constraints of SMILES notation have been proposed to improve validity [11, 28]; separately
the recently proposed SELFIES notation [27, 36] guarantees validity and has seen increased adoption
as such. In both cases, however, there remain known drawbacks to modeling with such text-based
representations of chemical matter (e.g., surjectivity, similar molecular structures having possibly
large edit distances).

For some applications, it is of interest to utilize generative models which can fit molecular databases,
permitting the navigation of these databases via the fitted model. The ability of language models to
fit molecular databases was investigated in a prior study [2] that applied deep language models to
GDB-13 [6], a database of 109 compounds formed by fully enumerating molecules up to 13 atoms
of element types C, N, O, S, and Cl, subject to simple chemical stability and synthetic feasibility

2

rules. The authors trained on 0.1% of the total library and find that the model was capable of covering
roughly 70% of compounds in the GDB-13 library. Furthermore, the language model they trained
generates compounds not satisfying the GDB-13 construction in approximately 15% of cases.

Graph generative models have received significant attention in recent years as an alternative to their
text-based counterparts. The earliest of these models focused on generating graphs of a constant size
in a single shot [46] or generating graphs of arbitrary size autoregressively, one atom or bond at a
time [31, 40, 57, 34]. These approaches also struggle to reliably produce chemically valid molecules
and encounter difficulties with large molecular graphs.

In an effort to address both points, fragment-based graph generative models have been proposed and
are growing in popularity [22, 23, 24, 26]. These models have the advantage of guaranteeing chemical
validity by decomposing molecules into valid sub-components and explicitly disallowing actions
which yield invalid combinations of fragments. Such explicit validity checks can be performed on
every action, at the cost of additional computation. While other text- and graph-based generative
models tend to struggle with large molecular graphs due to the long autoregression chains needed to
produce them, fragment-based graph generative models require autoregression lengths on the order
of the number of fragments that comprise a molecule. This can be significant when the fragments
themselves contain many atoms.

However, some issues persist due to general difficulties with autoregressive graph generation. Unlike
text-based models, in which there is less ambiguity in the autoregression order (e.g., tokens are
typically decoded in left-to-right order), graphs have no such canonical node order, which presents
challenges for graph-based autoencoders [31, 56]. Furthermore, although they require shorter
autoregression chains than their counterparts, existing fragment-based graph generative models
nevertheless require autoregression lengths that grow in the overall size of the molecule since
autoregressive decoding cannot be effectively parallelized.

While fragment-based graph generative models and SELFIES-based language models each address
the issue of chemical validity, there is the separate challenge of synthetic accessibility. Prior work
has cast doubt on the synthetic feasibility of compounds proposed by many existing generative
models [12], which can limit the practical utility of these models in drug discovery applications if not
appropriately addressed. Subsequent work has attempted to improve on these shortcomings by (i)
including explicit penalties for synthetic inaccessibility via a scoring function [18], (ii) limiting the
model to fragments from known compounds [33, 39, 50], or (iii) inducing bias towards simple and
known synthetic pathways [7, 8, 20].

3 Methodology

This section formalizes combinatorial synthesis libraries and the proposed model, CSLVAE. Figure 1
provides an illustration of the approach. Details on the architectures used for the various modules
which comprise CSLVAE can be found in the Appendix.

3.1 Preliminaries

CSLs are composed of a set of multi-dimensional synthesis tables (Figure 1, Panel A). Each synthesis
table describes a multi-component chemical reaction, which we denote by an index t ∈ T (e.g.,
a natural number). Following [42], we use the term R-group to refer to a singular component in
a reaction, and denote it by an index r ∈ R. A multi-component reaction takes several reactants
(components) as input to produce a single molecule via chemical synthesis. We let ψ : T → P(R)
be the function which returns the set of R-groups ψ(t) ⊂ R associated with a reaction t, where P(·)
denotes the power set function.

Each R-group is spanned by a possibly large number of molecular building blocks, called synthons,
which can be utilized in the corresponding reaction. We denote a synthon by an index s ∈ S and
represent it with a molecular graph, Gs ∈ GS . We note that a synthon can belong to multiple R-groups.
For convenience, we use σ : R→ P(S) to represent the function which returns the set of synthons
σ(r) ⊂ S belonging to a particular R-group r.

A product x ∈ X is a molecule that is synthesized according to a kt-component reaction with
R-groups ψ(t) = (r

(1)
t , . . . , r

(kt)
t) and a corresponding synthon tuple u = (s

(1)
u , . . . , s

(kt)
u), where

3

graph vector

Molecular
Encoder

graph vector

Synthon
Encoder

graph vector

Synthon
Encoder

graph vector

Synthon
Encoder

graph vector

Synthon
Encoder

vector

Synthon Key
Generator

vector

Synthon Key
Generator

vector

Synthon Key
Generator

vector

Synthon Key
Generator

vector

vector

vector

vector

set of vectors vector

R-Group
Encoder

set of
vectors

Reaction
Encoder vector vector vector

Reaction
Key

Generator

Reaction
Query

Generatorvector vector

Synthon
Query

Generatorvector vector

Synthon
Query

Generatorvector vector

Reaction Group Synthon ProductA

B

C

D

E

F

G

H

Figure 1: Overview of CSLVAE. Panel A: Illustration of a combinatorial synthesis table, which
form the basis of combinatorial synthesis libraries (CSLs). Panel B: CSLVAE is an autoencoder
whose encoder takes molecular graphs as input and returns query vectors as output, which the decoder
then utilizes to retrieve the corresponding products from the library. Panels C-E: The CSLVAE
library encoder represents CSLs via a hierarchy of learned representations. It proceeds by encoding
individual synthons, represented as molecular graphs, with a graph neural network. It subsequently
encodes R-groups with a set neural network over their constituent synthon representations. Finally, it
encodes reactions with a set neural network over their constituent R-group representations. Panel F:
The molecular encoder returns a query from an input molecular graph (in this case, a product from
the library). Panels G-H: The molecular decoder processes the query to retrieve a product from the
CSL, by first decoding the reaction type and subsequently decoding one synthon per R-group via
query-key lookups.

s
(i)
u ∈ σ(r

(i)
t) for all i = 1, . . . , kt. We define f to be the synthesis rule which generates a compound

x from a reaction and synthon tuple pair (t, u), i.e., x := f(t, u). In short, as a simple analogy, one
can think of a synthesis rule t as specifying an equation of kt terms, where each term is an R-group,
and their associated synthons correspond to the allowed values for the corresponding term.

Hence, a combinatorial synthesis library D ≡ (T,R, S, f, ψ, σ) is fully characterized by its reactions
T , R-groups R, and synthons S, together with the synthesis rule f , reaction to R-groups mapping ψ,
and R-group to synthons mapping σ.

Using the language of probability, one can describe a distribution over products induced by D via the
following factorization:

p(x|D) =
∑
t∈T

∑
u∈Ut

p(t|D) p(u|t,D) pf (x|t, u), (1)

where Ut = σ(r
(1)
t) × . . . × σ(r

(kt)
t) is the set of all eligible synthon tuples for reaction t. This

factorization describes the generative process in which one first samples a reaction t ∼ p(t|D) ∝ |Ut|,
then samples a valid synthon tuple u ∼ p(u|t,D) = |Ut|−1 comprised of synthons from the respective
R-groups in t, and joins these together via synthesis to form a product x (via the deterministic rule f).

As written, all valid (t, u) pairs in D are equally probable under p. Note that if every product in D
can be reached according to just a single synthesis route, then p(x|D) is a uniform distribution over
the part of chemical space X accessible by D.

3.2 Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE)

We consider the task of looking up a product x from a library D, which amounts to finding the
reaction t and synthon tuple u satisfying x = f(t, u). This can be cast as an inference problem

4

seeking p(t, u|x,D). A latent variable model for x gives rise to a variational formulation:

p(t, u|x,D) =

∫
z

p(t, u|z,D) q(z|x) dz, (2)

with p(z) denoting the prior distribution of the latent variable. One can further simplify the joint
conditional distribution of t and u by first selecting the reaction t and then selecting the synthons
s
(1)
u , . . . , s

(kt)
u independently conditional on t:

p(t, u|z,D) = p(t|z,D) p(u|z, t,D) (3)

= p(t|z,D)

kt∏
i=1

p(s(i)u |z, t, r(i)t ,D). (4)

This gives rise to a strategy in which one encodes a molecule x into the latent space, z ∼ q(z|x),
and proceeds by first decoding the reaction type t ∼ p(t|z,D) and then, conditional on the sampled
reaction, decoding one synthon per R-group s(i)u ∼ p(s

(i)
u |z, t, r(i)t ,D) for i = 1, . . . , kt to form the

synthon tuple u ∈ Ut.

The resulting latent variable model is the proposed CSLVAE. Panels B-H in Figure 1 give a step-by-
step depiction of the method. In the forthcoming subsections, we will describe and formalize the
three primary modules that comprise CSLVAE in detail: (i) the library encoder, (ii) the molecular
encoder, and (iii) the molecular decoder. Module (ii) forms the basis for q(z|x), while modules (i)
and (iii) form the basis for p(t, u|z,D).

3.2.1 Library encoder

A CSL D ≡ (T,R, S, f, ψ, σ) is organized hierarchically, with synthons S at the bottom of the
hierarchy, R-groups R in the middle, and reactions T at the top. We propose a strategy for learning
an associated hierarchy of representations that describe the library at these three levels of resolution
in an end-to-end fashion. These representations can then be used in retrieving results from queries
into the library. The library encoder is illustrated in panels C-E of Figure 1.

We start from the bottom of the hierarchy with the synthons S. To learn a representation for each
synthon in a manner that is fully inductive, we use a graph neural network to parameterize the
SynthonEncoder : GS → RdS , which applies a sequence of message passing steps followed by a
readout to arrive at a dS-dimensional representation for each synthon.

Moving up the hierarchy, we use a deep set neural network to represent the R-groups R by sum-
marizing the representations for the synthons belonging to a particular R-group. Formally, the
RGroupEncoder : RdS × · · · × RdS → RdR learns a dR-dimensional representation for a given R-
group from the set of dS-dimensional representations of the constituent synthons. Following [58], the
R-group encoder has the form RGroupEncoder({hS

s : ∀s ∈ σ(r)}) = ρ
(⊕

s∈σ(r) ϕ(h
S
s)
)

, where
ϕ and ρ are parameterized by multi-layer perceptrons (MLPs) and

⊕
is a permutation-invariant

aggregation operator. While other potentially more performant set-to-vector neural networks could be
considered here, e.g., set transformers [30], an advantage of this simple construction is that it permits
fast querying over library subsets at test time since ϕ(hS

s) can be cached for all s ∈ S, thereby
reducing the required computations for making queries into partitions of the library. We utilize mean
pooling as the aggregation operator to focus on characteristics of the distribution of synthons in an
R-group (as opposed to sum pooling which generally expresses characteristics of the multiset), which
improves performance when dealing with R-groups of varying cardinality.

Finally, to represent reactions, we use yet another deep set neural network as the ReactionEncoder :
RdR × · · · ×RdR → RdT . This module takes as input a variable-sized set of R-group representations
corresponding to the reactants in t and produces a dT -dimensional representation for the reaction.
We utilize sum as the aggregation operator to learn multiset properties of the R-groups in a reaction.

Putting these together, the representations cascade as follows:
hS
s = SynthonEncoder(Gs), (5)

hR
r = RGroupEncoder({hS

s : ∀s ∈ σ(r)}), (6)

hT
t = ReactionEncoder({hR

r : ∀r ∈ ψ(t)}). (7)

5

In (4), we considered a factorization of the likelihood such that, given a molecular representation z,
the molecular decoder proceeds by first decoding the reaction type and then decoding one synthon
for each R-group separately conditional on the reaction type. Hence, we require a key vector for each
reaction as well as for each synthon to compare with the associated query vectors (to be described).
As such, we introduce a ReactionKeyGenerator : RdT → RkT which returns a key vector given a
reaction representation, and similarly introduce a SynthonKeyGenerator : RdS → RkS to produce
a key for each synthon. Each of these key generators can be parameterized by MLPs:

kT
t = ReactionKeyGenerator(hT

t), (8)

kS
s = SynthonKeyGenerator(hS

s). (9)

3.2.2 Molecular encoder

The MolecularEncoder : GX → RdX takes as input a molecular graph Gx ∈ GX and returns a
dX -dimensional feature representation,

z = MolecularEncoder(Gx). (10)

In our implementation, the MolecularEncoder is a graph neural network with a variational linear
layer stacked on top of the readout, which produces a sample z ∼ q(z|x) for a given input graph Gx.
As depicted in Figure 1, we interpret the representation z as a query induced by x into the library D.

Note that the MolecularEncoder can in principle take any valid molecular graph as input is therefore
capable of producing queries for compounds that are not in the library D. This can be useful for
finding analogues by catalog – that is, compounds which can be purchased from a catalog and are
chemical analogues of a query molecule. This use case will be investigated in a later section.

3.2.3 Molecular decoder

Given a query z = MolecularEncoder(Gx) and a library D, the decoder is tasked with retrieving the
molecule from the library, i.e., identifying the reaction and synthon tuple which yield the molecule as
a product. We proceed by generating the reaction first. A ReactionQueryGenerator : RdX → RkT

generates a query from the molecular representation to compare against the reaction keys:

qT = ReactionQueryGenerator(z), (11){
p(tj |z,D)

}|T |

j=1
= softmax

{
qT · kT

tj√
kT

}|T |

j=1

 . (12)

This defines a probability distribution over reaction types in T . We can sample according to this
distribution to arrive at a reaction t ∼ p(t|z,D).

Given the sampled reaction t, we know the required R-groups (via ψ) and further know which
synthons are eligible for each R-group (via σ). To decode the synthon tuple, we introduce a
SynthonQueryGenerator : RdX+dT+dR → RkS which can be used to query synthons for each
R-group r(i)t ∈ ψ(t) as follows:

qS
t,r = SynthonQueryGenerator([z∥hT

t ∥hR
r]), (13)

{
p(s

(i)
j |z, t, r(i)t ,D)

}|σ(r(i)t)|

j=1
= softmax

qS

t,r
(i)
t

· kS

s
(i)
j√

kS

|σ(r(i)t)|

j=1

 . (14)

In our implementation, both the reaction and synthon query generators are parameterized by MLPs.

3.3 Training algorithm

For a large CSL D∗, encoding the entire library on each iteration of the training loop could require
an excessive amount of GPU memory. To overcome this, we utilize a minibatch strategy in which

6

a random subset D ⊂ D∗ is drawn from the full library according to a distribution p(D|D∗). From
D, we form the synthon, R-group, and reaction representations and keys. In particular, we use
a sub-sampler p(D|D∗) which (i) samples a subset of the reactions contained in the full library
uniformly at random, keeping only the R-groups contained in the sampled reactions, and (ii) for each
reaction, samples a random number of products, retaining only the synthons that are contained in
the sampled products. We also utilize teacher forcing, feeding in the ground truth reaction when
generating the synthon queries for the respective R-groups. Algorithm 1 in the Appendix describes
the training procedure.

Ex-post density estimation Given a trained generative model pθ(x|z), we wish to sample products
via (x, z) ∼ pθ(x|z) p(z) (discarding z).3 However, this in general will not correspond well to a
uniform distribution over the products in D due to the bias introduced by the batch sampling strategy
outlined above (which first uniformly samples reactions and then uniformly samples products given
the reaction).

Although this can be corrected with importance weighting during the training phase, we opt for a
more practical approach by using an ex-post density estimation strategy [13]. We sample a large
number of products from the target distribution x ∼ p(x|D) and encode these products via the
molecular encoder z ∼ qϕ(z|x). We then fit a density estimator to the aggregated samples, written
qλ(z). In our experiments, we utilize a multivariate normal distribution for simplicity, but one could
imagine using more expressive density estimators here (e.g., a mixture of multivariate normals).

Now, we can sample products via (x, z) ∼ pθ(x|z) qλ(z), which will more closely align with
sampling from p(x|D). This helps to correct for bias in the distribution over product space that is
induced by the choice of batch sampling strategy.

3.4 Computational complexity, scalability, and efficiency

We now examine the computational complexity, scalability, and efficiency of the proposed method.

First, we note that the CSL D can be encoded with O(|S| + |R| + |T |) complexity – the constant
depends on the complexity of the synthon, R-group, and reaction encoders. Nonetheless, this is
logarithmic in comparison to naively encoding each product in D, which has O(|D|) complexity.

More noteworthy is the computational complexity of the molecular decoder. For clarity, let us consider
a simplified D comprised of a single k-component reaction. Let Mi denote the number of synthons
for R-group i = 1, . . . , k. Naively, a nearest neighbor lookup in D requires O(

∏k
i=1Mi) complexity.

CSLVAE, on the other hand, performs the lookup over synthons in each R-group independently,
which attains O(

∑k
i=1Mi) complexity: a logarithmic improvement. Hence, the proposed molecular

decoder is highly suitable for ultra-large CSLs that are of interest in early-stage drug discovery.

Another advantage of CSLVAE’s decoding strategy is that it relies only minimally on autoregression.
In fact, we only ever need to do a single step of autoregression, irrespective of the size of the graph
being generated (autoregression length of exactly two). As such, CSLVAE gracefully scales to large
and variable-sized molecular graphs that follow a combinatorial synthesis construction.

Lastly, we point out that our method is guaranteed to generate chemically valid—and perhaps more
importantly, synthetically accessible—molecular graphs without performing explicit validity checks.
This compares favorably with prior work, in which the validity of each candidate action is verified
at each step of the autoregression, with invalid actions excluded from the choice set. Although
cheminformatics libraries like RDKit [29] have efficient C++ implementations for these checks, they
nonetheless increase runtime rather significantly. Further, in the absence of explicit validity checks,
these models have been shown to generate invalid molecular graphs at a markedly higher rate [22].

4 Experiments

This section covers some of our attempts to validate CSLVAE’s performance and highlight its
capabilities. We include additional supplementary experiments in the Appendix.

3The parameter θ represents the parameters for the modules written in typewriter font.

7

Data We demonstrate the capabilities of CSLVAE on the Enamine REAL library, which is com-
prised of 340K synthons and over one thousand reactions. The reactions in REAL range from two
to four components and the number of synthons per R-group range from the single digits to tens of
thousands. In total, the REAL library describes a chemical space of over 16 billion commercially
available compounds.4 Note that this 16 billion compound library is relatively small compared to
over-trillion compound libraries that are commercially available today; we use this more modest
library size as it makes comparisons to other approaches tractable.

Training During training, we sample subsets of the library as follows. Of the roughly 1300 reaction
types in the REAL database, we first uniformly sample 20 reactions at random, and subsequently
sample 100 products per reaction, including the associated synthons in the library subset. These
library subsets therefore describe roughly 300K-1.5M compounds each, which is significantly smaller
than the complete library of 16 billion compounds. See Algorithm 1 in the Appendix for details.

Testing For test-time inference, we decode with respect to the full library of 16 billion compounds.
This constitutes a test-time distribution shift relative to training, but we observed that CSLVAE
generalizes remarkably well to the full library without modifications. For completeness, we include
an analysis of the test-time distribution shift in the Appendix (Supplementary Figure 2). In the
forthcoming analyses, we share results when performing inference on the full library, as this is our
primary objective.

4.1 Molecular reconstruction and generation

Table 1: Comparison of RationaleRL, JT-VAE, and CSLVAE (ours) on synthon-based generative
modeling.

JT-VAE RationaleRL CSLVAE (ours)
Parameters 4.7M 3.4M 380K
Validity 100.0% 100.0% 100.0%
Uniqueness 80.1% 96.3% 98.8%
Average likelihood 18.7% 62.3% 72.4%
In-library proportion 2.9% 50.9% 100.0%

We compare CSLVAE against two state-of-the-art molecular graph generative models: JT-VAE [22]
and RationaleRL [24]. All three models were trained from scratch on the Enamine REAL library.
Details on the experimental setup and architecture can be found in the Appendix.

In JT-VAE, molecular graphs are represented by junction trees over chemical fragments. Decoding
proceeds by first generating the junction tree in a depth-first manner, placing a fragment in each node,
and then subsequently orienting the fragments to match attachment points. RationaleRL, on the other
hand, takes as input a starting chemical fragment or rationale. The decoder’s objective is to complete
the molecule in an autoregressive fashion (one graph edit per step). In our setting, we take a product
from the library and remove all but one synthon, treating the resulting graph as the starting rationale.
Thus, RationaleRL is tasked with generating the missing synthon.

Table 1 summarizes the key findings. First, we note that our implementation of CSLVAE has roughly
10x fewer parameters than the two alternatives considered, owing to the inductive nature of the library
encoder. All three methods achieve 100% chemical validity, but CSLVAE achieves this result without
explicit validity checks. The average likelihood is computed by taking the average of per-compound
reconstruction likelihoods across a large number of products sampled from the library. This is a
measure of how well the model is capable of reconstructing the full molecular graph (i.e., on average,
how likely are we to reproduce the query molecule via the decoder) and can also loosely be interpreted
as a measure of coverage/reachability (i.e., what proportion of the library are we able to faithfully
cover). Finally, we highlight the challenges existing graph generative models face when applied to
ultra-large CSLs, namely that they struggle to reliably generate in-library compounds. For JT-VAE,

4We release a subset of the library alongside our code for reproducing these experiments and to
foster further research in the machine learning community applied to combinatorial synthesis libraries:
https://github.com/AtomwiseInc/cslvae. Data provided with permission from and attribution to Enam-
ine Ltd.

8

https://github.com/AtomwiseInc/cslvae

(1.0000, 0.2353) (1.0000, 0.2353) (0.8158, 0.2568) (0.8158, 0.2568)

(0.9133, 0.2195) (0.4955, 0.2414) (0.4955, 0.2414) (0.1944, 0.1787)

(0.2414, 0.3700) (0.2625, 0.3882) (0.2625, 0.3882) (0.2625, 0.3882)

(0.2322, 0.4490) (0.2242, 0.8556) (0.2242, 0.8556) (0.2353, 1.0000)

Figure 2: Latent space visualizations. Panel A: Moving left to right in raster order, we linearly
interpolate from the starting compound to the target compound. The immediately adjacent molecules
are reconstructions. Below each molecule are its Tanimoto similarities with the starting and target
compound, respectively. Panel B: We sample two random directions in the latent space around a
query compound and visualize the decoded molecules spaced evenly on the resulting 2D plane.

fewer than 1 in 34 compounds were found in REAL. RationaleRL, on the other hand, generates
in-library completions in only about half of the cases (see Supplementary Figure 1 in the Appendix),
but has the advantage that it is provided a starting rationale in the form of a compound from REAL
stripped of all but one synthon. In contrast, CSLVAE is guaranteed to stay in the library by design.

4.2 Latent space visualizations

Next, we qualitatively inspect the latent space learned by CSLVAE. In particular, we are interested in
verifying whether the proposed model has learned a latent space which varies relatively smoothly
over the covered chemical space (i.e., that small perturbations to the query induce only minor edits in
the resulting molecular graph). We perform two kinds of checks: latent space interpolations and local
neighborhood visualizations.

Panel A of Figure 2 contains an example of interpolations in the latent space. In particular, we
interpolate the molecular queries for the starting compound (top left) and target compound (bottom
right), in raster order. The molecules immediately adjacent to the starting and target compounds are
the associated reconstructions. Products are decoded with respect to the full REAL library of 16
billion compounds. Below each molecule are its Tanimoto similarity5 with the starting and target
molecule, respectively. We observe that the interpolations traverse through regions of chemical space
that gradually decrease (cf. increase) in similarity with respect to the starting (cf. target) compound.

Panel B of Figure 2 visualizes the latent space around a randomly sampled product from the REAL
library. Following prior work [28], we form a random 2D plane in the high-dimensional latent space
by sampling two random directions around the molecular query (center compound) and decoding the
resulting products using the argmax decision rule. We observe that the latent space is smooth in the
sense that molecules morph gradually, with only minor edits when the movement in latent space is
small (e.g., one synthon at a time, modifications to smaller functional groups), and that the molecular
scaffold is generally conserved locally.

4.3 Analogue retrieval via autoencoding

Lastly, we utilize CSLVAE to find analogues of a query compound in a large CSL. In Figure 3, we
present the model with two molecules: one which is in the library (left) and one which is not in the
library (right). Given the molecular query, we generate conditionally random completions from the

5The Tanimoto similarity [3] is calculated by taking the intersection-over-union between a pair of bit vectors
describing each molecule using a hash called a molecular fingerprint [5].

9

1.0000 0.5329 0.5243 0.7958

0.4653 0.7958 0.7826 0.6085

0.4653 1.0000 0.4600 0.6530

0.5308 0.7071 0.5058 0.7958

1.0000 0.6817 0.6416 0.6674

0.6717 0.6601 0.6717 0.6488

0.7241 0.7185 0.5879 0.6674

0.6674 0.7241 0.6717 0.6717

Figure 3: Analogue retrieval via autoencoding. Each query molecule (top left) is encoded and
stochastically decoded fifteen times. Below each molecule is its Tanimoto similarity with the query
molecule. Left: Autoencoding a molecule contained in the library. Right: Autoencoding a molecule
not contained in the library.

decoder. In both cases, autoencoding retrieved highly similar compounds as measured by Tanimoto
similarity. For the in-library example, we note that the model is able to successfully retrieve the query
compound (third row, second column). Moreover, we find many instances in which autoencoding
returns compounds that have the same reaction type as the query molecule, but vary in one or two
synthons. For the out-of-library example, we note that CSLVAE finds skeletally relevant compounds
with high Tanimoto similarity, indicating the promise of this approach for fast analogue search in
large (non-enumerable) libraries.

5 Closing remarks

We proposed the combinatorial synthesis library variational auto-encoder, or CSLVAE, a new graph-
based generative model for the navigation of combinatorial synthesis libraries. CSLVAE utilizes
minimal autoregression, permitting efficient generation of large molecular graphs and improving
scalability. Compounds generated by CSLVAE are chemically valid and cost-effectively accessible.
CSLVAE is a neural database providing random access to non-enumerable libraries. In experiments,
we demonstrate the capabilities of CSLVAE in modeling ultra-large and realistic make-on-demand
libraries, paving a path towards more scalable strategies in the exploration of non-enumerable
chemical libraries for early-stage drug discovery. Our method can be combined with established
techniques for molecular optimization as a future direction.

Our approach has some limitations; here, we highlight three. First, the synthon lookup in the decoder
scales linearly with the number of synthons in an R-group, which can present challenges as libraries
continue to add many synthons per R-group. This could be mitigated with more scalable query-key
designs [10, 25], but is not considered here. Furthermore, CSLVAE may face difficulties in the pres-
ence of prominent R-group symmetry (e.g., as in polymers). The decoder would require modifications
to break parity, but may not admit the same convenient parallelization. Lastly, softmax has limitations
in mapping from real-valued potentials to choice probabilities due to its rigid substitution patterns
[52]; sparse or alternative-aware softmax variants may be preferable, but are not considered in this
paper. In future work, we intend to address these shortcomings and look to applications in virtual
high throughput screening.

Acknowledgments and Disclosure of Funding

This work is sponsored by Atomwise Inc. The authors would like to give special acknowledgement to
Christian Laggner, Ho Leung Ng, Srimukh Prasad, Adrian Stecula, and Brad Worley for discussions
and helpful suggestions.

10

References
[1] Atanu Acharya, Rupesh Agarwal, Matthew B Baker, Jerome Baudry, Debsindhu Bhowmik,

Swen Boehm, Kendall G Byler, SY Chen, Leighton Coates, Connor J Cooper, et al.
Supercomputer-based ensemble docking drug discovery pipeline with application to COVID-19.
Journal of Chemical Information and Modeling, 60(12):5832–5852, 2020.

[2] Josep Arús-Pous, Thomas Blaschke, Silas Ulander, Jean-Louis Reymond, Hongming Chen, and
Ola Engkvist. Exploring the GDB-13 chemical space using deep generative models. Journal of
Cheminformatics, 11(1):1–14, 2019.

[3] Dávid Bajusz, Anita Rácz, and Károly Héberger. Why is Tanimoto index an appropriate choice
for fingerprint-based similarity calculations? Journal of Cheminformatics, 7(1):1–13, 2015.

[4] Louis Bellmann, Patrick Penner, and Matthias Rarey. Topological similarity search in large
combinatorial fragment spaces. Journal of Chemical Information and Modeling, 61(1):238–251,
2020.

[5] Andreas Bender and Robert C Glen. Molecular similarity: a key technique in molecular
informatics. Organic and Biomolecular Chemistry, 2(22):3204–3218, 2004.

[6] Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual
screening in the chemical universe database GDB-13. Journal of the American Chemical
Society, 131(25):8732–8733, 2009.

[7] John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-
Lobato. A model to search for synthesizable molecules. Advances in Neural Information
Processing Systems, 32, 2019.

[8] John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-
Lobato. Barking up the right tree: an approach to search over molecule synthesis DAGs.
Advances in Neural Information Processing Systems, 33:6852–6866, 2020.

[9] Hongming Chen. Can generative-model-based drug design become a new normal in drug
discovery? Journal of Medicinal Chemistry, 65(1):100–102, 2021.

[10] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[11] Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. arXiv preprint arXiv:1802.08786, 2018.

[12] Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative
models. Journal of Chemical Information and Modeling, 60(12):5714–5723, 2020.

[13] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf.
From variational to deterministic autoencoders. arXiv preprint arXiv:1903.12436, 2019.

[14] Paweł Gniewek, Bradley Worley, Kate Stafford, Henry van den Bedem, and Brandon Anderson.
Learning physics confers pose-sensitivity in structure-based virtual screening. arXiv preprint
arXiv:2110.15459, 2021.

[15] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268–276, 2018.

[16] Christoph Gorgulla, Andras Boeszoermenyi, Zi-Fu Wang, Patrick D Fischer, Paul W Coote,
Krishna M Padmanabha Das, Yehor S Malets, Dmytro S Radchenko, Yurii S Moroz, David A
Scott, et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature,
580(7805), 2020.

11

[17] David E Graff, Eugene I Shakhnovich, and Connor W Coley. Accelerating high-throughput
virtual screening through molecular pool-based active learning. Chemical Science, 12(22):7866–
7881, 2021.

[18] Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical Science, 11(2):577–586,
2020.

[19] Oleksandr O Grygorenko, Dmytro S Radchenko, Igor Dziuba, Alexander Chuprina, Kateryna E
Gubina, and Yurii S Moroz. Generating multibillion chemical space of readily accessible
screening compounds. Iscience, 23(11), 2020.

[20] Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical
space via deep reinforcement learning. ACS Omega, 5(51):32984–32994, 2020.

[21] John J Irwin and Brian K Shoichet. Docking screens for novel ligands conferring new biology:
Miniperspective. Journal of Medicinal Chemistry, 59(9):4103–4120, 2016.

[22] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. International Conference on Machine Learning, 2018.

[23] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular
graphs using structural motifs. International Conference on Machine Learning, pages 4839–
4848, 2020.

[24] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using
interpretable substructures. International Conference on Machine Learning, 2020.

[25] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: the efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

[26] Xiangzhe Kong, Zhixing Tan, and Yang Liu. Graphpiece: Efficiently generating high-quality
molecular graph with substructures. arXiv preprint arXiv:2106.15098, 2021.

[27] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
Self-referencing embedded strings (selfies): A 100% robust molecular string representation.
Machine Learning: Science and Technology, 1(4), 2020.

[28] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. International Conference on Machine Learning, 2017.

[29] Greg Landrum. RDKit: Open-source cheminformatics, 2006.

[30] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. Interna-
tional Conference on Machine Learning, pages 3744–3753, 2019.

[31] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. Constrained graph
variational autoencoders for molecule design. Advances in Neural Information Processing
Systems, 31, 2018.

[32] Jiankun Lyu, Sheng Wang, Trent E Balius, Isha Singh, Anat Levit, Yurii S Moroz, Matthew J
O’Meara, Tao Che, Enkhjargal Algaa, Kateryna Tolmachova, et al. Ultra-large library docking
for discovering new chemotypes. Nature, 566(7743):224–229, 2019.

[33] Krzysztof Maziarz, Henry Jackson-Flux, Pashmina Cameron, Finton Sirockin, Nadine Schnei-
der, Nikolaus Stiefl, Marwin Segler, and Marc Brockschmidt. Learning to extend molecular
scaffolds with structural motifs. arXiv preprint arXiv:2103.03864, 2021.

[34] Rocío Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:
Science and Technology, 2(2):025023, 2021.

[35] Joshua Meyers, Benedek Fabian, and Nathan Brown. De novo molecular design and generative
models. Drug Discovery Today, 26(11):2707–2715, 2021.

12

[36] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan
Aspuru-Guzik. Beyond generative models: superfast traversal, optimization, novelty, exploration
and discovery (stoned) algorithm for molecules using selfies. Chemical Science, 12(20):7079–
7090, 2021.

[37] Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. DeepDTA: deep drug–target binding
affinity prediction. Bioinformatics, 34(17):i821–i829, 2018.

[38] Joseph M Paggi, Julia A Belk, Scott A Hollingsworth, Nicolas Villanueva, Alexander S Powers,
Mary J Clark, Augustine G Chemparathy, Jonathan E Tynan, Thomas K Lau, Roger K Sunahara,
et al. Leveraging nonstructural data to predict structures and affinities of protein–ligand
complexes. Proceedings of the National Academy of Sciences, 118(51), 2021.

[39] Pavel Polishchuk. Control of synthetic feasibility of compounds generated with CReM. Journal
of Chemical Information and Modeling, 60(12):6074–6080, 2020.

[40] Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

[41] Matthew Ragoza, Joshua Hochuli, Elisa Idrobo, Jocelyn Sunseri, and David Ryan Koes. Protein–
ligand scoring with convolutional neural networks. Journal of Chemical Information and
Modeling, 57(4):942–957, 2017.

[42] Arman A Sadybekov, Anastasiia V Sadybekov, Yongfeng Liu, Christos Iliopoulos-Tsoutsouvas,
Xi-Ping Huang, Julie Pickett, Blake Houser, Nilkanth Patel, Ngan K Tran, Fei Tong, et al.
Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature,
601(7893):452–459, 2022.

[43] Robert Schmidt, Raphael Klein, and Matthias Rarey. Maximum common substructure searching
in combinatorial make-on-demand compound spaces. Journal of Chemical Information and
Modeling, 2021.

[44] Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS Central Science,
4(1):120–131, 2018.

[45] Brian K Shoichet. Virtual screening of chemical libraries. Nature, 432(7019):862–865, 2004.

[46] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. International Conference on Artificial Neural Networks, 2018.

[47] Tiago Sousa, João Correia, Vítor Pereira, and Miguel Rocha. Generative deep learning for
targeted compound design. Journal of Chemical Information and Modeling, 61(11):5343–5361,
2021.

[48] Kate Stafford, Brandon M Anderson, Jon Sorenson, and Henry van den Bedem. AtomNet
PoseRanker: Enriching ligand pose quality for dynamic proteins in virtual high-throughput
screens. Journal of Chemical Information and Modeling, 62(5):1178–1189, 2022.

[49] Hannes Stärk, Octavian-Eugen Ganea, Lagnajit Pattanaik, Regina Barzilay, and Tommi Jaakkola.
Equibind: Geometric deep learning for drug binding structure prediction. arXiv preprint
arXiv:2202.05146, 2022.

[50] Kosuke Takeuchi, Ryo Kunimoto, and Jürgen Bajorath. R-group replacement database for
medicinal chemistry. Future Science OA, 7(8):FSO742, 2021.

[51] Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang
Xu, Hualiang Jiang, Nan Qiao, and Mingyue Zheng. Generative models for de novo drug design.
Journal of Medicinal Chemistry, 64(19):14011–14027, 2021.

[52] Kenneth E Train. Discrete choice methods with simulation. Cambridge University Press, 2009.

[53] Masashi Tsubaki, Kentaro Tomii, and Jun Sese. Compound–protein interaction prediction with
end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35(2):309–
318, 2019.

13

[54] Izhar Wallach, Michael Dzamba, and Abraham Heifets. AtomNet: a deep convolutional
neural network for bioactivity prediction in structure-based drug discovery. arXiv preprint
arXiv:1510.02855, 2015.

[55] Wendy A Warr, Marc C Nicklaus, Christos A Nicolaou, and Matthias Rarey. Exploration of
ultra-large compound collections for drug discovery. Journal of Chemical Information and
Modeling, 62(9):2021–2034, 2022.

[56] Robin Winter, Frank Noé, and Djork-Arné Clevert. Permutation-invariant variational autoen-
coder for graph-level representation learning. Advances in Neural Information Processing
Systems, 34, 2021.

[57] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. Advances in Neural Information
Processing Systems, 31, 2018.

[58] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep Sets. Advances in Neural Information Processing Systems, 30,
2017.

14

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will release
code, data, and instructions by the camera-ready deadline

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We include this information in the supplementary materials.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We include this information in the
supplementary materials.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] We include this information in the

supplementary materials.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] For the data that we intend to release alongside our code, we
have received explicit permission from the vendor (Enamine) to share a subset of the
full library for reproducibility experiments.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

	Introduction
	Related Work
	Methodology
	Preliminaries
	Combinatorial Synthesis Library Variational Auto-Encoder (CSLVAE)
	Library encoder
	Molecular encoder
	Molecular decoder

	Training algorithm
	Computational complexity, scalability, and efficiency

	Experiments
	Molecular reconstruction and generation
	Latent space visualizations
	Analogue retrieval via autoencoding

	Closing remarks

