
A Expanded Related Work1

A.1 Causal inference for binary treatments2

Much recent work [1, 2, 3, 4] in causal inference focuses on the scenario with binary treatments to3

estimate causal effects that are defined as the expected difference between the treated and control4

outcomes, where the selection bias problem has been extensively studied.5

In observational data, treatments are typically assigned according to the covariates associated with6

each unit, resulting in unbalanced covariate distributions among subpopulations that received different7

treatments, which is known as selection bias [5]. It is an important problem on how to alleviate the8

imbalance which can lead to an unreliable inference. In the binary treatment setting, one approach to9

the problem of selection bias is re-weighting the units in observational data to balance the treated10

and control groups [6, 3, 4]. Most of these re-weighing methods are based on the propensity score11

proposed in [6], which is defined as the probability of treatment assignment conditional on observed12

covariates. For example, inverse probability of treatment weighting (IPTW) [7] defines a unit’s13

sample weight as the inverse of the probability of receiving the treatment that the unit actually14

received, and demonstrates that the distribution of covariates in treated and control groups could be15

balanced using this weight. Hassanpour and Greiner [3] use the importance sampling technique to16

propose a context-aware weight, which is defined on the basis of the propensity score and emphasizes17

those units that are important for counterfactual inference. Extended from the standard propensity18

score, the generalized propensity score (GPS) [8], defined as the conditional density of the treatments19

conditional on observed covariates, has a similar balancing property in alleviating the selection bias20

in the continuous treatment setting. Although the methods [9, 10] based on the GPS have some21

attractive theoretical features, they may suffer from the drawback that the GPS is far more difficult to22

estimate accurately compared to the standard propensity score [11].23

The Integral Probability Metric (IPM) that measures the distance between distributions has been24

also exploited to mitigate selection bias in some neural network-based methods for causal inference25

[1, 12, 3, 4]. For example, Shalit et al. [1] propose an algorithm that learns a balanced representation26

of covariates such that the distributions of treated and control groups look similar, i.e., with reduced27

IPM distance between these two groups. After that, a linear ridge-regression model is fitted using the28

factual (observed) distribution on top of learned representations, which bounds the relative error when29

using the distribution with reverse treatment assignment (counterfactual loss). Unlike regression-30

based models [1], Li and Fu [12] design a matching estimator based on the learned low-dimensional31

balanced and nonlinear representations (BNR) for observational data, incorporating a Maximum32

Mean Discrepancy (MMD) criterion into the model. Yao et al. [2] not only balance the distributions33

of treated and control groups to reduce selection bias but also preserve the local similarity among34

units, which provides meaningful constraints on estimating causal effects. However, these methods35

for adjusting selection bias for binary (also discrete) treatments cannot be easily extended to the36

continuous treatment settings since there may be uncountably many groups that received different37

treatments.38

A.2 Connection between causal inference and domain adaptation39

Shalit et al. [1] have found a strong connection between causal inference and domain adaptation. Es-40

timating the average treatment effect in the binary treatment setting requires predicting counterfactual41

outcomes over a different "target" (counterfactual) data distribution based on the "source" (observed)42

one, which has similarities with domain adaptation methods that focus on transferring knowledge43

between discrete domains [13, 14, 15]. Shalit et al. [1] employ the IPM distance between treated and44

control groups to bound the generalization error of estimating causal effects in the binary treatment45

setting, similar to the generalization bound in domain adaptation given by [16]. In the continuous46

treatment setting, causal inference is highly related to the continuously indexed domain adaptation47

[17, 18, 19], which focuses on the scenario where the target domain usually come in a continually48

evolving manner, such as from day to night. From a domain adaptation perspective, estimating49

ADRF (T = t) requires predicting counterfactual outcomes (Y t) over a continually evolving "target"50

(counterfactual) distribution p(X,Y t|T = s) (s ∈ [0, 1] and s 6= t) based on the "source" (observed)51

distribution p(X,Y t|T = t). We bound the generalization error of estimating ADRF by an IPM52

term defined on observed and counterfactual distributions. However, it is impractical to calculate this53

IPM term since potentially infinite counterfactual distributions may exist in a continuous treatment54
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scenario. Following [18], we make an assumption that the covariates distributions of subpopulations55

receiving different treatments smoothly shift, under which we provide a discretized approximation of56

this IPM term and propose an algorithm to calculate it in practice.57

A.3 Theoretical connection between ADMIT and causal inference for binary treatments58

The theoretical part of our work is built on multiple work on causal inference for binary treatments,59

such as [1, 3, 4]. Shalit et al. [1] prove that expected Precision in Estimation of Heterogeneous Effect60

(PEHE) loss is upper bounded by the sum of the expected factual loss and expected counterfactual61

loss when the squared loss is adopted in these two losses. After that, on the basis of the theoretical62

results related to domain adaptation [13], Shalit et al. [1] bound the counterfactual loss by the factual63

loss and an IPM, which is adopted in our work. Hassanpour et al. [3] propose context-aware weights64

that incorporate the valuable context information of each instance, built on top of a representation65

learning module in [1]. While the context-aware weights are obtained based on the estimation of the66

propensity score, Johansson et al. [4] propose adaptable sampling weights to balance the treated and67

control groups, which is adopted in our work.68

Our ADRF error upper bound has similarities with generalization bounds in [1, 4], but with significant69

differences due to the continuity of the treatment. Continuous treatments induce uncountably many70

potential outcomes per unit, which leads to a more complex selection bias problem than binary71

treatments. The potentially infinite number of counterfactual distributions is the main challenge72

since the number of samples for each subpopulation is not enough to estimate the IPM in practice.73

Therefore, we introduce an assumption to constrain differences in the distributions of subpopulations74

receiving different treatments. Based on this assumption, we provide the approximation of the IPM75

term to make it operational and derive an ADRF error upper bound using the IPM term.76

B Proofs77

Theorem 1. Let L be the squared loss function, i.e., L(y, y′) = (y − y′)2. For hypotheses ft78

of individual dose-response function µ(t, ·) with marginal loss ε(ft) = E[lft(X)], there exists a79

constant σmin ≥ 0, such that,80

EMSE(µ, µ̂) ≤ ET [ε(ft)]− σmin. (1)

81

Proof. Let u, v be two arbitrary random variables with limited expected values, i.e., E[u],E[u] <∞.82

Based on the Cauchy–Schwarz inequality, the following inequality holds,83

(E[uv])2 ≤ E[u2]E[v2]. (2)

By replacing u and v with ft(X)− µ(t,X) and 1 in inequality (2), respectively, we get84

(E[ft(X)]− E[µ(t,X)])2 ≤ E[(ft(X)− µ(t,X))2]. (3)

Based on the bias-variance decomposition of the squared loss, the marginal loss ε(ft) could be85

decomposed as:86

ε(ft) = E[(Y t − µ(t,X))2] + E[(ft(X)− µ(t,X))2]. (4)
The term E[(Y t − µ(t,X))2] is a constant determined by the data generation process, denoted by87

σt(Y ). Combining inequality (3) and equality (4), we get88

(µ̂(t)− µ(t))2 ≤ ε(ft)− σt(Y ), (5)

where µ(t) = E[µ(t,X)] and µ̂(t) = E[ft(X)]. Let σmin = min{σt(Y )} ∀t ∈ [0, 1], and take89

expectations on both sides, we have our result.90

91

Lemma 1. Let G be a family of functions l : X → R. Assume the per-unit expected loss function92

L(f, f ′) ∈ G for all f, f ′ ∈ H. Then for any s ∈ [0, 1] and s 6= t, we have:93

ε(ft|T = s) ≤ εw(ft|T = t) + IPMG(ps, p
w
t ). (6)

94
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Proof. By definitions of the conditional loss and IPMG , the following holds,95

ε(ft|T = s)− εw(ft|T = t)

= EX|T [lf (x)|T = s]− EX|T [w(x)lf (X)|T = t]

≤
∣∣∣∣∫ lf (x)(ps(x)− pwt (x))dx

∣∣∣∣
≤ supg∈G

∣∣∣∣∫ g(x)(ps(x)− pwt (x))dx
∣∣∣∣

= IPMG(p
w
t , ps).

Theorem 2. Let IPMmax = maxs∈[0,1]{IPMG(ps, pwt )}. The following holds under the conditions96

of Lemma 1,97

ε(ft) ≤ εw(ft|T = t) + IPMmax. (7)
98

Proof. By the law of iterated expectation and Lemma 1, we have our result:99

ε(ft) =

∫
ε(ft|T = s)p(s)ds

≤
∫

(εw(ft|T = t) + IPMmax)p(s)ds

= εw(ft|T = t) + IPMmax.

Assumption 3. Let pt1 and pt2 denote the conditional probability densities of subpopulations that100

received treatment t1 and t2, respectively. We assume that there is a constant α such that the following101

inequality holds ∀t1, t2 ∈ [0, 1]:102

IPMG(pt1 , pt2) ≤ α |t1 − t2| . (8)
103

We bound the difference between the IPMmax and its discretization under Assumption 3 that the104

probability distributions of subpopulations that received different treatments shift smoothly.105

Lemma 2. Suppose we have n i.i.d. sample of units, and the ith unit received a treatment ti ∼ p(t).106

We assume Assumption 3 holds for a constant α. Then the following holds,107

IPMmax ≤ maxi∈{1,··· ,n}{IPMG(pti , pwt )}+Op(
α
3
√
n
). (9)

108

Proof. Without loss of generality, assume t1 ≤ t2 ≤ · · · ≤ tn. Consider a sequence of random109

variables: {Ln}n=1,2,···, where Ln = maxi∈{0,1,2,··· ,n} (|ti+1 − ti|) (t0 = 0, tn+1 = 1), we first110

prove that Ln converges in probability to zero, whose rate of convergence is at least n−1/3, i.e.,111

Ln = Op(
1
3
√
n
).112

Let β = pmax(t)/pmin(t), where pmin(t) and pmax(t) are the minimum and maximum probability113

of p(t), respectively. Suppose Ii is the interval [di−1, di), where each Ii satisfies
∫
t∈Ii p(t)dt =

1
m114

(d0 = 0 and dm = 1), for i = 1, 2 · · · ,m. Let A denote the event ∃i ∈ {1, · · · ,m},∀j ∈115

{1, · · · , n}, tj /∈ Ii. Then the following holds,116

P (Ln ≥
2β

m
) ≤ P (A)

= 1−
(
n−1
m−1

)(
n+m−1
m−1

)
= 1− (n− 1)!n!

(n−m)!(n+m− 1)!

= 1− (n−m+ 1)× (n−m+ 2)× · · · × (n− 1)

(n+ 1)× (n+ 2)× · · · × (n+m− 1)

< 1− (
n−m
n

)m.
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For any ς > 0, there exist numbers 1 < M = 2β <∞ and N = ( 1
−log(1−ς) )

3 such that117

P (Ln ≥
M
3
√
n
) < 1− (1−

3
√
n

n
)

3
√
n

= 1− (1−
3
√
n

n
)
n
3√n
× ( 3√n)2

n

' 1− e−
1
3√n

< ς

for any n > N . Therefore, Ln = Op(
1
3
√
n
). Under Assumption 3, ∀i ∈ {0, 1, · · · , n, n + 1},118

∀s ∈ [ti, ti+1], the following holds,119

IPMG(ps, p
w
t ) ≤ IPMG(pti , p

w
t ) + IPMG(pti , ps)

≤ IPMG(pti , p
w
t ) +Op(

α
3
√
n
).

By the definition of IPMmax, we have our result.120

Lemma 3. Let p∆s = PX|T (x|t ∈ [s, s + δ]) (0 < δ < 1) denote the conditional density of121

covariates when t ∈ [s, s+ δ]. Then the following holds under Assumption 3,122

IPMG(ps, p
w
t ) ≤ IPMG(p∆s, p

w
t ) + αδ. (10)

123

Proof. Due to the triangle inequality for the Integral Probability Metric,124

IPMG(ps, p
w
t ) ≤ IPMG(p∆s, p

w
t ) + IPMG(p∆s, ps).

By the definition of the IPMG , the following holds,125

IPMG(p∆s, ps)

= supl∈G

∣∣∣∣∣
∫
x

l(x)ps(x)d(x)−
∫ s+δ

s

p(t|t ∈ [s, s+δt])dt

∫
x

l(x)pt(x)dx

∣∣∣∣∣
= supl∈G

∣∣∣∣∣
∫ s+δt

s

p(t|t ∈ [s, s+ δ])dt

∫
x

l(x)(ps(x)− pt(x))dx

∣∣∣∣∣
≤ supl∈G

∫ s+δt

s

p(t|t ∈ [s, s+ δ])dt

∣∣∣∣∫
x

l(x)(ps(x)− pt(x))dx
∣∣∣∣

≤ αδ.

Therefore, we have our result.126

Theorem 3. Suppose we have n i.i.d. sample of units, and the ith unit received a treatment ti. Let127

IPM∆max = maxi∈{1,··· ,n}{IPMG(p∆ti , p
w
t )}. We assume Assumption 3 holds for a constant α.128

Then, for a neighborhood size 0 < δ < 1 we have,129

ε(ft) ≤ εw(ft|T = t) + IPM∆max +Op(
α
3
√
n
) + αδ. (11)

130

Proof. Following Lemma 2 and Lemma 3, we could proof Theorem 3.131

Property 1. The minimum α that meets the conditions of Assumption 3 is132

αmin = maxs∈[0,1]{ lim
δ→0

IPM(ps, ps+δ)

δ
}. (12)

4



Proof. Let t1 < t2 denote two arbitrary variables in [0, 1]. We divide [t1, t2] into n intervals, each of133

length η = t2−t1
n .134

According to the triangle inequality for the Integral Probability Metric, we can get,

IPM(t1, t2) ≤
n−1∑
i=0

IPM(t1 + ηi, t1 + η(i+ 1)).

Let α(t) denote limδ→0
IPM(ps,ps+δ)

δ , then we have,135 ∫ t2

t1

α(t)dt = lim
n→∞

n−1∑
i=0

IPM(t1+ηi, t1+η(i+ 1)).

Therefore, ∀t1, t2 ∈ [0, 1],
IPM(t1, t2)

t2 − t1
≤ αmin.

On the other hand, we can get α ≥ αmin according to the definition of α. In other words, αmin is136

the minimum α that meets the conditions of Assumption 3.137

B.1 Generalization bound based on finite samples138

In this section, we refer to a lemma from [20] to give the finite sample guarantee of Theorem 3.139

Lemma 4. (Sriperumbudur et al. [20]) Let X be a measureable space. Suppose k is a universal,140

measurable kernel such that supx∈Xk(x, x) ≤ C and H the reproducing kernel Hilbert space141

induced by k, with v := supx∈X ,f∈H ≤ ∞. Then, with p̂, q̂ the empirical distributions of p, q from142

m and n samples, and with probability at least 1− ξ, we have,143

|IPMH(p, q)− IPMH(p̂, q̂)| ≤
√

18v2log
4

ξ
(

1√
m

+
1√
n
). (13)

144

With Lemma 4 and Theorem 3, we can give the finite sample guarantee for the proposed algorithm145

ADMIT.146

Theorem 4. Suppose we have n i.i.d. sample of units with an empirical measure p̂, and the147

ith unit received a treatment si. Let ns denote the number of units belonging to [s, s + δ], and148

IP̂M∆max = maxi∈{1,··· ,n}{IPMG(p̂∆si , p̂
w
∆t)}. We assume Assumption 3 holds for a constant α.149

Then, for a neighborhood size 0 < δ < 1, we have,150

ε(ft) ≤ εw(ft|T = t) + IP̂M∆max +

√
18v2log

4

ξ
Dns + σYt +Op(

α
3
√
n
) + αδ, (14)

where Dns = maxi∈{1,··· ,n}{ 1√
nsi

+ 1√
nt
}.151

C Experimental Details152

C.1 Dataset descriptions153

News. The News dataset, consisting of a random sample of 5,000 news items from the NY Times154

corpus [21], was originally introduced as a benchmark for counterfactual inference in the binary155

treatment setting [22]. For each news item x, the ith dimension xi represents the number of156

occurrences of the ith word. Following [22, 23], to give meaning to our treatments and outcomes,157

we let treatment T and outcome Y T represent the time readers spending on the news and their158

satisfaction with the news, respectively. The same version of the News dataset as DRNet (https:159

//github.com/d909b/drnet) is used in this work.160

TCGA. The TCGA project collected gene expression data for various types of cancer from 9,659161

individuals, from which we select the 4,000 most variable genes as features to build our dataset as162

in [23]. We scaled the features of each patient to have norm 1. To give meaning to our treatments163

5

https://github.com/d909b/drnet
https://github.com/d909b/drnet
https://github.com/d909b/drnet


0.0 0.2 0.4 0.6 0.8 1.0
Treatment

1.5

1.0

0.5

0.0

0.5

Re
sp

on
se

Truth
VCNet
ADMIT

(a) Synthetic dataset

0.0 0.2 0.4 0.6 0.8 1.0
Treatment

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
sp

on
se

Truth
VCNet
ADMIT

(b) News dataset

0.0 0.2 0.4 0.6 0.8 1.0
Treatment

0

2

4

6

8

Re
sp

on
se

Truth
VCNet
ADMIT

(c) TCGA dataset

Figure 1: Estimated ADRF on testing set from a typical run of ADMIT and VCNet. The truth is
shown in solid orange line.

Table 1: Summary description of datasets.

Dataset Simulation News TCGA

Number of samples 5,000 5,000 9,659
Number of features 6 3,477 4,000

and outcomes, we let treatment T and outcome Y T represent the medication dosage and the risk of164

cancer recurrence after receiving corresponding treatment, respectively. The same version of the165

TCGA dataset as SCIGAN (https://github.com/ioanabica/SCIGAN) is used in this work.166

A summary description of the datasets is shown in Table 1. We randomly split each dataset into167

training set (67%), validation set (23%), and test set (10%). The validation dataset is used for168

hyperparameter selection.169

C.2 Implement details170

Baselines. We implement entropy balancing for continuous treatments (EBCT) [24] using https:171

//github.com/EddieYang211/ebal-py, and GPS using Python package "causal-curve" [25]172

https://github.com/ronikobrosly/causal-curve. Moreover, we use the publicly avail-173

able implementation of SCIGAN provided by [23]: https://github.com/ioanabica/SCIGAN,174

and implementations of VCNet and DRNet provided by [26]: https://github.com/lushleaf/175

varying-coefficient-net-with-functional-tr. We implement our model on PyTorch with176

an Nvidia RTX3090 GPU. The implementation of the varying coefficient prediction head we use to177

build the inference and re-weighing networks is based on [26], and the kernel we apply in calculating178

MMD is the Gaussian kernel based on https://github.com/oddrose/cfrnet.179

Parameter setting. We tune parameters based on the validation split of each dataset, and180

use the EMSE for evaluation. We tune the following parameters: network learning rate lr ∈181

{0.005, 0.001, 0.0005, 0.0003, 0.0001}, batch size bs ∈ {100, 200, 500, 1, 000}, and neighbourhood182

size δ ∈ {0.05, 0.1, 0.2}. All networks are trained for 200 epochs during tuning.183

C.3 Dose-response curve184

To observe the effectveness of our model visually, the estimated dose-response curves of ADMIT185

and VCNet and the truth are plotted in Figure 1. Across different datasets, when the true ADRF is186

simpler, both ADMIT and VCNet fit better. Moreover, ADMIT always be able to fit the ADRF better187

than VCNet, especially when the true ADRF is relatively complex.188
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